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Fontos tudnivalók 

Tisztelt Vizsgázó! 

Jelen kiadvány készültségi szinte még nem teljes, a tételek kidolgozása még nem befejezett. 

Kérem, hogy ennek figyelembe vételével olvassa a füzetet, valamint látogasson vissza rend-

szeresen, újabb verziók letöltése érdekében! 

Jelen füzet a 2013/14/2. tanulmányi időszak Klasszikus fizika informatikusoknak szóbeli 

vizsgájához lett kiadva. A füzet tartalmazza az intézmény által nyilvánosságra hozott tétel-

jegyzéket, valamint azok kidolgozott formáját is. 

A kiadványban bárhol, de különösen a kidolgozott tételek körében előfordulhatnak hiányos-

ságok, bővebb magyarázatra szoruló részek. Az ezek kiegészítése illetve jegyzetelés, feladat-

megoldás céljából a kidolgozott tételeket a füzetben jegyzetoldalak követik. 

Eredményes felkészülést kívánunk! 

A kiadványt összeállította: 

Naszlady Márton Bese – 2014 

Külön köszönet illeti öcsikémet, aki rengeteg segítségével működött közre a füzet elkészítésében. 

 

Ez a kiadvány a Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc alá tartozik. 
A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra. 

A kiadványban szereplő tartalmi elemek 

harmadik személytől származó véleményt, értesülést tükröznek. 

Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek 
kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!  
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Tételjegyzék 

1.) Kinematika I.: A fizika tárgya, felosztása. A Nemzetközi Mértékegységrendszer (SI) 

alapmennyiségei és alapegységei. Hosszúság és idő mérése. Egyenes vonalú egyenletes moz-

gás. Sebesség mérése Doppler-elv alapján. Térbeli helymeghatározás (a GPS működési elve). 

Szabadesés. Egyenes vonalú egyenletesen gyorsuló mozgás. Átlagsebesség, pillanatnyi sebes-

ség definíciója. Harmonikus rezgőmozgás.  

2.) Kinematika II.: Kinematikai jellemzők térbeli mozgásoknál. Sebesség és gyorsulás mint 

vektor. Egyenletes körmozgás. Centripetális gyorsulás. Hajítások. Egyenletesen gyorsuló 

körmozgás. Körmozgás és rezgőmozgás kapcsolata. Mozgások különböző koordinátarendsze-

rekben. Polár-, henger-, gömbi-koordináták. Térbeli helymeghatározás V-SCOPE, GPS, VI-

DEO segítségével. Egyszerű numerikus módszerek a      és      függvények előállítására.  

3.) Tömegpont dinamikája: Newton-törvények. A dinamika alaptörvénye. Erőtörvények és a 

mozgásegyenlet fogalma. Kezdeti feltételek. Mozgás, állandó erő hatására. Centripetális erő, 

példák körmozgásra (kúpinga, mesterséges hold).     , nehézségi erő, súrlódási erő, kö-
zegellenállási erők, lineáris erőtörvény. A harmonikus rezgőmozgás létrejöttének dinamikai 

feltétele, a mozgásegyenlet megoldása. Kényszererők, szabaderők. Lejtőn történő mozgás. 

Szabadesés folyadékban.  

4.) Gravitáció, bolygók mozgása: Kepler-törvények. A Newton-féle gravitációs erőtörvény. 

Kapcsolata a Kepler-törvényekkel. A gravitációs állandó mérése, Cavendish kísérlet. A Föld 

és a Nap tömege. Mozgás gravitációs erőtérben. Mesterséges holdak, szökési sebesség. Táv-

közlési műholdak.  

5.) Tömegpont mozgására vonatkozó tételek: Impulzus (lendület), erőlökés. Impulzustétel. 

Forgatónyomaték, impulzusmomentum (perdület). Impulzusmomentum-tétel. Centrális erőtér 

(Kepler II. törvénye). Kinetikus energia, elemi munka, pillanatnyi teljesítmény. Erő munka-

végzése adott görbére vonatkoztatva. Munkatétel. Munkavégzés speciális esetekben (állandó 

erő, lineáris erőtörvény,     -es erőtörvény mellett). Konzervatív erőtér fogalma. Potenciál-

függvény bevezetése. A mechanikai energia megmaradásának tétele. 

6.) Pontrendszerek: Pontrendszer fogalma, erők osztályozása. Impulzustétel pontrendszerre. 

Tömegközéppont tétel. Zárt rendszer fogalma. Impulzusmomentum-tétel pontrendszerre. 

Munkatétel pontrendszerre. Zárt rendszerre vonatkozó tételek. Ütközések. Tökéletesen rugal-

mas ütközések. Rugalmatlan ütközések. Ballisztikus inga. Rakéta mozgása. 
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7.) Merev testek mechanikája: Szabadsági fok fogalma. Síkmozgás. Momentán centrum. 

Sztatika: Merev test egyensúlyának feltétele. Forgatónyomaték transzformációja. Egyensúlyi 

feltétel két, három erő esetén (példák). Erőpár. Helyettesítő erőrendszerek. Síkbeli erőrend-

szer eredője. Párhuzamos erőrendszer. Súlypont fogalma, kapcsolata a tömegközépponttal. 

Dinamika: Kinetikus energia tengely körüli forgásnál. Tehetetlenségi nyomaték és tulajdon-

ságai. A forgó mozgás alapegyenlete. Impulzusmomentum forgó mozgásnál. Tiszta gördülés. 

Torziós rezgések. Fizikai inga. 

8.) Folyadékok és gázok mechanikája: Folyadékok általános tulajdonságai. Belső súrlódási 

együttható. Sztatika: Pascal törvénye. Hidrosztatikai nyomás, felhajtóerő. Hidrosztatikai pa-

radoxon. Alkalmazások (úszás). Torricelli kísérlet. A légnyomás függése a magasságtól. 

Barometrikus magasságformula és következményei. Molekuláris erők folyadékokban, felületi 

feszültség. Görbületi nyomás (Laplace-törvény). Kapillaritás jelensége, értelmezése. Dinami-

ka: Áramlások jellemzése, osztályozása. Kontinuitási egyenlet. Bernoulli-törvény. Alkalma-

zások. Súrlódó folyadékok lamináris áramlása. Hagen-Poiseuille törvény. Stokes-törvény. 

9.) Elektrosztatika I.: Elektrosztatikai alapjelenségek. Coulomb-törvény. A töltés egysége. 

Szuperpozíció. Kiterjedt testek elektromos tere (alkalmazások). Dipólus. Az elektrosztatikus 

tér konzervatív. Elektromos térerősség és potenciál kapcsolata. Fluxus fogalma, meghatározá-

sa. Gauss- törvény. Elektrosztatikai alapelveken működő eszközök. Töltött részecske mozgása 

homogén elektromos térben (katódsugárcső). 

10.) Elektrosztatika II.: Síkkondenzátor. Hengerkondenzátor. Kapacitás fogalma. Elektro-

mos tér vezetők és szigetelők jelenlétében. Csúcshatás. Polarizáció. Energiasűrűség elektrosz-

tatikus térben. Kondenzátorok soros és párhuzamos kapcsolása. 

11.) Egyenáramok: Áramerősség, áramsűrűség fogalma, egysége. Szabad töltéshordozók. 

Differenciális Ohm-törvény, Ohm-törvény. Joule-hő. Feszültségforrások a gyakorlatban. 

Elektromotoros erő, belső ellenállás fogalma. Ellenállások soros és párhuzamos kapcsolása. 

Kirchhoff törvények. 

12.) Időben állandó és változó mágneses erőterek: Mágneses alapjelenségek. Erőhatás 

mágneses térben (Lorentz-erő). Töltött részecskék mozgása mágneses térben. Mágneses elté-

rítés, ciklotron. Áramvezetőre ható erő. Mágneses dipólusra ható forgatónyomaték. Oersted-

kísérlete. Gerjesztési törvény és alkalmazásai. 

13.) Maxwell egyenletek: Mozgási indukció. A Faraday-féle indukciós törvény. Lentz-

törvénye. Önindukció. Kölcsönös indukció. Soros R-L-C kör. Energiasűrűség elektromágne-

ses térben. Az elektrodinamika alapegyenleteinek integrális (differenciális*) alakja. Eltolási 

áram. Maxwell- egyenletek. 
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Kidolgozott tételek 

1.) Kinematika I. 

A fizika tárgya, felosztása 

A fizika (görög: φύσις – természet) tudománya az ókori Görögországban fogant meg, és a 18. 

századig magában foglalta az összes természettudományos ismeretet. A 18. századot követően 

a fizika a kíséreltek, mérések és megfigyelések révén rengeteg ismeretanyaggal bővült. Ezt 

követően a tudományág két részre szakad: a fizika az élettelen világ jelenségeit, azokat a 

megváltozásokat vizsgálja, ahol az anyag nem alakul át; míg a kémia a vegyi folyamatokat 

elemzi. 

A fizika által vizsgált anyagi világ mérettartománya az atomi szinttől az univerzum határáig 

terjed, és így vált a fizika valamennyi természettudomány alapjává. 

A fizikát aszerint, hogy mely területekkel foglalkozik, az alábbi részekre oszthatjuk föl: mec-

hanika, termodinamika, elektromosság- és mágnességtan, fénytan, relativitáselmélet, atomfi-

zika. A kutatás módszere szerint elméleti és gyakorlati fizikát, a kutatás célja szerint pedig 

alap- és alkalmazott kutatást lehet megkülönböztetni. 

A Nemzetközi Mértékegységrendszer (SI) alapmennyiségei és alapegységei 

A nemzetközi együttműködés szükségessé tette a tudomány, a technika és a mindennapi élet 

valamennyi területére érvénye, összehangolt (koherens) nemzetközi mértékegységrendszer 

(System International of Units, SI) megalkotását. A Nemzetközi Mértékegységrendszernek 

hét alapmennyisége van. Ezek a következők: 

Alapmennyiség Az SI-alapegység 

neve jele neve jele meghatározása 

hosszúság   méter   

A méter annak az útnak a hosszúsága, amelyet 

a fény vákuumban 1/299 792 458-ad másod-

perc alatt tesz meg. 

tömeg   kilogramm    

A kilogramm az 1889. évben Párizsban megtar-

tott Első Általános Súly- és Mértékügyi Érte-

kezlet által a tömeg nemzetközi etalonjának 

elfogadott, a Nemzetközi Súly- és Mértékügyi 

Hivatalban, Sevres-ben őrzött platina-irídium 

henger tömege. 

idő   másodperc   

A másodperc az alapállapotú cézium-133-atom 

két hiperfinom energiaszintje közötti átmenet-

nek megfelelő sugárzás 9 192 631 770 periódu-

sának időtartama. 

elektromos 

áramerősség 
  amper   

Az amper olyan állandó elektromos áram erős-

sége, amely két párhuzamos, egyenes, végtelen 

hosszúságú, elhanyagolhatóan kicsiny kör-

keresztmetszetű és vákuumban egymástól l 

méter távolságban levő vezetőben áramolva, e 

két vezető között méterenként        newton 

erőt hoz létre. 

termodinamikai 

hőmérséklet 
  kelvin   

A kelvin a víz hármaspontja termodinamikai 

hőmérsékletének 1/273,16-szorosa. 
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anyagmennyiség   mól     

A mól annak a rendszernek az anyagmennyisé-

ge, amely annyi elemi egységet tartalmaz, mint 

ahány atom van 0,012 kilogramm tiszta szén-

12-ben. 

fényerősség    kandela    

A kandela az olyan fényforrás fényerőssége 

adott irányban, amely          hertz frek-

venciájú monokromatikus fényt bocsát ki, és 

sugárerőssége ebben az irányban 1/683-ad watt 

per szteradián. 

Hosszúság és idő mérése 

Még mindig nem vitt rá semmi, hogy ezt kitaláljam… 

Egyenes vonalú egyenletes mozgás 

Az olyan mozgásokat, melyeknél a megfigyelt test egyenes vonalban, egyenlő időközök alatt 

egyenlő utakat tesz meg, bármekkorák is ezek az időközök, egyenes vonalú egyenletes moz-

gásnak nevezzük. 

Az út és az idő hányadosaként kapott állandó annak mértéke, hogy milyen gyorsan mozog a 

test. Ezt az állandót a test sebességének nevezzük: 

  

  
  illetve 

 

 
   

Ez utóbbiból 

     

A sebesség származtatott fizikai mennyiség, és megmutatja az időegység alatt megtett utat. SI 

egysége a méter per másodperc, jele    . 

Ha az egyenes vonalú, egyenletes mozgás út-idő grafikonját ábrázoljuk az       koordináta-

rendszerben, akkor az origón átmenő, valamilyen         meredekségű egyenest kapunk. 

Ha a mozgás       grafikonját ábrázoljuk, akkor az időtengellyel párhuzamos eredményt ka-

punk. 

A mozgás geometriai ábrázolásából szemléletesen adódik a sebesség nagysága, mint az egye-

nes meredeksége, illetve a megtett út, mint a sebesség-idő grafikon alatti terület nagysága. 

Példa Egyenes vonalú, egyenletes mozgást végez a Mikola-csőben lévő buborék. 

Egyenes vonalú egyenletesen gyorsuló mozgás 

Az olyan egyenes vonalú mozgásoknál, melyeknél a test sebesség nem állandó, hanem az 

„gyorsul” illetve „lassul”, megállapítható, hogy a test által megtett út a mozgás kezdetétől 

számított idő négyzetével arányos, vagyis 

             

ahol   a mozgást jellemző állandó.  

Átlagsebesség, pillanatnyi sebesség definíciója 

Természetesen fölmerül a kérdés, hogy miként határozható meg ennek a mozgásnak a sebes-

sége, illetve miként értelmezhetjük a   konsatnst. 

Az egyenes vonalú egyenletes mozgás esetén definiált sebességhez hasonlóan most egy átlag-

sebességnek nevezett a       mennyiséget vezethetünk be. Ez azonban nyilvánvalóan más-
más értéket ad attól függően, hogy mekkora időtartamra számítjuk. Eszerint 
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vagyis   az idővel arányos. Az átlagsebesség nem adja meg a test sebességét az adott időpil-
lanatban. Ezért célszerű az átlagsebességet rövid útszakaszra, rövid időtartamra kiszámítani. 

Egy    időalatt megtett    útra kiszámolva a z átlagsebességet: 

  
  

  
 

            

  
 

           

  
         

vagyis az átlagsebesség függ attól, hogy menyi idő telt el a mozgás kezdetétől a sebességmé-

rés kezdetéig    , és mennyi ideig mértünk     . Ezért az adott időpillanatbeli sebesség meg-

határozásához definiáljuk a   átlagsebességet azon sorozat határértékeként, melyben     . 

Matematikai formában a   pillanatnyi sebesség: 

     
    

  

  
 

  

  
  ̇ 

A négyzetes úttörvény szerint mozgó test pillanatnyi sebessége tehát      . 

A test sebességének megváltozása, vagyis a test gyorsulása     definíció szerint a    sebes-

ségváltozásnak és a közben eltelt    időnek a hányadosa: 

  
  

  
 

            

  
 

            

  
            

Az átlagos gyorsulás határértékét, vagyis a pillanatnyi gyorsulást az 

     
    

  

  
 

  

  
  ̇ 

összefüggés adja meg. 

A fenti típusú mozgásokra a test pillanatnyi- és átlaggyorsulása megegyezik, mert nem függ 

az időtől:       , ahonnan      . Ezek után a mozgást leíró egyenletek: 

  
 

 
                  

Az ilyen típusú mozgást egyenes vonalú egyenletesen gyorsuló mozgásnak nevezzük. A gyor-

sulás megmutatja az egységnyi idő alatti sebességváltozást, SI egysége a méter per másod-

perc-négyzet, jele:     . 

Példa Egyenes vonalú egyenletesen gyorsuló mozgást végez a lejtőn leguruló golyó. 

Szabadesés 

A testek esésének jelenségével kapcsolatban végzett számos kísérlet mind arra az eredményre 

mutatott, hogy (vákuumban) anyagi minőségtől függetlenül, azonos gyorsulással esnek a tes-

tek. Ezt a kitüntetett gyorsulást nehézségi gyorsulásnak nevezzük és  -vel jelöljük. A nehé-

zségi gyosulás értéke Magyarországon            . Ennek ismeretében a szabadon eső 

test útját, sebességét az alábbi képletekkel adhatjuk meg: 

  
 

 
          

  

  
   √            

A függőlegesen lefelé illetve fölfelé elhajított test által megtett út és sebesség pedig 
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Harmonikus rezgőmozgás 

A rugóra akasztott, függőlegesen kitérítve nyugalmi helyzetéből, majd pedig magára hagyva, 

a test két szélső helyzet között periodikusan ismétlődő mozgást végez. Az egy teljes rezgés 

megtételéhez szükséges   időt rezgésidőnek, a maximális   kitérést amplitúdónak nevezzük. 

Ha az időt attól a pillanattól kezdjük számítani, amikor a test a nyugalmi helyzetből a válasz-

tott pozitív irányban halad át, vagyis    -nál    , majd pozitív, akkor a pillanatnyi kité-

rést az alábbi összefüggés írja le: 

      (
  

 
 ) 

Az ilyen mozgást harmonikus rezgőmozgásnak nevezzük. Ha a     időpillanatban a rezgő-

mozgást végző anyagi pont kitérése nem nulla, akkor a kitérés 

      (
  

 
   ) 

ahol   a kezdőfázis (fázisállandó),     -t pedig körfrekvenciának nevezzük, jele  . Ez utób-

bi SI-egysége a radián per másodperc, jele:      , kifejezése            . 

A harmonikus rezgés leírásánál a   rezgésidő helyett gyakran a frekvencia (rezgésszám) sze-

repel. Megállapodás szerint a frekvencia     a rezgések számának     és az eltelt időnek     

a hányadosa. Mivel     rezgéshez     rezgésidő tartozik, ezért a frekvencia: 

  
 

 
 

 

 
 

 

  
 

A frekvencia SI-egysége a hertz, jele:   , kifejezése:         . 

A rezgő test pillanatnyi sebessége a pillanatnyi sebesség definíciója alapján: 

  
  

  
 

 

  
[          ]              

A gyorsulás pedig: 

  
  

  
 

 

  
[           ]                     

Sebesség mérése Doppler-elv alapján 

Egy álló megfigyelő felé közeledő jármű – melyre hangjelzés-adó készüléket szereltek – se-

bessége megállapítható abból, ha ismerjük a kibocsátott jelzés hosszát, és megmérjük, hogy a 

megfigyelő milyen hosszú hangjelzést hallott. 

A kibocsátott hanghullám megváltozott hossza kétféleképp is kifejezhető: 

            

        

ahol   a hang terjedési sebessége,   a forrás sebessége,    a kibocsátott,    az észlelt jelzés 

hossza. A fentiekből: 

    
  

  
   

    

  
 

Ha a megfigyelő is és a hangforrás is mozog, akkor e két sebességből az következik, hogy 

   
  

   
 

   

   
    

ahol   a megfigyelő sebessége, és a hangforrással szemben, felé közeledve mozog. 
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Térbeli helymeghatározás (a GPS működési elve) 

A GPS (Global Positioning System) a Föld felszínén (illetve emberi léptékben attól eltávolo-

dott) objektumok rendkívül pontos helymeghatározását teszi lehetővé. Működési eleve a Föld 

felszíne fölött 20 200 km magasan keringő műholdak által kibocsátott rádiójelek vételén, és a 

vételkor meghatározható műhold–megfigyelő távolságon alapszik. 

Ha minden műhold egyszerre bocsát ki jelet, akkor a Földön lévő megfigyelő   helyvektora és 

a műholdak          helyvektorainak különbsége, vagyis a műholdak megfigyelőtől való 

távolságai a következőképp számolhatók: 

|    |            

|    |            

|    |            

ahol          a műholdak jele észlelésének megfigyelő által mért időeltolódása,   a megfi-

gyelő időmérő készülékének bizonytalansága,    pedig a műholdak által kisugárzott rádiójel 
terjedési sebessége (az adott közegben). 

Mivel ez három egyenlet, melyben   miatt négy ismeretlen van, az egyértelmű megoldáshoz 

szükség van egy negyedik műhold jelének vételére is. Ezzel már az egyenletrendszer megold-

ható. 
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2.) Kinematika II. 

Kinematikai jellemzők térbeli mozgásoknál 

Az anyagi pont mozgását a vonatkoztatási rendszerhez kötött koordinátarendszerben írjuk le. 

A koordinátarendszer origójából az anyagi ponthoz húzott irányított szakaszt,  -t helyvektor-

nak nevezzük. A helyvektor a mozgás során változik, azaz   az idő függvénye, amit röviden 

így jelölhetünk:     . 

Azt a görbét, amelyet az anyagi pont mozgása során leír, a mozgás pályájának nevezzük. A 

pálya egészének vagy egy részének hossza az út. A pálya kezdőpontjából a végpontjába muta-

tó vektor elmozdulás-vektor    . 

A test mozgásának leírása azt jelenti, hogy megadjuk a helyvektor nagyságát és irányát min-

den időpillanatban, vagy ami ezzel egyenértékű, a helyvektor koordinátáinak                

értékét, minden pillanatban. 

A mozgások kinematikai leírásánál arra keresünk választ, hogy hogyan mozognak a testek, 

hogyan függ a megtett út, elmozdulás, helyvektor az időtől. 

Egy mozgást akkor tekinthetünk ismernek, ha minden   időpillanatban meg tudjuk adni a 
helyvektort, azaz tudjuk a test helyzetét. 

Sebesség és gyorsulás mint vektor 

A háromdimenziós térben történő mozgásoknál a sebesség és a gyorsulás is vektormennyiség. 

Sebességvektor 

Az      sebességvektor nagysága megadja a test   időpillanatbeli sebességét, a vektor iránya 

pedig megegyezik azzal az iránnyal, amerre a test mozog. 

A    időpillanatban a pillanatnyi sebesség a következőképpen definiálható: 

         
    

  

  
    

    

          

    
  ̇     

A pillanatnyi sebesség (ha létezik) akkor az adott térgörbe érintővektora. 

Ez koordinátás alakban írva 

         
    

          

    
      

    

          

    
      

    

          

    
   

vagyis 

  [
 ̇
 ̇
 ̇

]   ̇ | |  √  
    

    
  

Gyorsulásvektor 

Ha a sebességvektor megváltozását, azaz a gyorsulást tekintjük, akkor ez a (pillanatnyi) gyor-

sulás kifejezhető a következőképpen: 

         
    

  

  
    

    

          

    
  ̇       ̈     

otthon
Sticky Note
Szögsebesség, Nevezetes térgörbén történő mozgások
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Egyenletes körmozgás 

Ha egy kör mentén egyenletes sebességgel mozgó test jelöléseket ejt a körvonalon, akkor e 

jelölések távolságából elolvasható, hogy a körmozgást végző test egyenlő időtartamok alatt 

egyenlő íveket és középponti szögeket fut be, bármekkorák is ezek az időtartamok. 

  

  
           

  

  
           

A két összefüggéssel definiált   sebességet kerületi sebességnek, az   sebességet pedig szög-

sebességnek nevezzük. Egy teljes körbefordulás   periódusideje alatt a megtett út nagysága 

egy teljes körív      , az elfordulás pedig egy teljes szög     . Ezért 

   

 
                     

  

 
   

A szögsebesség SI-egysége a radián per másodperc, jele:      , kifejezése             . A 
két utóbbi egyenletből a kerületi sebesség és a szögsebesség kapcsolatára fölírható a 

     

összefüggés. Az egyenletes körmozgás jellemzésére bevezetésre került még a fordulatszám is, 

jele:  . Fordulatszámon a megtett   fordulat és az ezalatt eltelt   idő hányadosát értjük. Mivel 

    fordulathoz     periódusidő kell, ezért a fordulatszám: 

  
 

 
 

 

 
 

A fordulatszám SI-egysége    . 

Centripetális gyorsulás 

A körmozgás teljes kinematikai leírásához meg kell határoznunk a test gyorsulását is. Bár a 

test sebességének nagysága állandó, iránya pillanatonként változik, tehát gyorsul. Ha    idő-

különbséggel veszünk két sebességvektort, akkor azok különbsége,    a kör(ív) húrja lesz. A 

sebesség megváltozásának nagysága, azaz a húr hossza: 

|  |       

vagyis közel egyenlő a   sugárral rajzolt ív hosszával. Határértékben, mikor a mérés időtar-

tama     , az átlaggyorsulás    , vagyis tart a pillanatnyi gyorsuláshoz: 

  
    

  
    

  

 
     

A gyorsulás iránya merőleges a sebességre és a kör középpontja felé mutat, ezért centripetális 

gyorsulásnak nevezzük: 

    
  

 
        

Egyenletesen gyorsuló körmozgás 

Ha a körpályán mozgó test egyenletesen gyorsulva mozog, akkor megfigyelhető, hogy a test 

által befutott ívek és középponti szögek az eltelt idő négyzetével arányosak, vagyis 

               

illetve más alakban 
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ahol   és   állandó. Az utóbbi két egyenlettel az egyenes vonalú egyenletesen változó moz-

gásnál levezetett módon felírhatók a következő összefüggések erre az esetre is: 

  
  

 
                    

ahol   a   idő alatt befutott ív hossza,   a körmozgást végző test pillanatnyi kerületi sebessé-

ge,    pedig a tetst érintőleges (tangenciális) gyorsulása, mely a sebességváltozás miatti gyor-
sulás. Hasonlóan a szögelfordulásra is 

  
 

 
                  

ahol   a szögelfordulás,   a pillanatnyi szögsebesség,   pedig a  

  
  

  
 

 

 
         

egyenlettel bevezetett szöggyorsulás. A szöggorsulás SI-egysége a radián per másodperc a 

négyzeten, jele:       , kifejezése:               . 

Figyelembe véve a körív és a középponti szög közötti kapcsolatot, azaz hogy 

     

a kerületi gyorsulás és a szöggyorsulás közötti összefüggés 

      

ahol   a körpálya sugara. 

Ha a kezdeti sebesség     , és vele együtt a kezdeti szögsebesség     , akkor az egyen-

letek a következőképpen módosulnak: 

      
  

 
                       

      
 

 
                     

Körmozgás és rezgőmozgás kapcsolata 

Ha a körmozgást végző test periódusideje megegyezik a rezgő test rezgésidejével és a kör 

sugara egyenlő a rezgés amplitúdójával, akkor a két mozgó test ernyőre kivetített képe min-

den időpillanatban egybeesik. 

Ebből az a tapasztalat szűrhető le, hogy az egyenletes körmozgást végző testnek a kör átmérő-

jére eső vetületi mozgása harmonikus rezgőmozgás. A körmozgást végző test vetületének 

kitérése: 

        

ahol   a körpályán mozgó test távolsága a középponton át húzott egyenestől,   ugyanezen 

egyenes és a kör középpontját a testtel összekötő szakasz által bezárt szög,   pedig a kör suga-

ra. Figyelembe véve azt, hogy az egyenletes körmozgás miatt     , valamint hogy a vetü-

let maximális értéke    , a fönti egyenlet 

         

alakot ölt, ahol   a körmozgás szögsebessége, illetve a rezgőmozgás körfrekvenciája. A kör-

mozgás         kerületi sebességéből könnyen származtatható a rezgőmozgás sebessége: 
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Hasonlóan a rezgőmozgás gyorsulása 

                 

Hajítások 

Vízszintes hajítás 

Ha egyidejűleg két tömegpontot azonos magasságból leejtünk úgy, hogy az egyiknek vízszin-

tesen kezdősebességet adunk, akkor azt tapasztaljuk, hogy a két test egyszerre ér földet. Ha a 

vízszintesen elhajított test pályájának kezdőpontjába egy derékszögű koordinátarendszert he-

lyezünk, akkor az elhajított test elmozdulásának   illetve   irányú skalárkomponenseire a 
következő összefüggéseket kapjuk: 

        
 

 
   

A megfelelő sebességkomponensekre 

            

A gyorsuláskomponensekre pedig 

          

Ha a legfölső egyenletből kifejezzük az időt és a második egyenletbe helyettesítjük, megkap-

juk a test   és   helykoordinátái közötti összefüggést, az úgynevezett pályaegyenletet: 

  
 

   
   

Látható, hogy a mozgó test pályája parabola. A mozgások függetlensége elvének felhasználá-

sával a görbe vonalú mozgást két egyenes vonalú mozgásra vezettük vissza. 

Ferde hajítás 

Ha a testet nem vízszintesen, hanem a vízszinteshez képest valamilyen   szöggel lőjük ki, 

akkor a pályagörbéhez illesztett derékszögű koordinátarendszerben az   illetve   irányú el-
mozdulások skalárkomponenseit a következő egyenletek írják le: 

                    
 

 
   

A megfelelő irányú sebességkomponensek: 

                       

A gyorsuláskomponensek pedig 

           

Ebben a leírásban a ferde hajítást két egymásra merőleges, egyenes vonalú mozgásra bontot-

tuk fe. Ha a már látott módon az első egyenletből kifejezzük az időt és a másodikba helyette-

sítjük, akkor megkapjuk a hajítás pályaegyenletét: 

       
 

   
      

   

A helyet, sebességet és gyorsulást leíró egyenletekből következtetni lehet a pálya tetőpontjá-

nak magasságára, az elérhető legnagyobb távolságra, az emelkedés idejére. E képletek a kö-

vetkezőképpen vezethetők le: 

A pálya tetőpontján a test függőleges irányú sebessége nulla. Azaz 



 „Korlátozott terjesztésű”  1. számú példány 

 

Klasszikus fizika informatikusoknak — PPKE ITK 

 

 

írásbeli és szóbeli vizsga 1419 15 / 84 2014. június 26. 

 

 „Korlátozott terjesztésű”   
 
 

                    

ahol    az emelkedési idő, vagyis amíg a test a pálya tetőpontjára nem jut. Ebből kifejezve: 

   
      

 
 

Az emelkedés idejének ismeretében megadható a pálya tetőpontjának magassága: 

           
         

 
 

 

 
 (

      

 
)
 

 
         

  
 

A teljes mozgás időtartama        (nyilvánvalóan), és ezért földet érés távolsága: 

                  
       

 
 

  
 

 
      

Polár-, henger-, gömbi-koordináták 

Polárkoordináták 

Egy adott          pont polárkoordinátái      , ahol   a pont origótól vett távolsága,   az 

origóból az adott pontba mutató vektornak az   tengely pozitív részével bezárt szöge. Így te-

hát a polárkoordinátákra 

     { }   [      

Átszámítási módok 

Descartes → polár polár → Descartes 

  √              

                       

Hengerkoordináták 

Egy adott            pont hengerkoordinátái        , melyeket így definiálunk:       a 

pont    síkra vett vetületének polárkoordinátái,   pedig a harmadik Descartes koordináta. 

Átszámítási módok 

Descartes → henger henger → Descartes 

  √              

                       

        

Gömbi koordináták 

Egy adott            pont gömbi koordinátái        , melyeket a következőképp definiá-

lunk:   a pont origótól vett távolsága,   a pontba mutató helyvektor és a   tengely pozitív 

része által bezárt szög,   a pontba mutató helyvektor    síkra vett vetületének az   tengely 
pozitív részével bezárt szöge. 

Átszámítási módok 

Descartes → gömbi gömbi → Descartes 

  √                     
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√     

 
 

        

Mozgások különböző koordinátarendszerekben 

Az előzőekben megismertetett koordináta-rendszerekkel bizonyos speciális térgörbén történő 

mozgások egyszerűbben kifejezhetők. 

Körmozgás 

Ha egy   sugarú körön történő egyenletes körmozgást akarunk kifejezni, akkor a tömegpont 

helyzetét leíró           helyfüggvény, melynek koordinátafüggvénye      és     , a 
következőképpen fejezhető ki: 

                   

ahol    a kezdeti szögelfordulás,    pedig a szögsebesség. 

Csavarvonal 

Ha a térben egy tömegpont egy henger felületén egyenletes körmozgás közben   tengely irá-

nyába emelkedik, akkor csavarvonalat ír le. A pontba mutató helyfüggvény            , 

melynek koordinátafüggvényei a következőképpen fejezhetőek ki: 

                           

ahol    és    az előző példában ismertetett ennyiségek,   pedig az emelkedés ütemét megha-
tározó állandó. 

Cikolis-görbe 

Ha egy körlap tiszta gördülése közben a kerületének egy rögzített pontját (pl. egy kerék futó-

felületébe szorult kavicsot) vizsgálunk, akkor a gördülés során a kavics egy ciklois nevű gör-

bét fog leírni. Ha e görbéhez egy derékszögű koordinátarendszert rögzítünk, akkor a görbe 

egyenletét az alábbi koordinátafüggvények adják meg: 

                     [          ] 

                   [        ] 

ahol   a körlap sugara,      a szögelfordulás-függvény, illetve    a szögsebesség. 

Arkhimédészi spirál 

Az arkhimédészi spirál olyan spirális síkgörbe, melyet egy rögzített pontból állandó sebesség-

gel távolodó és ugyanezen pont körül egyenletes szögsebességgel forgómozgást végző test 

pályája rajzol. Az       polárkoordinátákkal kifejezve a tömegpont   időpillanatbeli helyze-

tét, a koordinátafüggvények a következőként alakulnak: 

            

            

Ez utóbbi egyenletből  -t kifejezve és azt az első egyenletbe helyettesítve az összefüggés 

           
       

  
 

alakban írható, ahol    a kezdeti távolság az origótól,    az egyenes vonalú mozgás sebessége, 

     a szögelfordulás-függvény,    a kezdeti szögelfordulás,    pedig a szögsebesség. 
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Térbeli helymeghatározás V-SCOPE, GPS, VIDEO segítségével 

V-scope 

A V-scope a térben mozgó testek mozgását követi nyomon. A rendszer tornyokból, gombocs-

kákból és egy mikroszámítógépből áll. A gombocska egy infravörös-vevőből és egy ultra-

hang-adóból áll. A gombocskát a nyomon követendő testhez rögzítve az eszköz képes meg-

mérni a test térbeli helyzetét. A mérést a tornyok végzik, az ismert helyzetű tornyok infravö-

rös jelet sugároznak a gombocskák számára, mire azok ultrahang-kibocsátással válaszolnak. 

A tornyok mérik a válaszul adott hang beérkezéséig eltelt időt, és így meghatározható a gom-

bocskáknak a toronytól való távolsága. 

A gombocska   helyvektora és a tornyok          helyvektorainak különbsége, vagyis a ket-
tő közti távolságok a következőképp számolhatók: 

|    |       

|    |       

|    |       

ahol          a gombocska jele észlelésének tornyok által mért időeltolódása,    pedig a hang 

terjedési sebessége (az adott közegben). E távolságok ismeretében a gombocska helyzete há-

romszögeléssel megatározható. 

GPS 

A GPS-szel való helymeghatározás módszerét lásd az első tételben a 10. oldalon! 

Video 

Mi a teremburája az a VIDEO?  Ez a Webcam Laboratory. 

Egyszerű numerikus módszerek a      és      függvények előállítására 

Ha ismertek az      helyfüggvény bizonyos   értékeknél fölvett értékei, akkor a      és      
függvények előállítására több mód is kínálkozik. 

Az első és legegyszerűbb módszer, hogy a pontokat szakaszokkal összekötve közelítjük a test 

pályáját, azonban ez a módszer „szögletes”, pontatlan grafikont eredményez. 

A logaritmikus simítás módszer azon alapszik, hogy az      pont környezetében lévő 

        és         pontokat is fölhasználva, ezekre parabolát illesztve közelíti a görbét. 

            ̇       
 

 
 ̈        

  

{
                ̇       

 

 
 ̈        

 

                ̇       
 

 
 ̈        

 

 

A fenti egyenletrendszerből kifejezve a gyorsulás: 

       ̈     
                        

     
 

valamint a sebesség 

       ̇     
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3.) Tömegpont dinamikája 

Newton-törvények 

Newton I. törvénye, a tehetetlenség törvénye 

Minden test mindaddig megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgá-

sát, amíg más testekkel való kölcsönhatás annak megváltoztatására nem kényszeríti. 

A tehetetlenség törvénye a minden más testtől távoli objektumok mozgására vonatkozik. Se-

gítségével definiálható az inerciarendszer fogalma. Az olyan koordinátarendszert, amelyben a 

minden más testtől távol elhelyezkedő testek nyugalomban vannak vagy egyenes vonalú 

egyenletes mozgást végeznek, inerciarendszernek nevezzük. 

Newton II. törvénye, a dinamika alaptörvénye 

A törvény kimondása előtt vezessük be a súlyos és a tehetetlen tömeg fogalmát: 

súlyos tömeg: a testek egymáshoz való vonzódásának mértéke      
tehetetlen tömeg: a test erővel szembeni ellenállása      

Ha egy erőmérővel megvizsgáljuk, hogy ugyanazon test különböző mértékű gyorsításához 

mekkora erők szükségesek, akkor lineáris összefüggést tapasztalunk. 

Egy pontszerű test sebességének a megváltozása egyenesen arányos és azonos irányú a testre 

ható   erővel. Az arányossági tényező megegyezik a test   tömegével. 

Tehát azt kapjuk, hogy      . Kísérletileg megállapítható, hogy az 

 

 
   

hányadossal megadott mennyiség, a tömeg csak a gyorsított testre jellemző. Minél nagyobb a 

test tömege, annál nagyobb erő szükséges ahhoz, hogy a testet adott mértékben gyorsítsuk. Az 

arányossági tényező, a tömeg SI alapmennyiség, egysége a kilogramm, jele:   . 

Az erő a tömeg és a gyorsulás szorzata. SI-egysége a newton, jele:  , meghatározása pedig: 

             . 

A speciális esetekben kísérleti úton meghatározott erő-gyorsulás összefüggés általánosan igaz, 

pontszerű test gyorsulása és a rá ható   erő között fennáll az 

     

összefüggés, ahol   a test tömege. A dinamika alaptörvényét Newton az      impulzus 

segítségével a dinamika alaptörvényét az 

  
  

  
 

alakban írta fel. A törvénynek ez az alakja az           esetben egyenértékű az      
összefüggéssel, hiszen 

  

  
 

     

  
  

  

  
    

A klasszikus mechanikában a tömeg állandósága mindig teljesül, nagy sebességeknél azon-

ban, amikor a relativitáselmélet törvényeit kell alkalmazni, akkor a tömeg az 

  
  

√  
  

  

 

összefüggés szerint sebességfüggvénnyé válik. Ekkor csak a Newton féle felírás érvényes. 
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Newton III. törvénye, a hatás-ellenhatás törvénye 

Ha valamely test erőt fejt ki egy másikra, akkor a másik ugyanakkora, de ellentétes irányú 

erőt fejt ki őrá. 

Azaz az   testre   részéről ható     erő és a   testre   által kifejtett     erő között fennáll az 

         

összefüggés. Ez a hatás-ellenhatás törvénye. 

Megjegyzés: Önállóan a fenti képlettel való felírás nem szerencsés, mivel nem foglalja magá-

ban azt a feltételt, hogy a két erő hatásvonalának közösnek kell lennie, illetve a felírásban 

szereplő két erő más-más testekre hat. 

IV. axióma, az erőhatások függetlenségének elve 

Ha egy testre egy időpillanatban több erő hat, akkor ezek együttes hatása megegyezik vektori 

eredőjük hatásával. 

Az erőhatások függetlenségének elve szerint tehát, ha egy testre egyszerre több erő hat, akkor 

∑  

 

 
  

  
 

Az elvet bár Newton használta, önálló törvényként nem fogalmazta meg. 

Erőtörvények és a mozgásegyenlet fogalma, kezdeti feltételek 

A dinamika alaptörvényéből, ha az erőket ismerjük, következtethetünk a test mozgására. Ha 

pedig a test kinematikai jellemzői vannak birtokunkban, akkor az erőkről nyerhetünk felvilá-

gosítást. Tapasztalat szerint az erők sokszor pusztán az erőt kifejtő test meghatározott paramé-

tereinek, pl. helykoordinátáinak függvényében megadhatók. Az ilyen függvényeket erőtörvé-

nyeknek nevezzük. Az az egyenlet, amit akkor kapunk, ha a dinamika alaptörvényébe beírjuk 

az erőtörvényeket, a mozgásegyenlet. 

Ha a gyorsulás helyébe a helyvektor második deriváltját írjuk, akkor az   ̈    mozgás-
egyenlet általában a mozgás pályáját meghatározó másodrendű differenciálegyenlet, ezért 

ahhoz, hogy a mozgás pontos leírását megadjuk, az erők mellett ismernünk kell valamilyen 

pillanatban a mozgás kinematikai jellemzőit is. Általában a mozgás kezdőpillanatában szokás 

megadni a test helyét és sebességét. Ezeket az adatokat kezdeti feltétleneknek nevezzük. 

Erőtörvények 

Konstans erők 

(1) A Föld közelében a testekre – döntően a Föld vonzása miatt – ható nehézségi erő jó köze-

lítéssel állanó. Az erőtörvény: 

        

 ahol   a nehézségi gyorsulás (vektor). 

(2) A testek mozgásba hozását gátló tapadás súrlódási erő maximuma, melyet az érintkező 

felületek anyagi minőségei határoznak meg 

           

 törvény szerinti. Itt    a tapadási súrlódási együttható,   pedig az alátámasztási felület 

által a testre ható egyetlen   erő felületre merőleges   komponensének, az ún. kényszer-
erőnek a nagysága. 
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 Amikor a testek elmozdulnak egymáson, akkor az érintkező felületeken csúszási súrlódá-

si erő lép fel. A csúszási súrlódási erőt ez 

       

 összefüggés adja meg, ahol   az érintkező felületekre merőleges kényszererő, a   pedig a 
csúszási súrlódási együttható. 

(3) Elektromos erőtérben mozgó   pontszerű töltésre ható erő nagysága szintén konstans, 

hasonlóan a nehézségi erőtérben lévő testhez, az 

     

 erőtörvénnyel írható le, ahol   az elektromos térerősség (vektor). 

Lineáris erők 

(4) A csavarrugó által kifejtett    rugalmas erő arányos és ellentétes irányú a rugó megnyúlá-

sával, vagyis a rugalmas erő az 

       

 összefüggés szerint függ a megnyúlástól, hol   a direkciós állandó 

Nem lineáris erők 

(5) Két tömegpont,   és  , melyek távolsága   a tömegvonzás miatt vonzóerőt fejtenek ki 

egymásra. E gravitációs erő: 

     
  

  
 

 ahol   a gravitációs állandó. 

(6) Hasonló a jelenség, hogy ha két töltés,   és  , melyek távolsága szintén  , 

kölcsönhatnak. Ekkor a Coulomb-féle erőtörvény: 

     
  

  
 

 ahol   a Coulomb-féle arányossági tényező. 

Sebességtől függő erők 

(7) A Lorentz-erő az elektromágneses térben mozgó   töltésre ható erő: 

            

 ahol   az elektromos térerősség,   a mágneses indukció és   a töltés sebessége. 

(8) Folyadékban szabadon eső test esetén 

      

Mozgás, állandó erő hatására 

Állandó erő hatására létrejövő mozgás például a szabadesés és a hajítások. Példaként ezeket 

tárgyaljuk. 

A kísérleti tapasztalat szerint tetszőleges   tömegű testre a Föld közelében         nehé-
zségi erő hat. Így a mozgásegyenlet a szokásos koordinátarendszerben: 

      

A mozgásegyenletet integrálva adódnak a jól ismert összefüggések: 
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Centripetális erő, példák körmozgásra (kúpinga, mesterséges hold) 

Az egyenletes körmozgást végző test gyorsulása, az ún. centripetális gyorsulás a kör közép-

pontja felé mutat. A centripetális gyorsulás nagysága többféle alakban is kifejezhető: 

        
  

 
    

Ahhoz, hogy az   tömegű test ekkora gyorsulással egyenletesen körpályán mozogjon, a testre 

              

nagyságú, a kör középpontja felé mutató erőnek kell hatnia. Ha egyidejűleg több erő is hat a 

testre, akkor a centripetális erő ezeknek az erőknek az eredője. A centripetális erő tehát meg-

egyezik az egyenletes körmozgást végző testre ható erők eredőjével. Vektori alakban: 

    ∑  

 

      

Megjegyzés: A testre ható kölcsönhatási erők közé gyakran besorolják a centripetális erőt is. 

Ez hiba, mivel a centripetális erő éppen a testre ható eredő erő sugárirányú összetevőjével 

azonos. 

Mesterséges holdak mozgása 

A Föld körül keringő mesterséges holdakra ható gravitációs erő a holdakat a Föld körül kör-

pályára állítja. Ekkor a gravitációs erőtörvénnyel a mozgásegyenlet 

      
  

  
 

Emellett     kifejezhető, mégpedig a fent már említett alakban: 

    
  

 
    

Ekkor 

  √     √
  

  
  √

  

 
 √

  

  
     

  

 
 √     

  

 
 

A keringési idő is kiszámolható: 

(
  

 
)
 

 
  

  
         √

  

 
 

Kúpinga 

A fonálra akasztott és egy kúp alapköre mentén meglökött test mozgása közben, mialatt a 

fonál a kúp alkotójaként bejárja a palástot, körmozgást végez. Az összeállítást kúpingának 

nevezzük. A centripetális erő ez esetben a fonalerő és a nehézségi erő eredője. 

   

  
     

        

  
 

    

    
 

A keringési idő: 

   

  
 

 

     
         √

     

 
 



 „Korlátozott terjesztésű”  1. számú példány 

 

Klasszikus fizika informatikusoknak — PPKE ITK 

 

 

írásbeli és szóbeli vizsga 1419 22 / 84 2014. június 26. 

 

 „Korlátozott terjesztésű”   
 
 

Kényszererők, szabaderők 

Vannak olyan erők, melyek meghatározásához a vizsgált test mozgásának ismerete is kell. Ez 

áll fenn, ha a testmozgásának valamilyen előírt pályán kell történnie, például ingamozgás 

vagy lejtőn való lecsúszás esetében. 

Ezekben az esetekben a kényszert megvalósító test által kifejtett erőt nem tudjuk előre erőtör-

vénnyel megadni, az erők csak a mozgás, ill. egyensúly körülményeinek ismeretében adható 

meg. Az ilyen erőket kényszererőknek nevezzük, szemben a szabaderőkkel, amelyek esetén 

az erő a kölcsönhatástól függetlenül meghatározható, mert az erőtörvényt pontosan ismerjük. 

Lejtőn történő mozgás 

Vegyünk fel egy olyan koordinátarendszert, amelynek   tengelye a lejtő mentén a test mozgá-

sának irányába,   tengelye pedig a lejtő síkjára merőlegesen felfelé mutat. A sima lejőn a test-

re a függőlegesen lefelé mutató    erő és a lejtő síkjára merőleges   kényszererő hat. A 
mozgásegyenletek: 

                        

A kényszerfeltétel pedig az, hogy a testnek a lejtő mentén kell mozognia, azaz 

                       

Így a mozgásegyenletből 

                         

     
     

 
                  

adódik. 

Amennyiben a lejtő nem sima, de tudjuk, hogy a test biztosan lecsúszik rajta, akkor a   csú-
szási súrlódási tényező felhasználásával a mozgásegyenletek az 

                           

a kényszerfeltételek pedig az 

                       

alakot öltik. 

A harmonikus rezgőmozgás létrejöttének dinamikai feltétele, a mozgásegyenlet 

megoldása 

A rugó megnyúlása egyenesen arányos és ellentétes irányú a nyújtó erővel. Ez ilyen erőt az 

      

erőtörvénnyel adhatjuk meg, ahol   a megnyúlás,   a rugóra jellemző együttható. Keressük 
most azt, hogy milyen mozgást végez az a test, amelyre a lineáris erőtörvénynek megfelelő 

erő hat. A dinamika alapegyenlete szerint 

       

egyenlet megoldását kell keresni. Ez matematikailag az 

  ̈      

másodrendű differenciálegyenlethez vezet, ahonnan átrendezés után 
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 ̈  
 

 
    

alakra jutunk. A megoldást korábbi tapasztalataink alapján például az                 

alakban kereshetjük. Vizsgáljuk meg, hogy ezek után e függvény mikor megoldása a differen-

ciálegyenletnek. E célból behelyettesítjük a kitérés-idő függvényt és a belőle adódó gyorsu-

lást, majd kiemelés után az 

          (
 

 
   )    

eredményre jutunk. Az egyenletnek minden időpillanatban teljesülnie kell. Ez csak úgy lehet-

séges, hogy 

 

 
      

ahonnan a körfrekvencia és a rezgésidő 

  √
 

 
     √

 

 
 

A fenti megoldásban   és   a kezdeti feltételek ismeretében adható meg. 

Amennyiben a rugót nem vízszintesen, hanem függőlegesen akasztjuk fel, akkor a rárögzített 

tömeg a nehézségi erő miatt megnyújtja a rugót. Ekkor: 

  ̈        

Ezt átrendezve 

  ̈    (  
  

 
) 

majd mivel a jobboldalon a zárójelben tulajdonképpen   áll, ezért 

 (  
  

 
)
  

   (  
  

 
) 

(  
  

 
)
  

   
 (  

  

 
)    

ekkor az általános megoldás 

  
  

 
             

ahol az egyensúlyi helyzet eltolódik. 

Szabadesés folyadékban 

A folyadékban szabadon eső testre a nehézségi erő mellett a közegellenállási erő is hat, mely 

utóbbi a sebesség függvénye. A mozgásegyenlet 

     ̇    ̈           

A folyadékban mozgó testre ható közegellenállási erőről tudjuk, hogy 

         

ahol kicsiny gömb esetén        

A mozgásegyenlet új alakja tehát 
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 ̇    
 

 
   

 

 
(  

  

 
) 

Mivel a harmonikus rezgőmozgásnál alkalmazott módszerrel a jobboldalon itt is   szerepel, 

ezért 

(  
  

 
)
 

 
 

 
(  

  

 
)    

Ahol a zárójeles tagot  -val,    -et pedig  -val jelüljük, akkor 

 ̇       

vagyis az egyenlet általános megoldása 

         

Így a mozgásegyenlet általános megoldása 
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4.) Gravitáció, bolygók mozgása 

Kepler-törvények 

Kepler I. törvénye 

A bolygók olyan ellipszispályán keringenek a Nap körül, amelynek egyik fókuszpontjában a 

Nap található. 

Kepler II. törvénye 

A Naptól a bolygóhoz húzott vezérsugár egyenlő idők alatt egyenlő területeket súrol. 

Ez azt jelenti, hogy a       területi sebesség állandó. Ezt a következőkre lehet visszavezetni: 

   
 

 
        

  
  

  
 

 

 
    

 

 
| | | |      

 

 
|   | 

ahol   a területi sebesség,   a gyújtópontból a bolygóba mutató vektor,    pedig erre a hely-

vektorra merőleges sebességkomponens. 

Kepler III. törvénye 

A Nap körül keringő különböző bolygók keringési időinek négyzetei úgy aránylanak egymás-

hoz, mint a Naptól mért távolságaik köbei: 

  
 

  
  

  
 

  
     

  

  
         

A Newton-féle gravitációs erőtörvény, kapcsolata a Kepler-törvényekkel 

Kepler első törvénye alapján a bolygómozgás síkban zajlik, a második törvény miatt pedig 

következtethetünk arra, hogy a hogy a vonzóerő a Napot a bolygóval összekötő egyenesre 

esik. Közelítsük az ellipszispályát körrel (mint ahogy az a Naprendszer bolygóinál igen jól 

teljesül). Ekkor a centripetális erő fölírható mint 

         

ami tovább egyenlő: 

      
   

  
 

Megszorozva ezt   -tel olyan alakra jutunk, melyből látszik a harmadik Kepler törvény miatt, 

hogy 

   
 

  
 

A Newton-féle gravitációs erőtörvény alakja 

     
  

  
 

amit levezethető az előző felírásokból, mivel 

      
   

  
  

   

   
     

ahol 
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A gravitációs állandó mérése, Cavendish kísérlet 

A   gravitációs állandó mérésére Henry Cavendish szerkesztett eszközt: a torziós inga egy 
nagyon vékony fémszálon függő vízszintes rúdból, és a rúd két végén elhegyezett tömegekből 

áll. Ha a rúd két végének közelében gömb alakú, néhány kg tömegű testeket helyezünk el, 

akkor a kis és nagy golyók közti gravitációs vonzerő hatására a vízszintes rúd elfordul, a vé-

kony függesztőszál pedig megcsavarodik. Az inga akkor lesz egyensúlyban, amikor a gravitá-

ciós erők forgatónyomatéka és a rugalmas szál visszatérítő nyomatéka megegyezik. Ebből a 

gravitációs állandó meghatározható. 

Az inga kis elfordulásának mértékét a szálra rögzített tükörre irányított fénysugár visszavert 

képének ernyőn való elmozdulásának mérésével lehet megállapítani. 

A gravitációs állandót Cavendish mérte meg először, pontos értéke 

              
   

   
 

A Föld és a Nap tömege 

A Naprendszer bolygói jó közelítéssel körpályán mozognak, azaz a Kepler törvények szerinti 

ellipszispálya   numerikus excentricitása, vagyis a   fókusztávolság és a fél nagytengely   

hosszúságának aránya   
 

 
  . Így az   tömegű bolygó mozgásegyenlete a 

 
   

  
  

  

 
 

alakban írható fel. Ebből a pályasugár valamint a keringési idő ismeretében a Nap    tömege 

meghatározható, ha figyelembe vesszük, hogy        : 

   
   

 
 
  

  
 

A fenti összefüggésbe a pálya adatait beírva a Nap tömegére                  adódik. 

Hasonló gondolatmenettel a Föld tömege is kiszámítható:                . 

Mozgás gravitációs erőtérben 

A Kepler első törvényében lévő parabolapályát leíró egyenlet, azaz 

     
 

       
 

ahol   a   pont és a (keringés középpontjaként szolgáló) fókuszpont távolsága,   a nagyten-

gely és az   szakasz által bezárt szög,   pedig az ellipszisre jellemző numerikus excentricitás 
        

A gravitációs erőtörvényből ugyanez levezetető a 

     ̈   
  

  
(
 

| |
) 

differenciálegyenlet megoldásával, melyre 

     
 

       
 

az eredmény. Tehát kimutattuk, hogy tetszőleges vonzócentrum (pl. a Nap) hatására mozgó 

égitestek pályája mindig kúpszelet: a vissza nem térő üstökösök esetén    , azaz parabola, 
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vagy    , azaz hiperbola alakú pályán haladnak. A tartósan a vonzáscentrum közelében 

maradó égitestekre      , azaz pályájuk ellipszis. 

Mesterséges holdak, szökési sebesség 

A mesterséges holdak mozgása is a Newton-féle tömegvonzási törvénnyel írhatók fel. Ebben 

az esetben a Föld a vonzócentrum, és körülötte keringenek a műholdak. 

Körsebesség 

A műholdakkal kapcsolatos legegyszerűbb kérdés az, hogy a Föld középpontjától bizonyos   

távolságban milyen sebességgel kell mozogniuk, hogy pályájuk pontosan kör legyen. A   

magasságban keringő   tömegű műhold mozgásegyenlete ekkor 

 
   

  
  

  

 
 

ahonnan 

  √ 
  

 
 

Felhasználva azt, hogy       , illetve, hogy        
 , az adódik, hogy 

  √ 
  

    
 √

   
 

    
 √    √

  

    
 

Ha a műhold a Föld felszíne fölött nagyon kis magasságban kering, azaz     , akkor a 
keringő műhold sebessége 

   √    

A             és            értékeket behelyettesítve             értéket kapunk, 

melyet első kozmikus sebességnek vagy körsebességnek nevezünk. 

Ha egy rakétát tekintünk, ami a Földtől végtelen nagy távolságra eltávolodott és sebessége 

ekkor nullára csökkent, megkapjuk azt a sebességet, amivel a Földről indított test képes el-

hagyni a bolygó vonzókörét. Az energiatétel szerint a rakétára teljesül, hogy 

 

 
    

   
   

  
   

Innen a     indítási (szökési) sebesség  

    √     

azaz √ -ször akkora, mint az első kozmikus sebesség, tehát     √              . 

Távközlési műholdak 

Hát ide meg mi kell?  Földdel szinkronban keringő műholdak. Nyilván pályasebesség és 

keringési magasság. Lesz majd ilyen is, csak érjem meg! :DD 
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5.) Tömegpont mozgására vonatkozó tételek 

Impulzustétel 

Impulzus, erőlökés 

Newton második törvényének eredeti alakjában az impulzus szerepelt, vagyis ő fogalmazta 

meg a dinamika alaptörvényét 

  
  

  
 

alakban. Ez a fölírás átalakítható: 

            

mely felírásban az első egyenletben szereplő     szorzatot erőlökésnek, a második egyenlet-

tel definiált   vektort pedig impulzusnak nevezzük. 

Impulzustétel 

A tétel kimondja, hogy egy test impulzusnak időegység alatti megváltozása egyenlő a testre 

ható erők eredőjével, vagy másképpen, egy test impulzusának megváltozása egyenlő a testet 

ért erőlökések eredőjével. 
  

  
    ̇ 

A tétel megfogalmazható integrális alakban is, ha kiintegráljuk a fenti egyenlet középső- és 

jobboldalát: 

∫  ̇      
  

  

 ∫        
  

  

 

vagyis 

                    ∫        
  

  

 

A fenti tételből következik, hogy ha    , akkor           , vagyis     , 

illetve hogy ha     , akkor                  . 

Összefoglalva, az impulzustétel három alakja: 

       
  

  
    ̇          ∫        

  

  

 

Perdülettétel 

Forgatónyomaték 

A forgatónyomaték definíció szerint az a mennyiség, ami az erő forgatóhatását jellemzi. 

  | | | |          

mely fölírásban   az erő,   pedig a forgáspontból az erő támadáspontjába mutató vektor. 

Perdület (impulzusmomentum) 

Az      impulzus definíciójából és a forgatónyomatékból fölírható        vektor a 
perdület. 
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Perdülettétel 

A perdülettétel kimondja, hogy egy test perdületét a külső erők forgatónyomatékai változtat-

ják meg. A forgatónyomatékok eredője egyenlő a perdület időegység alatt bekövetkezett 

megváltozásával. Ezen összefüggés a következőből vezethető le: 

  ̈    ̇    

Ezt   vektorral megszorozva: 

    ̇      

Vagyis ezt a szorzatot deriválva: 

 

  
       ̇       ̇ 

adódik, ahonnan, mivel  ̇         , ezért 

 

  
             

Ez a perdülettétel differenciális alakja. Ha az integrális alakot keressük, akkor tekintsük az 

∫  ̇      
  

  

 ∫        
  

  

 

összefüggést, ahonnan 

                          ∫            
  

  

 

Tehát összefoglalva, a perdülettétel három alakja 

       
  

  
        ̇                ∫        

  

  

 

Centrális erőtér (Kepler II. törvénye) 

Megvizsgálva azt, hogy mikor marad meg egy test impulzusmomentuma, arra jutunk, hogy 

olyan esetekben, mikor a testre ható forgatónyomatékok eredője zérus. Ez kétféleképp való-

sítható meg: egyrészt, az     eset triviális, másrészt, ha az   helyvektor párhuzamos az erők 
eredőjével. Ez utóbbi azt jelenti, hogy az eredő erő hatásvonala a test helyvektorának egyene-

sébe esik. Ilyen esetben centrális erőről beszélünk, hiszen az erő a test mozgásának minden 

pillanatában a koordináta-rendszer origójába mutat. 

Kepler második törvénye kimondja, hogy a keringési centrumból a keringő testbe mutató vek-

tor területi sebesség, vagyis azok a    területek, melyeket a vektor    időtartam alatt végig-

söpör, állandó. Ez algebrailag kifejezve 

  

  
           

A területi sebesség szintén egyenlő a következő mennyiséggel: 

  
 

  
|    |  

 

  
| | 

A dinamika alapötvényének newtoni alakját felírva 
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Mivel a fenti szorzat zérus, és     ez csak úgy lehet, ha   és     egy egyenesbe esnek, azaz 

a gravitációs erőtér centrális. 

Munkatétel 

Kinetikus energia 

Az 

  
 

 
    

 

 
(
 

 
)
 

 
  

  
 

összefüggésből és az      felírásból teljesül az 

 

 
       

egyenlőség. Ezen kifejezés baloldalán álló mennyiséget kinetikus energiának nevezzük és   -
val jelöljük. 

Munka, elemi munka 

Az   erő által végzett    munka egyenlő a kinetikus energia megváltozásával, azaz 

       

Az elemi munka az 

   

  
     

összefüggésből kifejezve 

                       

Pillanatnyi teljesítmény 

A munkavégzés gyorsaságának jellemzésére bevezetett mennyiség, a teljesítmény megadja, 

hogy mekkora idő alatt mekkora munkavégzés történt. Az átlagos teljesítményt a 

  
 

 
 

összefüggés határozza meg. A teljesítmény SI-egysége a watt, jele:  , meghatározása: 

         . Az átlagos teljesítmény mellett használatos még a pillanatnyi teljesítmény is, 
amit a következő összefüggéssel definiálunk: 

  
 

  
(
 

 
   )  

    

  
     

Erő munkavégzése adott görbére vonatkoztatva 

Legyen adott a   görbe, melynek végpontjait jelölje     és    . Az   erő által végzett munka, 

míg az   tömeget e görbe mentén mozgatja, a 

∑     
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értékkel közelíthető, ahol a görbe egy felosztása azt   darabra osztja és   ,     ezen szaka-

szokra vonatkozó erők és elmozdulások. Ha a fenti közelítő összeg határértéke     esetén 

létezik, miközben    |  |   , akkor a görbe mentén végzett munka a görbe menti integrál 

bevezetésével kiszámolható: 

           
   

   |  |  

∑      

 

   

 ∫       
 

 

Munkatétel 

A munka definícióját fölhasználva határozzuk meg a pontszerű testre ható erők eredőjének 

munkáját! Ha a testre ható erők      eredője állandó, és a test    kezdősebességének 
egyenesében esik, akkor a feladat igazán egyszerű. A munka definíciós egyenletébe behelyet-

tesítve az erőt, gyorsulást és utat: 

           
      

 
 
    

 
  

Elvégezve a kijelölt műveleteket, az adódik, hogy 

   
 

 
    

 

 
   

  

Ez a munkatétel. Integrális alakja 

 

 
   

  
 

 
   

          ∫       
 

 

Tehát összefoglalva, a munkatétel három alakja: 

       
   

  
         ̇  

 

 
   

  
 

 
   

  ∫       
 

 

Nevezetes erők munkája 

Nehézségi erő munkája 

Emeljük föl az   tömegú testet   úton   erővel, miközben a testre még az         nehé-

zségi erő is hat. Az   erő munkája ekkor      . A nehézségi erőé pedig          . 

Ha a testet agyon lassan, állandó sebességgel emeljük, akkor      és természetesen a két 

erő abszolút értéke is egyenlő egymással. Az   erő által végzett emelési munka: 

        

Ha az emelést nem függőlegesen, hanem valamilyen   görbe mentén végezzük, akkor egysze-
rűen belátható, hogy az emelési munka bármilyen olyan görbe mentén azonos lesz, mely gör-

bék azonos kezdőpontból indulnak ki, és ugyancsak azonos végpontjuk is. 

∑           ∑   

  

                   

ahol 

          [      ]                      

tehát a görbe alakja nem számít az elvégzett munka szempontjából. 
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Súrlódási munka 

Ha az   tömegű test valamely felületen   erő hatására mozog, akkor a felület által a testre 

ható   erő felületre merőleges komponense a   kényszererő, a felülettel párhuzamos összete-

vője pedig az          súrlódási erő. Ha a test állandó sebességgel mozog, akkor az 

        erő munkája   hossúságú pályaszakaszon               , a sebességgel 

ellentétes irányú súrlódási erő munkája pedig                         . 
A fentiekből következik, hogy zárt görbe mentén sem a súrlódási erő munkája, sem a súrlódá-

si erő ellenében végzett munka nem zérus. 

Rugó ellenében végzett munka 

A   rugóállandójú,        erőtörvényű rugó lassú megnyújtásához szükséges   erő mun-

kája az erő-megnyúlás grafikon görbe alatti területe, ami 

   
 

 
   

  
 

 
   

  

Ugyanebben a folyamatban, tehát amikor a rugó megnyúlását   -ről   -renöveljük, a rugóerő 

munkája       . Látható, hogy zárt görbe mentén, vagyis a rugót megnyújtva és vissza-
engedve a rugóerő ellenében végzett munka zérus. 

Kényszererők munkája 

A kényszererők előírt felületre korlátozzák a testek mozgását, és mint megállapítottuk, merő-

legesek a felületre, azaz nyugvó felület esetén a lehetséges elmozdulásra. Ez azt jelenti, hogy 

a kényszererők munkája mindig zérus. 

Konzervatív erőtér fogalma 

Mint láttuk, léteznek olyan erők, melyek által bármilyen zárt   görbe mentén végzett munka 

zérus, vagyis 

  ∑      

    

 

   

Az ilyen erőket konzervatív erőknek nevezzük. 

Ha a konzervatív erő hatására az   tömegű anyagi pont tetszőleges pályán   pontóbl   pont-
ba jut, akkor a konzervatív erő rajta pozitív munkát végez. Ha ezután a tömegpont egy tetsző-

leges (különböző) pályán visszajut   pontba, a konzervatív erő ellenében, akkor a végzett 

munka az előzővel megegyező nagyságú, de ellentétes előjelű, vagyis        , amiből 

következik, hogy       . 

Potenciálfüggvény bevezetése 

Megállapodás szerint konzervatív erő esetén az   pontban lévő anyagi pont     potenciális 

energiáján értjük azt a munkát, amelyet a konzervatív erő képes rajta végezni, ha a tömegpont 

tetszőleges úton jut el az  -ból az elvileg bárhol fölvehető   vonatkoztatási pontba. 

A konzervatív erő jellegéből következik, hogy az anyagi ponton  -ból  -ig végzett munka 

ugyanakkora, mint amekkora munkát végez az   érntésével  -tól  -ig és  -tól  -ig. 

                                

A konzervatív erő munkája tehát egyenlő a tömegpont kezdő- és végállapotbeli potenciális 

energiájának a különbségével. 
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A mechanikai energia megmaradásának tétele 

A konzervatív erő munkája a munkatétel szerint kifejezhető a tömegpont mozgási energiájá-

nak megváltozásával is: 

    
 

 
   

  
 

 
   

  

Ezt az egyenletet és a konzervatív erő munkavégzését a potenciális energiából megadó egyen-

letet összevetve 

        
 

 
   

  
 

 
   

  

illetve 

    
 

 
   

      
 

 
   

  

Minthogy a kezdő és végpontra semmilyen kikötést nem tettünk, ez utóbbi egyenlet azt jelen-

ti, hogy a tömegpont potenciális és mozgási energiájának összege, vagyis 

   
 

 
            

a mozgás során. Ez a mechanikai energia megmaradásának tétele. 
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6.) Pontrendszerek 

Pontrendszer fogalma, erők osztályozása 

A pontrendszerek olyan testek illetve anyagi rendszerek, amelyek diszkrét (elkülönült) pon-

tokból állnak. A rendszer tagjai közötti kapcsolatra egyetlen megkötés van érvényben: a pont-

rendszer két eleme között ható erő mindig centrális, vagyis az erő hatásvonala a két pontot 

összekötő egyenesbe esik. 

A pontrendszer tagjai között működő erőket belső, a rendszeren kívüli testektől származó erő-

ket külső erőknek nevezzük. 

Impulzustétel pontrendszerre 

Tekintsünk egy két tömegpontból álló pontrendszert, melyben a pontszerű testeket jelölje     

és    . Írjuk fel a két test mozgásegyenletét úgy, hogy a rendszer két pontjának kölcsönhatá-

sát megadó          erőt (belső erők) mindkét test esetén válasszuk le a többi erő (a külső 

erők)      összegéről: 

  
   

     
   
  

   
   

     
   
  

 

A két egyenletet összeadva az egyik oldalon a rendszerre ható erők vektori összege, a mási-

kon pedig a rendszer összimpulzusának változása adódik. Az erőösszegből a hatás-ellenhatás 

törvényét felhasználva a belső erők kiesnek. A dinamika alaptörvénye a pontrendszer minden 

tagjára fölírható, így azt kapjuk, hogy a rendszerre ható külső erők vektori összege megegye-

zik a rendszer összimpulzus-változásának és a közben eltelt időnek a hányadosával: 

  
   

 
  

  
 

Ha a két pontra vizsgált esetet gondolatban további pontokra is megnézzük, akkor az egyes 

pontokra felírt egyenletek összegzésekor az egyik oldalon most is a fontrendszerre ható külső 

erők eredője áll elő, a másikon pedig a rendszer   összimpulzusának megváltozása adódik. Így 
a fenti összefüggés tetszőleges számú pontból álló rendszerre is érvényes: 

  

  
  ̇  ∑  

   

 

   
   

    ∫   
         

  

  

 

Ez az impulzustétel pontrendszerre megfogalmazott alakja. 

A tételből rögtön következik, hogy ha a pontrendszerre ható külső erők eredője zérus, akkor a 

rendszer összimpulzusa állandó. 

Tömegközéppont tétel 

Felmerül a kérdés, hogy a pontrendszer mozgása nem jellemezhető-e valamilyen módon 

egyetlen pont mozgásával. Ez azt jelentené, hogy a rendszer összimpulzusát egyetlen ponthoz 

kéne rendelni, melyre teljesül, hogy itt egyesül a rendszer össztömege, vagyis 

  ∑  

 

 

Ezt figyelembe véve az összimpulzus az 

   
∑      

∑    
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alakban is felírható, melyből azonnal látható, hogy a 

   
∑      

∑    
 

sebesség az 

   
∑      

∑    
 

helykoordinátájú pont időszerinti deriváltja. Ennek segítségével az impulzustételt felírhatjuk a 

következő alakban: 

∑  
   

 

     

ahol 

    ̈  
∑      

∑    
 

Az        jelölés bevezetésével az impulzustétel fent megfogalmazott alakja írható a kö-
vetkezőképpen: 

∑  
   

 

 
   
  

 

Ezzel dinamikailag sikerült a tömegpontokból álló rendszert egyetlen pont mozgásával jelle-

mezni. 

Tömegközéppont 

Azt a pontot, melynek helyvektora 

   
∑      

∑    
 

a rendszer tömegközéppontjának nevezzük. A tömegközéppont a mechanika egyik legfonto-

sabb fogalma, így a hangsúlyosság kedvéért az    jelölés helyett gyakran az      jelölés 
használatos. 

Tömegközéppont-tétel 

A tömegközéppont-tétel kimondja, hogy bármely pontrendszer tömegközéppontja úgy mozog, 

mintha benne volna egyesítve a rendszer össztömege, s rá a külső erők vektori összege hatna: 

  
   

         ̈    

A tétel egyenértékű az impulzustétel pontrendszerre megfogalmazott alakjával. 

A fenti tételből következik az is, hogyha a külső erők eredője zérus, akkor 

  

  
                    

Ezekből az következik, hogy          , illetve, hogy             . Utóbbi következ-
ményt úgy is megfogalmazhatjuk, hogy amennyiben a rendszerre ható külső erők eredője zé-

rus, akkor a tömegközéppont nyugalomban marad vagy egyenes vonalú egyenletes mozgást 

végez. 
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Perdülettétel pontrendszerre 

Az impulzustételhez hasonlóan a perdülettétel is felírható a pontrendszer minden tagjára. Te-

kintsük ismét a két pontból álló rendszer esetét! Alkalmazzuk a rendszer minden pontjára az 

impulzustételt és szorozzunk meg vektoriálisan minden egyenletet balról annak a tömegpont-

nak a helyvektorával, amelyre az egyenlet vonatkozik. Így az 

     
   

            ̇  

     
               ̇  

egyenletrendszerekhez jutunk. Adjuk össze ezeket az egyenleteket és vegyük figyelembe, 

hogy 

    ̇  
 

  
                

Azt kapjuk, hogy 

     
         

                  
 

  
              

Az egyenlet baloldalán álló első két tag a rendszerre ható külső erők forgatónyomatéka, a má-

sodik kettő pedig a belső erőké. A belső erők forgatónyomatékában erő és ellenerő forgató-

nyomatéka szerepel, ezért az 

                                        

alakra hozható. Ez az összeg zérus, hiszen             és emiatt vektoriális szorzatuk 
zérus. 

Akárcsak a fenti esetben, akárhány tömegpontból állórendszerre igazolható, hogy a forgató-

nyomatékok összegéből a belső erők forgatónyomatékának összege kiesik, így a perdülettétel 

a következő formában fogalmazható meg: 

∑  
    

  

  
 

 

Azaz, a pontrendszerre ható külső erők forgatónyomatékának vektori összege megegyezik a 

pontrendszer összimpulzusmomentum-változásának és az eltelt időnek a hányadosával. 

A perdülettételből közvetlenül adódik, hogy ha a rendszerre ható külső erők forgatónyomaté-

kának összege zérus, akkor a rendszer impulzusmomentuma állandó: 

          

Tömegközépponttal megfogalmazva 

A tömegközéppont fogalmának segítségével a pontrendszer mozgását globálisan sikerült 

egyetlen pont mozgásával jellemezni. Bár a Newton-törvények inerciarendszerben érvénye-

sek, gyakran mégis célszerű a tömegközépponthoz rögzített koordináta-rendszer alkalmazása 

is. Ezért érdemes meghatározni a tömegközépponti koordináta-rendszerven s az 

inerciarendszerben felírt impulzusmomentum közti kapcsolatot. Az eredmény igen egyszerű, 

hiszen a teljes impulzusnyomaték két tagra esik szét: 

        

Az 
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pálya-impulzusmomentum a rendszer globális mozgásából (a tömegközéppontban egyesített 

egyetlen pontként mozgó test impulzusmomentuma) szármató perdület, az 

   ∑       

 

 

saját-impulzusmomentum pedig a tömegközépponthoz képest bekövetkező mozgásból szár-

mazó járulék, ahol       a tömegközépponti rendszerben megadott helyvektor, illetve sebes-
ség. Vegyük észre, hogy az impulzusmomentum-tétel mind a pálya-, mind a saját-

impulzusmomentumra vonatkozóan érvényes. Fennáll tehát, hogy 

   

  
    ∑     

vagyis a tömegközéppont pálya-impulzusmomentumának időderiváltja megegyezik a rend-

szerre ható külső erők eredőjének forgatónyomatékával. Továbbá: 

   

  
 ∑     

   

 

 

vagyis a saját-impulzusmomentum időderiváltja megegyezik a külső erők tömegközéppontra 

vett forgatónyomatékával. 

Az impulzusmomentum-tétel a tömegközépponti koordináta-rendszerben a tehetetlenségi erők 

figyelembevétele nélkül még akkor is érvényes, ha gyorsuló rendszerről van szó. 

Munkatétel pontrendszerre 

Az impulzustételhez és perdülettételhez hasonlóan érdemes megvizsgálni a pontrendszerre 

vonatkozó munkatételt is. A gondolatmenet eredménye ez, hogy a rendszerre ható erők mun-

káink algebrai összege megegyezik a rendszer mozgási energiájának megváltozásával, azaz 

              

A mozgási energia megváltozásának meghatározásához tehát a belső erők unkáját is figye-

lembe kell venni. 

A munkatétel egyszerű következménye az anyagi pontra vonatkozó munkatételnek. Nagyon 

fontos, hogy a rendszerre ható erők munkájának kiszámításakor általában minden erő esetén 

más és más elmozdulással kell számolni, ezért a munkák összege nem vezethető vissza az 

eredő erő munkájára. Ez az oka annak is, hogy a belső erők munkája általában nem zérus. 

Zárt rendszerre vonatkozó tételek 

Zárt rendszer fogalma 

Azt a rendszert, amelyre ható külső erők eredője zérus, zárt rendszernek nevezzük. 

Az impulzus-, perdület-, és munkatétel zárt rendszerre vonatkozó alakjai 

Mivel nem hatnak a külső erők, így az impulzustételből és a perdülettételből azonnal követke-

zik, hogy zárt rendszer összimpulzusa és perdülete állandó. 

A munkatétel zárt rendszerre vonatkozó alakjában a külső erők munkavégzése zérus, így a 

zárt rendszerre vonatkozó munkatétel alakja: 

         

vagyis a kinetikus energia megváltozása egyenlő a zárt rendszer belső erőinek munkájával. 
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Ütközések 

Ütközésről általában akkor beszélünk, ha két test között rövid ideig tartó olyan erős kölcsön-

hatás lép fel, hogy az egyéberőhatások elhanyagolhatók. Általában feltételezzük, hogy ütkö-

zéskor a testek egyetlen pontban érintkeznek, s e pontban a két testhez közös érintősík húzha-

tó. A közös érintősíkra az érintkezési pontban állított merőlegest ütközési normálisnak nevez-

zük, jele  . 

Centrálisnak nevezzük az ütközést, ha az ütközési normális átmegy mindkét test tömegközép-

pontján. 

Egyenes ütközésről akkor beszélünk, ha az ütköző testek mindegyikének sebessége az ütközé-

si normálisba esik. 

Centrális, egyenes ütközés során az ütköző testek ütközés előtti és utáni sebességvektorai a 

két test tömegközéppontját összekötő egyenes irányába mutatnak. 

Ütközések leírása megmaradási tételekkel 

Jelöljük az ütközésben részt vevő két test tömegét rendre   -el és   -vel, ütközés előtti se-

bességét   -el és   -vel, az ütközés utáni pedig   -el és   -vel. Ha az ütközés nagyon rövid   
ideig tart, akkor az ütközés során fellépő igen nagy belső erők mellett a külső erők elhanya-

golhatók, tehát az ütközés folyamatára minden esetben felírható az impulzus-megmaradás 

törvénye, amely szerint a két test ütközés előtti összimpulzusa megegyezik az ütközés utáni 

összimpulzussal: 

                    

Az ütközéseket a mechanikai energia megmaradása szempontjából is osztályozhatjuk. Tökéle-

tesen rugalmasnak nevezzük az ütközést, ha az ütközés előtti és utáni mozgási energiák meg-

egyeznek. Pontszerűnek tekinthető testekre: 

 

 
    

  
 

 
    

  
 

 
    

  
 

 
    

  

Olyan esetben, amikor az ütközés során a belső erők által végzett munka a rendszer kezdeti 

mozgási energiáját csökkenti, az ütközést rugalmatlan ütközésnek nevezzük. Ha az ütközés 

során a két test összekapcsolódik, és ütközés után közös lesz a sebességük, akkor az ütközést 

tökéletesen rugalmatlannak nevezzük. 

Tökéletesen rugalmas ütközések 

Rugós ütközővel ellátott, súrlódásmentes sínen mozgó kocsik ütközése jó közelítéssel tökéle-

tesen rugalmasnak és centrálisnak tekinthető. Mivel az ütköző testek sebességvektora egy 

egyenesbe esik, ezért a megmaradási tételek jóval egyszerűbb alakban is írhatók: 

                    

 

 
    

  
 

 
    

  
 

 
    

  
 

 
    

  

A fenti összefüggéseket átrendezve: 

                    

                                  

A második egyenlettel az elsőt elosztva azt kapjuk, hogy 

            

Az így adódó lineáris egyenletrendszer a következő: 
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{
                   

           
 

Ebből az ütközés utáni sebességekre az alábbi összefüggéseket nyerjük: 

   (
     

     
)    (

   

     
)   

   (
     

     
)    (

   

     
)    

Rugalmatlan ütközések 

Két test tökéletesen rugalmatlan ütközéskor a két test ütközés után közös sebességgel     
mozog tovább. Ez a sebesség az impulzus-megmaradást kifejező egyenletből: 

  
         

     
 

Az ütközés során fellépő    energiaveszteség: 

   
 

 
    

  
 

 
    

  
 

 
        

  

Ez utóbbi egyenlethez fölhasználva a közös sebességre adott összefüggést: 

   
 

 

      

     

       
  

A fenti formulából látszik az is, hogy az energiaveszteség adott sebességek és tömegek mel-

lett akkor a legnagyobb, ha a két sebességvektor egymással szembe mutat. A mozgási ener-

giaveszteség legtöbbször hő-, illetve deformációs energiaként jelenik meg. 

Ballisztikus inga 

A ballisztikus inga a fegyverlövedék sebességének meghatározására szolgáló igen egyszerű 

eszköz. Felépítése a következő:   hosszúságú fonállal   tömegű homokzsákot függesztünk 

fel. A fegyvergolyó sebességének megméréséhez az   tömegű,   sebességgel haladó lövedé-

ket a homokzsákba lőjük, és ekkor a zsák a lövedék haladási irányával megegyező irányba 

kilendül. A kilendülést jellemezhetjük a függesztő fonalnak függőlegestől   szöggel való el-

térésével, illetve a homokzsák aljának eredeti helyzetétől való   magasságba emelkedésével. 

A golyó becsapódását a homokzsákba tekinthetjük tökéletesen rugalmatlan ütközésnek. Ekkor 

a pontrendszer ütközés utáni sebessége   lesz. Erre fölírhatjuk a következő összefüggéseket: 

          

 

 
                           

Tehát: 

(
 

   
)
 

               

ahonnan 

  
   

 
√    √     (

 

 
) 
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Rakéta mozgása 

A rakétamozgás szemléltetésére alkalmas az a kísérlet, melynek során egy   tömegű kisko-

csira rögzített rugó elé, – melyet összenyomott állapotban cérnával összekötünk –    tömegű 

golyót helyezünk. A cérna elégetésekor a rugó a golyót leröpíti, és a kocsi az ellenétes irányba 

indul. 

Az   tömegű kiskocsira helyezett    tömegű testet a kocsihoz képest   sebességgel kilőve, a 

kiskocsi    sebességre tesz szert. A rendszerre érvényes az impulzus-megmaradás törvénye, 
vagyis a kezdeti és a szétlökődés utáni impulzusoknak egyezniük kell: 

          

Innen a kiskocsi sebességnövekedése 

    
  

 
  

adódik. 

A klasszikus rakéták úgy működnek, hogy az üzemanyag elégetésekor a fúvókán nagy sebes-

séggel kiáramló gáz a rendszerből impulzust visz el, és így a rakétatest az impulzus-

megmaradás törvényének megfelelően ellentétes irányba mozdul el. 

A fenti összefüggés alapján meghatározató a rakéta sebessége az idő függvényében. Határoz-

zuk meg a      sebességgel mozgó,      tömegű rakéta sebességének    idő alatt bekövet-

kező növekedését a vele együtt mozgó inerciarendszerhez képest. Legyen az üzemanyag se-

bessége a rakétatesthez képest  . Mivel számértékileg az egységnyi idő alatt kilövellt üzem-
anyag a rakéta tömegével az 

 ̇     
    

  

  
 

alakban fejezhető ki, a rakétatest sebességének növekedése az impulzus-megmaradás törvé-

nye szerint 

    
  

    
   

      

    
  

Mivel 
 

  
[      ]  

 ̇   

    
 

a kezdetben    tömegű rakéta sebességének növekedése 

              
    

  
    

  

    
 

Ebből az adódik, hogy a kezdősebesség nélkül induló rakéta által elérhető maximális sebes-

ség: 

        (
     

  
)       

ahol    a hasznos,    az üzemanyag tömegét jelöli,              a rakétára jellemző 
úgynevezett tömegarány. A rakéták sebességének tehát határt szab az üzemagyag tömegének 

és a hasznos tömegnek az aránya. Ez az arány bizonyos határon túl csak úgy javítható, hogy 

ha a rakétáról leválasztják az üres és feleslegessé vált üzemanyagtartályokat. Ezeket a rakétá-

kat, ahol az eredetileg fellőtt rakéta további önálló rakétákat hordoz, többfokozatú rakétáknak 

nevezzük. 
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7.) Merev testek mechanikája 

Szabadsági fok fogalma 

Merev testnek nevezzük azt a testet, amelyre fennáll, hogy bármely két pontjának távolsága 

állandó. 

A merev test helyzetét három, nem egy egyenesbe eső pontjának koordinátáival jellemezhet-

jük. A merev test egy   pontjának rögzítése után a test többi pontjai a rögzített pont körüli 

gömbfelületen mozoghatnak. Ha a testnek egy másik   pontját is rögzítjük, akkor a test az   

és   ponton átmenő tengely körül még elfordulhat. A tengelynek az egyenesen kívül fekvő, 

egyébként tetszőleges harmadik,   pontjának rögzítésével már az egész test helyzete meghatá-
rozott. 

A három pont helyének megadásához kilenc adat (koordináta) szükséges. A merev kötés miatt 

azonban ezek között három összefüggést írhatunk fel; például azt, hogy a három pont közül 

bármely kettőnek a távolsága állandó. 

Mivel a kilenc adat közül három nem független, a merev test helyzete általában   független 

adattal jellemezhető, más szóval a szabad merev testnek     szabadsági foga van. Speciális 
mozgások esetén (pl.: síkmozgás, tengely körüli forgás) a merev test mozgásának jellemzésé-

re hatnál kevesebb koordináta is elegendő. 

Síkmozgás 

Merev test mozgását akkor tekinthetjük ismertnek, ha a test bármelyik pontja esetében tudjuk, 

hogy hol található adott időpillanatban. Más szóval minden   pont esetén ismert a pont hely-

zetét időben megadó          függvény. Merev test esetén nem szükséges annyi pálya-
függvényt ismerni, ahány pontból a test áll. A merev test bármilyen mozgása két alapvető 

mozgásra – haladó (transzlációs) és forgó (rotációs) mozgásra – vezethető vissza. 

Transzlációs mozgásról akkor beszélünk, amikor a test bármely két, egymással nem párhuza-

mos szakasza a mozgás során külön-külön önmagával párhuzamos marad. Ebben az esetben a 

merev test pontjainak pályái egybevágó görbék. 

A merev test forgómozgást végez, ha van legalább két pontja, amely a mozgás során helyben 

marad. A két pontot összekötő egyenes a forgástengely, amely körül a merev test tengelyen 

kívül fekvő pontjai körmozgást végeznek. 

A merev test mozgásának fontos speciális esete a síkmozgás. Síkmozgásról akkor beszélünk, 

ha a merev test pontjai a térben rögzített síkkal párhuzamos síkokban mozognak. Nyilvánvaló, 

hogy a merev test mint egész ebben az esetbe úgy mozog, mint a rögzített síkkal párhuzamos 

valamely síkmetszete. A síkmetszet mozgása viszont teljes értékűen helyettesíthető a síkmet-

szet tetszőleges két pontjának illetve az ezeket összekötő szakasznak a mozgásával. 

A síkmozgás kapcsán igazoljuk, hogy tetszőleges síkbeli mozgás megvalósítható egyetlen 

transzlációval és azt követő rotációval. Síkmozgás esetén mindig található a merev testen 

vagy a merev testtel együtt mozgó síkon olyan      pont, amely a mozgás kezdő- és vég-
helyzetében is ugyanott marad. Belátható, hogy a testnek az adott mozgása ekkor megvalósít-

ható az   körüli egyetlen forgatással. A forgástengely a következőképpen határozható meg. 

Tegyük fel, hogy a merev test mozgása során az    szakasz a kedeti helyzetéból az      

helyzetbe kerül. Húzzuk meg az     és     szakaszok felező merőlegesét és keressük meg   
metszéspontjukat. (Ha a két egyenes párhuzamos, akkor a síkmozgás egyetlen transzlációval 

adható meg.) Az      egybevágó az       -gel, mert a két háromszög megfelelő oldalai 

otthon
Sticky Note
Steiner tétel
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egyenlők. Ezért az            , ami bizonyítja, hogy ha a testet úgy forgatjuk el   kö-

rül, hogy   az   -be kerüljön, akkor   a   -be kerül. 

A síkmozgást végző test rövid    ideig tartó mozgása során az                szög-

elfordulás kicsiny. Az   és   pont elmozdulásvektora az   forgáspontokhoz húzott szaka-

szokkal            szöget zár be.      esetén az   pontok sorozata olyan   ponthoz 

tart, amely az adott pillanatban jellemzi a mozgást. Az   pontot pillanatnyi forgáspontnak 

(momentán centrumnak) nevezzük. A pillanatnyi forgáspontból nézve a merev test minden 

pontja körmozgást végez és az adott pillanatban a test bármely pontjának sebességvektora 

merőleges az  -ből a ponthoz húzott sugárra. A merev test síkmozgása során a pillanatnyi 
forgáspont helye a síkon változik. 

Sztatika 

Merev test egyensúlyának feltétele 

Hasson a merev testre   számú         külső erő, rendre         támadáspontban. Írjuk 

fel a testre a pontrendszerre vonatkozó tömegközéppont- és impulzusmomentum-tételt tö-

megközépponti koordinátarendszerben: 

 

  
(∑    

 

)  ∑  

 

 
 

  
(∑       

 

) 

Legyen a merev test egyensúlyban, ekkor bármelyik    pontjának sebessége zérus, így az 
egyensúly szükséges feltétele a 

∑  

 

   ∑  

 

 ∑       

 

   

egyenletek teljesülése. A feltételek teljesülése szükséges feltétele a nyugalmi helyzetnek, de a 

feltételek önmagukban nem zárják ki annak a lehetőségét, hogy a test a tömegközéppontján 

átmenő tengely körül egyenletes sebességgel forogjon, illetve, hogy a tömegközéppont egye-

nes vonalú egyenletes mozgást végezzen. 

Forgatónyomaték transzformációja 

Valami lamentálás kéne elé, mert ez így snassz… 

 
ábra 

   ∑     

 

 ∑      
     

 

    ∑  

 

 ∑  
    

 

 

      ∑  

 

   
  

A fentiekből következik, hogy 

Ha ∑      , akkor      
  

Ha egyensúly áll fenn, és ∑      , akkor      
    

Állítás: Az erő hatásvonala mentén eltolható nyomatékának változása nélkül. 

           [    ]       ⏟  
 

         ⏟        
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Egyensúlyi feltétel két, három erő esetén (példák) 

Az egyensúly feltétele két erő esetén az, hogy a két erő eredőjének forgatónyomatéka zérus 

legyen. Ezt szemléletesebben is meg lehet fogalmazni, mégpedig azáltal, hogy az erők hatás-

vonalaira kikötést teszek… 

Három erő esetén a feltétel az, hogy a harmadik erő hatásvonala át kell menjen a két erő ha-

tásvonalának metszéspontján. 

Erőpár 

Vegyünk olyan, két erőből álló erőpárt, amelyben az erők vektori összege zérus, de a két erő 

hatásvonala nem esik egy egyenesbe (ábra). Az erőpárnak adott   pontra vonatkozó forgató-

nyomatéka: 

                              

és független az   pont választásától. Mivel a két erő vektori összege zérus, az összegvektor 
nyomatéka is mindig zérus. Az erőpár tehát nem helyettesíthető egyetlen erővel. 

 

Helyettesítő erőrendszerek 

Az előzőekben láttuk, hogy nem minden erőrendszer (pl. erőpár) helyettesíthető egyetlen ere-

dő erővel. Igazolható viszont, hogy bármely erőrendszer helyettesíthető egyetlen erővel és egy 

erőpárral. Vegyük a vizsgált erőrendszert és válasszunk a térben egy    helyvektorú   pontot. 

Adjuk hozzá az erőrendszer minden tagjához az   vonatkoztatási pontban támadó    és     

erőket (ábra). Ezáltal nem változik sem az eredő erő, sem az   pontra vonatkozó forgatónyo-

maték. Az    helyvektorú    és az  -ban támadó     erőkből álló erőpárnak csak forgató-

nyomatéka van. A megmaradó erők hatása egyetlen,  -ban támadó   erővel helyettesíthető, 
ahol 

  ∑  

 

   

 

 

Síkbeli erőrendszer eredője 

Foglalkozzunk először két erőből álló, síkbeli erőrendszerrel. Az ábrán látható módon adjunk 

az erőrendszerhez nulla erőt és nulla nyomatékot szolgáltató        erőpárt. Az így előálló 

erőrendszerben az erők hatásvonala már metszi egymást (kivéve, ha        ). A helyettesí-
tő erő paralelogramma-módszerrel megszerkeszthető. Az eljárás során az eredő erő hatásvo-

nalának egy pontját kapjuk meg. Az ábra alapján meghatározzuk a hatásvonal és a két táma-

dási pontot összekötő szakasz      metszéspontját. Az ábrán látható háromszögek hasonlósága 

miatt 

  

  
 

  
 

 
  

  
 

  
 

 

és ebből adódik, hogy 

          

Mivel 
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ezért a fent adódott egyenlet felhasználásával a hatásvonalak és az         vektornak a met-

széspontjára az 

     
         
     

 

összefüggést nyerjük. Eszerint az eredő erő hatásvonala a két támadáspontot összekötő sza-

kaszt olyan      pontban metszi, amelynek helyvektora az összetevők támadáspontjába húzott 

helyvektoroknak az erők abszolút értékével „súlyozott” számtani közepe. Ezt a pontot az       

támadáspontú, párhuzamos       erők centrumának nevezzük. 

Párhuzamos erőrendszer 

Az eljárás tetszőleges számú, az   egységvektorral párhuzamos erőre általánosítható. Az 
                             erőrendszer eredője a következőképpen határozható meg. 

Válasszuk ki az          és az          erőt. Megmutattuk, hogy e két erő eredőjének hatás-

vonala átmegy az      helyvektorú ponton, azaz a két erő erőcentrumán. Több párhuzamos erő 

esetén az előző eljárást úgy folytathatjuk, hogy a két párhuzamos erőt a kettejük erőcentrumá-

ban ható            eredő erővel helyettesítjük, és az előbbi gondolatmenettel meghatá-

rozzuk az      és    erők centrumát. A három erő erőcentruma az      és    közti szakaszon az 

       
             

       
 

helyen található. Az     -re adott összefüggés és az            felhasználásával 

       
              

        
 

alakban adható meg. Az eljárást ismételve, az   párhuzamos erő centrumára az 

              
                     

             
 

∑     
 
   

∑   
 
   

 

eredményt kapjuk. Az ebben a pontban támadó 

  (∑  

 

   

)   

erő a párhuzamos erőrendszer eredője. Az    helyvektorral definiált erőcentrum tehát az a 
pont, amelyben a rögzített támadáspontú párhuzamos erők eredője támad. Az eredő erő iránya 

megegyezik az összetevő erők irányával, abszolút értéke pedig az összetevők abszolút értéké-

nek összegével egyenlő. 

Az erőcentrum helye nem változik meg, ha a párhuzamos erőrendszer minden összetevőjét 

ugyanakkora szöggel elforgatjuk eredeti irányától, mert a merev test pontjait jellemző hely-

vektorok és az erők abszolút értékei változatlanok maradnak. Az erőcentrum a párhuzamos 

erők eredőjének a merev testhez rögzíthető támadáspontja. 

Súlypont fogalma, kapcsolata a tömegközépponttal 

Az előző pontban tárgyalt párhuzamos erőrendszer fontos speciális esete a testek minden 

pontjára ható nehézségi erőrendszer. A Föld adott pontján a nehézségi erő iránya határozza 

meg a függőlegest. (A függőón fonala ezt az irányt mutatja.) Gondolatban osszuk fel a merev 

testet kicsiny    tömegű részekre (ábra). Ezek mindegyikére         nehézségi erő hat. 



 „Korlátozott terjesztésű”  1. számú példány 

 

Klasszikus fizika informatikusoknak — PPKE ITK 

 

 

írásbeli és szóbeli vizsga 1419 45 / 84 2014. június 26. 

 

 „Korlátozott terjesztésű”   
 
 

Nem túlságosan nagy méretű test esetén a nehézségi erők párhuzamosaknak tekinthetők 
        . Ily módon a párhuzamos erőrendszer centruma definíció alapján: 

   
∑      

∑    
 

∑        

∑      
 

Mivel adott helyen a nehézségi gyorsulás értéke – kis tartományon belül – minden tömegrész-

re ugyanakkora       , a nehézségi erők centrumát jellemző helyvektor a test tömegközép-
pontjának helyvektorával egyezik meg: 

      
∑        

∑      
 

∑      

∑    
           (∑   

 

)  

A nehézségi erők centrumát súlypontnak nevezzük. Fenti megszorítások mellett a súlypont és 

a tömegközéppont egybeesik. Ha a merev testet meghatározott   pontjában felfüggesztjük 

vagy alátámasztjuk, akkor a test olyan helyzetet vesz fel, hogy a   pontban ébredő   kény-
szererő és a testre ható nehézségi erők eredője egyensúlyt tart. Mind a kényszererő, mind a 

nehézségi erő hatásvonala átmegy a   ponton. Ezért a test   súlypontja rajta van a   ponton 

átmenő      függőleges egyenesen. Az      egyenest a merev test súlyvonalának nevezzük. 

A különböző pontokon átmenő súlyvonalak mindig a súlypontban metszik egymást. 

A tömegközéppont és a súlypont helye homogén gravitációs térben megegyezik. Fogalmilag 

azonban természetesen különböznek egymástól. A súlypont a földi nehézségi erőtérhez kötött 

fogalom, a tömegközéppont viszont mindig létezik. 

Dinamika 

Kinetikus energia tengely körüli forgásnál 

A forgómozgás alapegyenletéhez egyszerűen eljuthatunk a rögzített tengely körül forgó me-

rev test mozgási energiájának vizsgálatával is. A test pontjai a tengelyre merőleges síkokban 

körpályán mozognak. Az  -edik,   tömegű rész mozgási energiája: 

   
 

 
    

  
 

 
         

ahol    a tömegpont forgástengelytől mért távolsága,   a merev test pillanatnyi szögsebessé-

ge. A merev test forgási energiája az egyes részek mozgási energiájának összegével egyenlő, 

tehát 

   ∑  

 

 
 

 
  ∑    

 

 

 

Tehetetlenségi nyomaték és tulajdonságai 

Az energia-kifejezésben szereplő összeg a merev testnek az adott tengelyre vonatkoztatott 

tehetetlenségi nyomatéka: 

  ∑    
 

 

 

amelynek segítségével a forgómozgás energiája az 

   
 

 
    



 „Korlátozott terjesztésű”  1. számú példány 

 

Klasszikus fizika informatikusoknak — PPKE ITK 

 

 

írásbeli és szóbeli vizsga 1419 46 / 84 2014. június 26. 

 

 „Korlátozott terjesztésű”   
 
 

alakban írható fel. Nagy tehetetlenségi nyomatékú, gyorsan forgó testek (lendkerék, pörgety-

tyű) tetemes mozgási energiával rendelkeznek, ezért a gyakorlatban energiatárolóként is hasz-

nálják őket. 

 

A forgómozgás dinamikai leírása során a tehetetlenségi nyomaték a tehetetlenség mértékének 

szerepét játssza. Értéke a test tengelyhez viszonyított tömegeloszlásától függ. A tehetetlenségi 

nyomaték konkrét meghatározása sokszor visszavezethető egyszerűbb, könnyen számolható 

esetekre az alábbi tételek alapján. 

Addíciós tétel 

Közös tengelyű testek összes tehetetlenségi nyomatéka az egyes testek tehetetlenségi nyoma-

tékainak összegével egyenlő: 

  ∑  

 

 

Lapítási tétel 

A test tehetetlenségi nyomatéka nem változik meg, ha a test pontjait a tengellyel párhuzamo-

san eltoljuk (pl. egy hengert gondolatban változatlan sugarú körlappá lapítunk). Eszerint pél-

dául egyenlő tömegű és sugarú homogén henger, korong és körlap tehetetlenségi nyomatéka 

egyenlő. 

Steiner tétele 

A tétel a párhuzamos tengelyekre vonatkoztatott tehetetlenségi nyomatékok között állapít meg 

összefüggést. Két olyan párhuzamos tengelyre vonatkozik, amelyek közül az egyik a tömeg-

középponton megy át, a másik egy adott   ponton. Legyen a két tengely távolsága  , a merev 

test tömege  , a tehetetlenségi nyomatékok      és   . A tétel állítása: 

            

A bizonyításhoz tekintsük az ábrát. A tömegközépponton és a   ponton átmenő párhuzamos 

tengelyek irányában vegyük fel a két koordináta-rendszer   és    tengelyeit. Az   és    tenge-

lyek pedig essenek a tömegközéppontból a    tengelyre állított merőleges irányába. A tehetet-
lenségi nyomaték definíciója szerint a két tengelyre vett nyomatékok: 

     ∑    
 

 

    ∑    
  

 

 

ahol   , illetve   
  a merev test  -edik pontjának a két tengelytől mért távolsága: 

  
    

    
    

            
  

Ezek alapján a   ponton átmenő tengelyre vett tehetetlenségi nyomaték a következőképpen 
adható meg: 

   ∑  [          
 ]

 

 ∑     
    

     ∑  

  

   ∑    

 

 

Az utolsó tagban szereplő ∑       összeg zérus, mivel a merev test tömegközéppontjának   

koordinátája a   koordinátarendszerben   
∑      

∑    
. (A tömegközéppont a szóban forgó koor-

dinátarendszer origója.) A fenti összefüggésben a jobb oldal első tagja a tömegközépponton 

átmenő tengelyre vett tehetetlenségi nyomaték, a második tag pedig a merev test össztömeg-

ének és a tengelyek közötti távolság négyzetének szorzata, tehát 
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A Steiner-tételből következik, hogy az egymással párhuzamos tengelyekre vett tehetetlenségi 

nyomatékok közül a tömegközépponton átmenő tengelyre vonatkoztatott tehetetlenségi nyo-

maték a legkisebb. 

Folytonos tömegeloszlású testek tehetetlenségi nyomatékának meghatározásakor a vizsgált 

testet kicsiny részekre bontjuk és az egyes tömegelemekhez tartozó tehetetlenségi nyomaté-

kokat összegezzük. 

A sűrűségeloszlás ismeretében a test teljes térfogatára vett 

  ∑  
    

 

 ∑  
      

 

 

összegzés a tehetetlenségi nyomaték közelítő értékét adja meg.       és     esetén elő-
álló határérték az adott tengelyre vett tehetetlenségi nyomaték, amelyet az 

∫               
 

    
   

     

∑  
      

 

 

szimbólummal jelölünk. 

A forgó mozgás alapegyenlete 

A munkatétel szerint a pontrendszer mozgási energiájának a megváltozása egyenlő a rend-

szerre ható összes erő munkájának összegével. Tengely körül forgó merev test elemi szögel-

fordulása során a testre ható erők munkája: 

                            

Az elemi munka tehát a forgatónyomaték és az elemi szögelfordulás szorzatával egyenlő. (A 

merev testre ható erőknek csak a tengelyre merőleges síkba eső komponensét vettük figye-

lembe, mert a tengellyel párhuzamos összetevők munkája a forgás során nulla.) 

Alkalmazzuk a munkatételt a forgó merev testre: 

   

  
 

  

  
 

A tehetetlenségi nyomatékra vonatkozó egyenletek felhasználásával ez a következő alakban 

írható: 

  (
  

  
)   (

  

  
)     

illetve 

       ̈ 

A rögzített tengely körüli forgás      alapegyenlele szerint tehát a merev testre ható erők 

tengelyre vonatkoztatott forgatónyomatéka egyenlő a test forgástengelyre vett   tehetetlensé-

gi nyomatékának és   szöggyorsulásának szorzatával. 

Ha a külső erők forgástengelyre vonatkozó eredő forgatónyomatéka nulla, akkor a merev test 

állandó szögsebességgel forog a tengely körül, miközben a    forgásmennyiség időben ál-

landó. Ez a forgásmennyiség megmaradásának törvénye. A    forgásmennyiség abban az 
esetben is megmarad, amikor a tengely körül forgó test nem merev. Ha a belső erők hatására a 

tehetetlenségi nyomaték megváltozik, akkor a szögsebesség is megváltozik úgy, hogy a    
szorzat állandó marad. 
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Impulzusmomentum forgó mozgásnál 

Ide tartozik egy nagyon fain kis ábra. 

Persze magyarázó szövegelés is van. Olyanokról szól, hogy a perdület vektor az tengelyirá-

nyú, ha a test a forgástengelyre szimmetrikus. Ha meg nem az, akkor bonyolultság van, ami 

elvileg nem tananyag, de szóval precesszió. 

Meg pár egyenlet: 

       
| |  | |   | | 

|        |  | |       | |     ⏟    
 

   | |     ⏟    
 

        

|        |     

Tiszta gördülés 

A merev testek síkmozgása gyakran gördülés. Gördüléskor a mozgó test határgörbéje mindig 

valamilyen előírt görbére esik. Ennek a mozgásnak fontos, speciális esete a tiszta gördülés. 

Tiszta gördülésről akkor beszélünk, amikor a „lefedett” pályaszakasz hossza egyenlő a test 

kerületének azon ívdarabjával, amely érintkezésbe került a pályaszakasszal. Ekkor a test kerü-

leti pontjának és a pályának az érintkezési pontja azonos sebességgel mozog. Foglalkozzunk a 

síkon gördülő   sugarú korong mozgásával (ábra)! A korong sebessége a transzlációs és a 
forgási sebesség összegeként állítható elő: 

            
Mivel tiszta gördüléskor a korong talajjal érintkező pontjának nincs a talajhoz képest sebessé-

ge:              , ahonnan           adódik. 

Az, hogy a korong talajjal érintkező pontjának a sebessége zérus, egyben azt jelenti, hogy 

minden időpillanatban ez a pont a pillanatnyi forgáspont. 

A tiszta gördülés esetén                    , ahonnan látható, hogy a   pont   

körüli    szögsebességű körmozgást végez. 

A merev test mozgásának kinematikai leírása során megállapítottuk, hogy a síkmozgás min-

dig előállítható egymást követő elemi forgásokból, azaz minden pillanatban tiszta forgásnak is 

tekinthető. Így elegendő a forgómozgás alapegyenletét felírni. Nem szabad azonban megfe-

ledkeznünk arról, hogy a pillanatnyi forgástengelyen kijelölt pont – bár sebessége zérus – 

általában gyorsuló mozgást végez. Ilyen esetekben a forgómozgás alapegyenletének felírása-

kor figyelembe kell venni a tehetetlenségi erők forgatónyomatékát is. 

Torziós rezgések 

A vázolt kísérletben, kifeszített acélszálra korongot erősítettünk. A korong peremére gyako-

rolt erőpár hatására a korong és vele együtt az acéldrót elfordul (ábra). Nem túlságosan nagy 

elfordulási szögek esetén a torziós szál visszatérítő nyomatéka egyenesen arányos a szöggel. 

Ha a korongot elcsavarjuk és magára hagyjuk, periodikus mozgást végez a torziós szál mint 

forgástengely körül. A tapasztalat szerint a visszatérítő nyomaték: 

       

ahol   az elfordulás szöge,    a szálra jellemző együttható (régebbi neve: direkciós forgató-

nyomaték; SI-szabvány szerinti neve csavarási rugómerevség, jele:   ), a negatív előjel pedig 

a szögkitéréssel ellentétes irányra utal. Ezt az összefüggést lineáris forgatónyomaték-

törvénynek nevezzük. 

A forgatónyomaték ismeretében írjuk fel a rögzített tengely körüli mozgás alapegyenletét: 
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  ̈       

(  ebben a kísérleti összeállításban a korong tehetetlenségi nyomatéka a korong síkjára merő-
leges szimmetriatengelyre vonatkoztatva.) A mostani egyenlet ugyanolyan típusú, mint ami-

lyennel a harmonikus rezgőmozgás dinamikai leírásakor már foglalkoztunk. Lineáris forgató-

nyomaték hatására harmonikus forgási rezgést végez a test, tehát a mozgást leíró függvény a 

következő alakban adható meg: 

              

ahol    a forgási rezgés amplitúdója,   a kezdőfázis,   a dinamikai adatokkal meghatározott 
körfrekvencia: 

  √
  

 
 

Az amplitúdó és a kezdőfázis értékét a kezdeti feltételek határozzák meg, a harmonikus rez-

gőmozgás tárgyalásakor megismert módon. A forgási rezgés periódusideje: 

     √
 

  
 

A fenti képlet alapján    ismeretében, lengésidőméréssei meghatározhatjuk a torziós szálhoz 

vagy spirálrugóhoz rögzített test tehetetlenségi nyomatékát, vagy   ismeretében a   -ot.  

Fizikai inga 

Fizikai ingának olyan merev testet nevezünk, amely rögzített tengely körül a nehézségi erő 

hatására lengőmozgást végezhet. Az ábra fizikai ingát mutat. Az ábrán   a forgástengely és az 

ábra síkjának döféspontját jelöli,   a merev test súlypontja,   a súlypontnak a forgástengelytől 

mért távolsága,   a    egyenes elfordulási szöge. 

A testre ható nehézségi erő forgatónyomatéka: 

             ̈ 

Ha a kitérés szöge     rad, akkor      , tehát a forgatónyomaték a lineáris forgató-

nyomaték-törvénynek tesz eleget:         és       . 

A fizikai inga kis kitérések esetén közelítőleg harmonikus mozgást végez, amelynek lengés-

ideje: 

    √
 

   
 

(Itt   a merev testnek a forgástengelyre vonatkozó tehetetlenségi nyomatéka,   a test tömege, 

  a súlypontnak a forgástengelytől mért távolsága.) 
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8.) Folyadékok és gázok mechanikája 

Folyadékok általános tulajdonságai 

A folyadékok térfogattartók, vagyis igen nagy erővel is csak kis mértékben nyomhatók össze. 

Az összenyomhatósággal kapcsolatban tapasztalat, hogy a térfogatcsökkenés egyenesen ará-

nyos a test térfogatával és a testre gyakorolt nyomás    változásával: 

         

ahonnan 

   
 

 
(
  

  
) 

A fenti összefüggésben   anyagi jellemző, az úgynevezett kompresszibilitási együttható 
Számértéke megadja, hogy egységnyi nyomásnövekedés hatására mekkora relatív térfogat-

csökkenés lép fel. A kompresszibilitási együttható helyett gyakran a reciprokát, a     ⁄  

kompressziós modulust használjuk, amelynek SI-egysége a Pa. Ez az anyagjellemző a test 

összenyomással szembeni ellenállását jellemzi. 

Emellett a folyadékok könnyen önthetők, és mindig fölveszik a tartóedény alakját. Mindezen 

tulajdonságok értelmezhetők, ha a folyadékrészecskéket egymáson könnyen elgördülő go-

lyókként fogjuk fel, amelyek között érintőleges, azaz nyíróerők nincsenek, egymásra csak 

merőleges irányú erőt fejtenek ki. 

A nyírási erők hiányával magyarázható a nagyfokú gördülékenység, amelynek többek között 

az az eredménye, hogy a nyugvó folyadék szabad felszíne a nehézségi erő és a folyadékrészek 

között ható erők összhatásaként vízszintes. 

Az olyan folyadékot, amelyben a folyadékrészek egymáshoz viszonyított elmozdulása során 

sem hat súrlódási erő, ideális folyadéknak nevezzük. 

Belső súrlódási együttható 

Még a sűrűn folyó, mézszerű folyadékban sem ébrednek nyíróerők, ha a folyadékrészek egy-

máshoz viszonyítva nem mozdulnak el. Amikor azonban relatív sebességük nem nulla, a ré-

szek közötti belső súrlódási erő sok esetben már nem elhanyagolható. 

Párhuzamos lemezek közötti folyadék áramlása során, ha az egyik lemez rögzített, a másik 

pedig állandó sebességgel mozog (36.1. ábra), a folyadékrészek hozzátapadnak az üveglapok-

hoz, így a felső laphoz tapadó folyadékréteg sebessége a legnagyobb, és az alsó lemez felé 

haladva a lapokkal párhuzamos folyadékrétegek sebessége csökken. Az alsó lapon levő réteg 

sebessége nulla. Azt mondjuk, hogy az áramlásra merőleges irányban a sebességnek gradiense 

van (a sebesség változik a keresztmetszet mentén). Ha az előbbi kísérletben a felső laphoz 

dinamométert iktatunk, megmérhetjük a belső súrlódási erőt. Praktikusabban megvalósított 

kísérletek mérési eredményei szerint a belső súrlódási erő egyenesen arányos az egymáson 

csúszó folyadékrétegek felületének nagyságával és az áramlásra merőleges keresztmetszetben 

vett egységnyi távolságra eső sebességváltozással: 

    
  

  
 

Ezt az összefüggést Newton-féle súrlódási törvénynek nevezzük. Az összefüggésben   a fo-

lyadék belső súrlódására, viszkozitására jellemző dinamikai viszkozitás. SI-egysége     . A 

formulában     ⁄  a sebesség gradiens,   az egymáson elcsúszva áramló rétegek felszínének 

nagysága. 
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Sztatika 

Pascal törvénye 

Ha tekintjük az ábrát, és feltételezzük, hogy a dugattyúk nyugalomban vannak, akkor kiszá-

míthatjuk a folyadék által közvetített nyomást a dugattyúk belső felületein. 

Mivel elmozdulás nem történik, így 

         

Ezt átírva a két dugattyún végbement változásokra: 

              

Annak ismeretében, hogy a dugattyúra ható erő az      képletből számolható, ahol   a 

dugattyú   nagyságú felületét érő nyomás: 

       ⏟  
  

        ⏟  
  

   

A dugattyú elmozdulása és a dugattyú felületének szorzata a mozgatott folyadék térfogatát 

adja meg. Mivel azonban a folyadék összenyomhatatlan, ezen    értékeknek mindenütt 

ugyanakkorának kell lenniük. Emiatt 

            

amiből következik, hogy      , vagyis a nyomás a folyadék belsejében mindenhol ugya-
nakkora. Ezt mondja ki Pascal törvénye: 

A nyomás a folyadékokban egyenletesen terjed, azaz a folyadékra gyakorolt külső nyo-

másból származó nyomás a folyadék belsejében és határfelületén minden irányban 

ugyanakkora. 

Ezen az elven működik például a hidraulikus emelő, a folyadékfék és még számos berende-

zés. Az ábra a hidraulikus emelő működési elvét mutatja. Az    keresztmetszetű dugattyúra 

kifejtett    erőt az    keresztmetszetű hengerben    erővel egyensúlyozhatjuk ki. Ez az erő az 

   erőnél     ⁄ -szer nagyobb, azaz 

   
  

  
   

illetve 

  

  
 

  

  
 

Az utóbbi összefüggés a két dugattyú által kifejtett nyomások egyenlőségét fejezi ki. A gya-

korlatban működő hidraulikus berendezéseken nyitó és záró szelepek biztosítják a periodikus 

működést és azt, hogy a tartalékfolyadék a dugattyúkkal mozgatott folyadék terébe bejusson. 

Kis keresztmetszetű nyomóhenger és nagy keresztmetszetű munkahenger esetén kis erővel 

nála több nagyságrenddel nagyobb súlyú terhet tudunk felemelni. Az ehhez szükséges munka 

azonban természetesen legalább annyi, mint amekkora a teher felemeléséhez a hidraulikus 

emelő használata nélkül szükséges. 
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Hidrosztatikai nyomás 

Eddig csak a külső nyomás terjedésével foglalkoztunk. Nem vettük figyelembe, hogy a folya-

déknak súlya van, s ezért az egyes folyadékrétegek nyomják az alattuk levőket. Ennek követ-

keztében a folyadék kissé összenyomódik, aminek eredményeként a folyadékban feszültség, 

azaz nyomás ébred. Ezt a folyadék súlyából származó nyomást hidrosztatikai nyomásnak ne-

vezzük. Egyszerűen beláthatjuk, hogy a hidrosztatikai nyomás egyenesen arányos a felszíntől 

mért mélységgel és a folyadék sűrűségével. 

Az ábrán látható, folyadékkal telt edényben a felszíntől h mélységben   keresztmetszetű felü-

letelemet választottunk ki. A felette levő folyadékoszlop súlya         , az ebből szárma-
zó nyomás pedig 

      

A hidrosztatikai nyomásra kapott eredmény a kísérletek tanúsága és elméleti megfontolás 

szerint is általánosan érvényes, a folyadék súlyából származó nyomás független a folyadékba 

helyezett felületelem irányításától. Adott mélységben a nyomásmérő állandó nyomást mutat, 

függetlenül a membrán felületének irányításától (a nyomás izotropiája). Az egymáshoz folya-

dékkal csatlakozó edényeket közlekedőedényeknek nevezzük. A homogén folyadék a közle-

kedőedény minden szárában azonos magasságban helyezkedik el. 

Hidrosztatikai paradoxon 

Érdekes megállapítást tehetünk, ha vizsgáljuk a folyadék súlyából származó, a folyadékot 

tartalmazó edény aljára ható erők nagyságát különböző kialakítású edények esetén. A folya-

dék mindegyik edényben azonos magasságú, tehát valamennyi tartály aljára nehezedő nyomás 

       

A tartályok alaplapjainak felülete szintén egyenlő, így az ezen túlnyomásból származó, a tar-

tály alaplapjára ható erő nagysága valamennyi esetben 

                  

Miután a folyadék súlyerejét a          összefüggéssel határozhatjuk meg, és az 
edény alakjától függően a folyadéktérfogatok értéke más és más, látjuk, hogy a tartály aljára 

ható erő nem feltétlenül egyenlő a benne lévő folyadék súlyerejével, hanem annál nagyobb is 

vagy kisebb is lehet. Ezt a jelenséget hidrosztatikai paradoxonnak nevezzük. 

A hidrosztatikai paradoxonban rejlő látszólagos ellentmondás természetesen feloldható, hi-

szen, ha az edény oldalfaláról a folyadékra átadódó erőket is figyelembe vesszük, folyadékra 

ható erők eredője zérusra adódik. Az edény oldalfalára ható, a folyadéknyomásból származó 

erők meghatározása azonban még egyszerű formájú edény esetében is összetett feladat, mert a 

nyomás a felületen nem állandó, hanem a mélységgel lineárisan változik. Az általa kifejtett 

erő tehát egy olyan, a felületen megoszló erőrendszer, amelynek intenzitása a mélységgel 

egyenesen arányosan változik. Természetesen az ilyenkor szokásos elvet követve, vagyis a 

felületet olyan felületelemekre osztva, amelyen belül a nyomás állandónak vehető, az ezen 

felületelemekre ható erők meghatározhatók, és összegzésükkel az edény oldalfalára ható erő 

nagysága általában kiszámítható. Az így adódó erő tehát az a koncentrált erő, amellyel a fo-

lyadéknyomásból származó erőrendszer helyettesíthető, azaz a megoszló erőrendszer eredője. 

Felhajtóerő 

Hétköznapi tapasztalat, hogy a folyadékba merített testet kisebb erővel tarthatjuk, mint amikor 

a test nincsen folyadékban; vagy az, hogy a folyadékba tett test el sem merül.  
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Először egyszerű alakú testre számítjuk ki a felhajtóerőt. Az ábra szerint   keresztmetszetű,   

magasságú egyenes henger merül    sűrűségű folyadékba. A hidrosztatikai nyomás miatt a 

folyadék erőt fejt ki a henger lapjaira és a palástra. Az oldalirányú erők eredője nulla, az alsó 

és a felső lapra ható erők különbsége pedig 

                                   

Mivel         a henger magassága és       a test térfogata, a felfelé ható eredő erő, 
vagyis a felhajtóerő: 

         

Eredményünk szerint a folyadékba merülő hengerre felhajtóerő hat, ami megegyezik a henger 

által kiszorított folyadék súlyával. A törvény nemcsak erre az esetre, hanem általánosan is 

igaz, azaz bármely folyadékba merülő testre a test által kiszorított folyadék súlyával meg-

egyező felhajtóerő hat. Ezt a törvényt, amely a hidrosztatikai nyomás egyenes következmé-

nye, Arkhimédész törvényének nevezzük.  

Alkalmazások (úszás) 

Attól függően, hogy a testre ható nehézségi erő és a felhajtóerő közül melyik a nagyobb, a test 

lemerül vagy emelkedik a folyadékban. Ha a felhajtóerő nagyobb, mint az    nehézségi erő, 
akkor a felemelkedő test úgy kerül egyensúlyba, hogy a folyadékba részben bemerülve úszik. 

Ha a két erő eredője teljes elmerülés esetén nulla, a test lebeg. 

Az ábra alapján az erők eredőjére vonatkozóan három esetet különböztethetünk meg. Ha a test 

sűrűsége      , akkor az eredő erő: 

     (     )    

a test lemerül. Ha      , akkor     , a test lebeg, ha pedig      , akkor a test felemel-

kedik és olyan egyensúlyi helyzet alakul ki, hogy a test a folyadékba részben belemerülve 

úszik. Az utóbbi két esetben a testre ható nehézségi erő egyenlő a test által kiszorított folya-

dék súlyával. Az úszás esetén az egyensúly feltétele: 

          

ahol    a test folyadékba merülő részének térfogatát jelenti. A fenti összefüggésből: 

  

  
 

  

  
 

azaz folyadékban úszó tömör test térfogatának annyiad része merül a folyadékba, ahányad 

része a test sűrűsége a folyadék sűrűségének (pl. az úszó jég térfogatának kb. 0,9 része merül 

a vízbe). 

Ahhoz, hogy a test úszása stabil legyen, a testre ható nehézségi erő és felhajtóerő egyenlősé-

gén túl annak is teljesülnie kell, hogy kis kibillenés esetén a két erő visszatérítő forgatónyo-

matékot fejtsen ki a testre. 

Torricelli kísérlet 

A levegő súlyából származó nyomás, a légnyomás meghatározása Torricelli olasz fizikus ne-

véhez fűződik. Torricelli körülbelül 1 méter hosszú, egyik végén zárt üvegcsövet higannyal 

töltött meg, és a csövet, nyitott végét befogva, higannyal töltött edénybe helyezte. Ezután a 

cső nyílását szabaddá tette. A csőben a higany szintje az edénybeli szinttől mérve körülbelül 

        magasságban állapodott meg, függetlenül a cső dőlésétől (ábra). A jelenség azzal 
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magyarázható, hogy a csőben levő higanyoszlop súlyából származó nyomással – a közlekedő-

edények elve szerint – a levegő nyomása tart egyensúlyt. A cső higany feletti zárt terét Torri-

celli-űrnek nevezik. 

A légnyomásra és a Torricelli-kísérletre alapozva többféle nyomásegységet is bevezettek. Így 

pl.   fizikai atmoszférának         nevezzük a       magas,      -os higanyoszlop hidrosz-

tatikai nyomását a tengerszint magasságában, a 45. szélességi fokon                   . 

A       alapján       (normális légköri nyomás) =           . 

A légnyomás függése a magasságtól 

Mérési eredmények szerint a légnyomás a Föld felszínétől mért magassággal csökken. A lég-

nyomás és a magasság közötti összefüggés meghatározására két egyszerűsítő feltételezéssel 

élünk, nevezetesen, hogy sem a levegő hőmérséklete, sem a nehézségi gyorsulás nem válto-

zik. 

Legyen a Föld felszínén mért nyomás, illetve sűrűség   , illetve   ,   magasságban  , illetve 

 . Ha   magasságban   -val feljebb megyünk, akkor a nyomás változása 

         

(A negatív előjel azt fejezi ki, hogy növekvő magassághoz kisebb nyomás tartozik.) Feltevé-

sünk szerint a hőmérséklet állandó, tehát a Boyle-Mariotte-törvény szerint 

        

illetve az   tömeggel való osztás után, és figyelembe véve, hogy   ⁄    és    ⁄    , 

 

 
 

  

  
 

A fenti formulából fejezzük ki  -t, és helyettesítsük be a   -re adott összefüggésbe: 

     
  

  
    

Barometrikus magasságformula és következményei 

Az előző formula átalakítás után: 

  

  
  

  

  
   

ami határesetben 

  

  
  

  

  
   

differenciálegyenletbe megy át. A differenciálegyenlet megoldása: 

        
 
  
  

  
 

Ezt az összefüggést barometrikus magasságképletnek nevezzük. Hasonló alakú a sűrűség-

magasság függvény is: 

        
 
  
  

  
 

Eredményünk szerint a légnyomás és a levegő sűrűsége a magassággal exponenciálisan csök-

ken. A légnyomás változását érzékeljük a hegyről lefelé haladó járműben, süllyedő repülőgé-

pen stb. 
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A képletből leolvasható, hogy a nagyobb sűrűségű gáz nyomása erősebben csökken a magas-

sággal, mint a kisebb sűrűségűé. Ezzel magyarázható a kéményekben létrejövő huzat. A ké-

ményben levő melegebb levegő sűrűsége kisebb, mint a külső hidegé, ezért a kémény magas-

ságához kívül nagyobb nyomáscsökkenés tartozik, mint belül. Hasonlóképpen, amikor a háló-

zati gáz nyomása csökken, akkor a gázkészülékek működésében azért okoz először a földszin-

ten zavart, s csak később a magasabb emeleteken, mert a gáz sűrűsége kisebb, mint a külső 

levegőé. 

Molekuláris erők folyadékokban, felületi feszültség 

A szakítási kísérletek azt bizonyítják, hogy térfogatnöveléskor a folyadékrészek között von-

zóerő hat. Ha tiszta üveglapot szakítottunk el víz felszínéről, ahhoz erőt kell kifejteni. Az eh-

hez szükséges erőt érzékeny dinamométerrel mérhetjük. Elszakítás után a lapon vízcseppek 

maradnak, vagyis folyadékrészek szakadnak el egymástól. A dinamométer az egynemű részek 

között fellépő összetartó erőt, az ún. kohéziós erőt méri. Az ilyen, különböző minőségű anya-

gok közötti vonzóerőt adhéziós erőnek nevezzük. 

Alumíniumérme, borotvapenge, varrótű úszik a vízen, ha óvatosan tesszük a felszínre. Az 

úszó fémtestek alatt és környékén a felszín rugalmas hártyaként behorpad. Ez a jelenség, hogy 

a víz megtartja a nála többszörösen nagyobb sűrűségű testeket, nem magyarázható az úszás 

feltételéről tanult ismereteinkkel. Ha a fémdarabokat élükkel tesszük a vízre, elmerülnek. Azt 

mondhatjuk, hogy mintegy átszakították a felszíni, rugalmas hártyát. Ennek a hártyának a 

folyadék belsejétől eltérő tulajdonságait a molekulák közötti erőkkel magyarázhatjuk. 

A folyadék belsejében kiválasztott folyadékrészre a szomszédos molekulák gömb-szimmetri-

kusan hatnak, a felszín közelében levő molekulák körül viszont a hatásgömbön belül levő 

szomszédos molekulák eloszlása nem egyenletes. 

A folyadékhártyákban ható erőket legkönnyebben az ún. „szappanhártyás” kísérletekkel ta-

nulmányozhatjuk. Folyékony mosószerből drótkeretben nagyméretű, tartós hártyák feszíthe-

tők ki. Ezek a hártyák sokkal vastagabbak a felületi rétegnél, így mindegyiküknek két felületi 

rétege van. Mégis, az ilyen drótkeretekre feszített hártyák esetén, a felületi réteg viselkedése 

meghatározó a tömbfolyadékhoz képest. 

Az ábrán mozgatható oldalú, téglalap alakú drótkeret látható. Ha a keretet szappanoldatba 

mártjuk és hártyát feszítünk rá, akkor a folyadékhártya a mozgatható oldalt felrántva összehú-

zódik. Finom mérőkísérletek bizonyítják, hogy a mozgatható drótot a hártya területétől füg-

getlenül, adott erővel tarthatjuk egyensúlyban. Különböző hosszúságú huzaldarabokra ható 

erők mérése alapján kiderült, hogy a folyadékhártya által kifejtett erő egyenesen arányos a 

vonaldarab hosszával. A drótkeret   hosszúságú darabjára ható erő: 

      

(A 2-es szorzó azért szerepel, mert ebben a kísérletben a hártyának két felszíne van.) A folya-

dékfelszínnek ezt a tulajdonságát az   arányossági együtthatóval, az ún. felületi feszültséggel 

jellemezzük. Dimenziója az erő dimenziójának      ⁄   és a hosszúság dimenziójának     a 

hányadosa, vagyis     . SI-egysége:   ⁄ . A felületi feszültség mindig a határfelület men-

tén érintkező két anyagra jellemző érték. 

Amikor a hártya felszínét megnöveljük, munkát végzünk. Az   hosszúságú vonaldarab    

elmozdulásakor végzett elemi munka 
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Eredményünk szerint a munka egyenesen arányos a felület növekedésével,   -val. Ezzel a 

munkával a felület potenciális energiáját növeltük. A fenti összefüggés alapján az   felületi 
feszültségnek energetikai értelmezést adhatunk: 

   
  

  
 

   

  
 

Eszerint a felületi feszültség számértéke egyenlő a határfelület egységnyi területtel történő 

megnöveléséhez szükséges munkával, pontosan ennyivel növekedik a felület potenciális 

energiája. 

Görbületi nyomás (Laplace-törvény) 

A gömb alakú folyadékhártya görbületi nyomása pl. a munkatétellel határozható meg. Jelöljük 

az   sugarú gömb belsejében uralkodó többletnyomást   -vel. Növeljük meg a hártyagömb 

sugarát   -rel! Ehhez 

         

munkát kell végeznünk, ahol   a gömb felszíne. Ez a munka a hártya potenciális energiáját 
növeli, amelynek növekedése egyenesen arányos a felületnövekedéssel: 

        

A gömb      felületének felhasználásával és figyelembe véve, hogy a hártyának most is két 

felszíne van, a munka és energianövekmény egyenlőségét így írhatjuk: 

                  [          ] 

A műveletek elvégzése után és a   -ben másodrendűen kicsiny tagok elhanyagolásával a 
gömbhártya görbületi nyomására az alábbi eredményt kapjuk: 

   
  

 
 

Egyszeres felszínű hártya esetén – ilyen pl. a vízcsepp felszíne – a görbületi nyomás: 

   
  

 
 

A görbületi nyomás tehát fordítottan arányos a gömb sugarával. 

A Laplace-törvény füzetbe leírt alakja 

   
   
  

  (
 

  
 

 

  
) 

Kapillaritás jelensége, értelmezése 

A tiszta üveglapra cseppentett víz szétterül, az üvegen levő higanycsepp viszont majdnem 

gömb alakú. Vékony csőben, kapillárisban a folyadék felszíne szemmel láthatóan görbült a 

cső fala mentén. 

Az ábrán jelölt   szöget illeszkedési szögnek nevezzük. A   szög az üvegfelület és a csepp-

felszín, illetve a kapilláris alkotójának és a folyadékfelszín érintőjének a szöge.       ese-

tén nedvesítő,       esetén nem nedvesítő folyadékról beszélünk. 

A vékony csövekben megfigyelhető kapilláris jelenségeket is a felületi feszültségre vezethet-

jük vissza. A kapillárisban a folyadék szintje magasabb, ill. alacsonyabb attól függően, hogy a 

felszín homorú, vagy domború. Kapilláris csőben a felületi feszültség görbült felszínt hoz 
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létre, s az ezzel járó görbületi nyomás miatt a folyadékszint addig emelkedik, illetve süllyed 

az edénybeli szinthez képest, amíg a szintkülönbségnek megfelelő hidrosztatikai nyomás a 

görbületi többletnyomással egyenlő nem lesz. 

Az ábra alapján az egyensúlyra a következő feltételt írhatjuk fel: az   sugarú kapillárisban   

sugarú gömbfelülettel helyettesíthető folyadékfelszín alakul ki, így a görbületi nyomás: 

   
  

 
 

      

 
 

A többletnyomásból származó erő nedvesítő folyadék esetén felfelé, nem nedvesítő folyadék 

esetén lefelé mutat. A többletnyomással a   magasságú folyadékoszlop hidrosztatikai nyomá-

sa tart egyensúlyt: 

    
      

 
 

Ebből a kapilláris emelkedésre (süllyedésre) 

  
      

   
 

adódik. Az összefüggésből látszik, hogy a kapilláris emelkedés, illetve süllyedés fordítottan 

arányos a kapilláris cső sugarával. 

A kapilláris jelenségekre sok természetbeni és gyakorlati példát sorolhatunk fel: ilyen pl. a 

hajszálcsövesség, amely a talaj nedvességtartalmában játszik fontos szerepet; a folyadékok 

felszívódása szivacsos anyagokban stb. 

A kapilláris emelkedés és az illeszkedési szög mérésével a felületi feszültség az előbbi össze-

függésből adódó 

  
    

     
 

képlettel határozható meg. A mérést az illeszkedési szög méréséből adódó bizonytalanság 

miatt általában vizes oldat és víz relatív felületi feszültségének meghatározására szokás al-

kalmazni. Ez ugyanis megegyezik a két folyadék emelkedési magasságának hányadosával. 

Ebben az esetben nincsen szükség az illeszkedési szög meghatározására. 

Dinamika 

Áramlások jellemzése, osztályozása 

A folyadékok és gázok mozgásának, áramlásának leírásakor az anyagot a szilárd testekhez 

hasonlóan folytonosnak, kontinuumnak tekintjük. A mozgás dinamikai leírásáramost is a 

Newton-törvényeket, ill. a belőlük levezethető további tételeket, az energiatételt és a munka-

tételt használjuk. 

A megszokott törvények alkalmazása azonban nem egyszerű, mert a folyadék részecskéinek 

egymáshoz viszonyított helyzetére vonatkozóan nem léteznek olyan szigorú összefüggések, 

mint például a merev test esetén, ezért a folyadék egészére nem adható olyan egységes leírás, 

mint a szilárd testekre. 

A gázok és a folyadékok közötti további különbséget jelent az, hogy a folyadékok lényegében 

összenyomhatatlanok, a gázok viszont nagymértékben összenyomhatóak. Ezért a kétféle 

anyag mozgása csak addig tárgyalható együtt, amíg az áramlás során a gáz jelentős össze-
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nyomódást nem szenved. Ez addig teljesül, amíg az áramlási sebesség sokkal kisebb a hang 

közegbeli terjedési sebességénél. 

Az áramlás szemléltetésére bevezették az áramvonal fogalmát. Az áramvonal olyan görbe, 

amelynek bármely pontjában húzott érintő az illető pontbeli sebességvektor egyenese. Áram-

vonalrendszert demonstrál a Pohl-féle áramlási készülékkel végzett kísérlet (ábra). Két, egy-

mástól fallal elválasztott tartályból tiszta víz és színes folyadék áramlik fésűfogszerű lyukso-

ron át két, egymáshoz közeli párhuzamos üveglappal határolt áramlási térbe. A kétféle folya-

dék nem keveredik össze, hanem áramfonalakban (vékony „folyadékcsövekben”) áramlik a 

párhuzamos lemezek között. Az áramfonal vastagság nélküli, geometriai vonalnak megfelelő 

határesete az áramvonal. 

Ha az áramlási térben gondolatban felvett zárt görbe pontjain átmenő áramvonalak összessé-

gét vesszük, úgynevezett áramlási- vagy áramcsövet kapunk (ábra). Az áramcső falának „al-

kotói” áramvonalak; emiatt a falon át nem folyik folyadék a csőbe és a csőből sem léphet ki, 

mert a falban áramló részek sebessége érintőirányú. 

 

Az áramlásokat többféle szempont szerint osztályozhatjuk. 

Súrlódásmentes, illetve súrlódásos áramlásról beszélünk attól függően, hogy elhanyagolhatók-

e a folyadékrészek mozgása során fellépő nyíróerők vagy nem. Súrlódásmentes áramláson 

belül örvénymentes és örvényes áramlási különböztetünk meg. 

Örvényes áramlásban a folyadékrészek forgómozgást is végeznek. Súrlódó folyadékok moz-

gása során lamináris (réteges) és turbulens (kavargó) áramlás valósulhat meg. Az előzőektől 

függetlenül az áramlás lehet stacionárius vagy nem-stacionárius. 

Stacionárius az áramlás, ha a sebességtér független az időtől, azaz ha adott helyen a sebesség 

állandó. Másként fogalmazva: ha a                                  függvények csak a 

helytől függenek, vagyis ha a független változók között nem szerepel az idő. Ilyen áramlás 

esetén a pályavonalak megegyeznek az áramvonalakkal. 

A következőkben csak az összenyomhatatlan folyadék stacionárius és örvénymentes áramlá-

sával foglalkozunk. 

Kontinuitási egyenlet 

Stacionárius áramlásban bármely áramlási cső tetszőleges keresztmetszetén adott idő alatt 

egyenlő tömegű és az összenyomhatatlanság miatt egyben egyenlő térfogatú folyadék áramlik 

át. Ahhoz, hogy ezt a megállapítást mennyiségileg is leírhassuk, válasszunk ki az áramlási cső 

két tetszőleges helyén az áramlási sebességre merőleges    és    keresztmetszetet. A válasz-

tott helyeken legyen a sebesség    illetve   . A megfigyelés időtartama legyen   . Az előbb 
mondottak szerint 

              

illetve 

          

ahonnan 

  

  
 

  

  
 

Eredményünk szerint tehát az áramlási cső különböző keresztmetszeteiben az áramlási sebes-

ségek fordítottan arányosak a keresztmetszetekkel. A fenti összefüggés a folytonossági vagy 
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kontinuitási egyenlet, amelyből kiolvasható az összenyomhatatlan folyadék stacionárius áram-

lására vonatkozóan, hogy szűkületben a sebesség nagyobb. Nagyobb sebességű helyekhez a 

kísérletek tanúsága szerint sűrűbb áramvonalrendszer tartozik. 

Az áramlásokat az áramerősséggel (áramintenzitással) jellemezzük. Megállapodás szerint az 

áramlási cső keresztmetszetén átfolyó    folyadéktérfogat és a    áthaladási idő 

  
  

  
 

hányadosát áramerősségnek nevezzük. Mivel    idő alatt az áramlási cső kiszemelt kereszt-

metszetén    hosszúságú, ill.             térfogatú folyadék áramlik át, így 

  
  

  
 

    

  
    

E legutóbbi képlet alapján az áramerősség SI-egysége:       

Bernoulli-törvény 

Manométerekkel (légnyomásmérőkkel) ellátott üvegcsőben áramló víz (ábra), szélcsatornában 

áramló levegő nyomása a kisebb keresztmetszetű helyeken kisebb, amint ez a manométereken 

leolvasható. 

Az előző pontban láttuk, hogy szűkületben a közeg nagyobb sebességgel áramlik, mint a na-

gyobb keresztmetszetű helyeken. Kísérleti tapasztalatunk szerint tehát az áramlási csőben 

nagyobb sebességű helyen a nyomás kisebb. Az adott helyen mérhető nyomás és sebesség 

közötti mennyiségi kapcsolat meghatározására válasszunk ki az áramcsőben egy      fo-

lyadékrészt (ábra), amely    idő múlva az          térfogatot foglalja el. Mivel az áramlás 

stacionárius, az ábrán fehéren hagyott térben semmilyen változás nincs az áramlásban, annak 

ellenére, hogy ebbe a tartományba más folyadék érkezett. Az egész folyadékrész elmozdulását 

úgy tárgyalhatjuk, mintha az        folyadék, melynek tömege           , a        
térfogatba jutott volna. A munkatétel szerint e folyadékrész mozgási energiájának megválto-

zása egyenlő a rá ható erők munkájának összegével. Mivel az áramlás súrlódásmentes, a belső 

erők munkája nulla, ezért csak a nehézségi erő és a       nyomásokból származó nyomóerők 
munkáját kell figyelembe vennünk. A nehézségi erő munkája az ábra jelöléseivel: 

                               

a nyomóerőé pedig 

                     

Figyelembe véve a kontinuitási egyenletet, amely szerint az     és     térfogat egyenlő, azaz 

                , a munkatétel alapján 

 

 
     

  
 

 
     

                        

Egyszerűsítés és rendezés után 

        
 

 
   

          
 

 
   

  

alakban írható fel. Ezt az összefüggést Bernoulli-egyenletnek nevezzük. Eszerint összenyom-

hatatlan folyadék súrlódásmentes, stacionárius áramlása közben bármely áramfonal (vékony 

áramcső) mentén a 
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Alkalmazások 

Két, egymáshoz közel helyezett könnyű lemez közé befújva a lemezek összecsapódnak. E 

jelenség a Bernoulli-törvénnyel magyarázható. Az áramló közegben történő különböző nyo-

másváltozások jelenségei számos gyakorlati alkalmazásra adnak lehetőségek. 

Pitot-Prandlt-cső 

Áramló gáz sebességét vagy a benne mozgó test sebességét például a Pitot-Prandtl-csővel 

mérhetjük meg (ábra). Az áramlási térbe helyezett cső ábrán jelzett    helyén a sebesség 

    , a torlódás miatt, a nyomás   ; a    helyen   az áramlási sebesség,    az ehhez a se-
bességhez tartozó nyomás. A manométer bal oldali szára a „cső” üreges részébe nyílik, az 

üreg pedig a falon levő nyílások miatt kapcsolatban van az áramlási térrel. Bernoulli egyenle-

te alapján 

      
 

 
    

ahonnan a sebesség 

  √
        

 
 

Itt   a gáz sűrűsége,          a nyomáskülönbség, ami a csőhöz csatlakozó manométe-
ren olvasható le. (A csövet csepp alakúra készítik, hogy a mérőtest az áramlási viszonyokat 

lehetőleg ne változtassa meg.) 

Illatszerszóró, vízlégszivattyú 

Sokféle eszköz működik a gyors áramlások környezetében fellépő „szívóhatás” kihasználásá-

val. Az áramló folyadékban (gázban) a nyomás kisebb, mint a környező kisebb sebességű 

vagy nyugvó közegben, ezért az a kisebb nyomású hely felé áramlik. Ez a hatás érvényesül az 

illatszerszóróban (ábra) és a vízlégszivattyúban (ábra). Az illatszerszóróban a szívóhatás miatt 

felemelkedő folyadékot a befújt légáram magával ragadja és porlasztja is. A vízlégszivattyú-

ban az áramló folyadék a környező gázt „szívja” be, s viszi magával, így evakuálva a ritkítan-

dó teret. 

Súrlódó folyadékok lamináris áramlása 

A belső súrlódás miatt a hengeres csőben áramló folyadék rétegei is különböző sebességgel 

mozognak. A csőfallal érintkező réteg sebessége nulla, a cső közepén mozgóké pedig maxi-

mális. Egyszerű kísérlettel megmutatható az is, hogy a vízcsaphoz kötött, manométerekkel 

ellátott, egyenletes keresztmetszetű üvegcsőben áramló víz nyomása a cső mentén lineárisan 

csökken a távolsággal (ábra). Ez a jelenség nem magyarázható Bernoulli törvényével, amely 

szerint az áramlási cső kisebb nyomású helyén a sebesség nagyobb. A nyomáscsökkenés oka 

a belső súrlódási erő. A cső   hossza menti       nyomáscsökkenésből származó erő egyen-
súlyt tart a Newton-féle belső súrlódási erővel. Az eredő erő tehát nulla, a folyadék stacioná-

rius, lamináris áramlást végez. Ezt az erőtani megfontolást felhasználhatjuk arra, hogy megha-

tározzuk az   sugarú csőben áramló,   dinamikai viszkozitású folyadék sebességeloszlását. A 

részletes számítások azt adják, hogy a cső szimmetriatengelyétől   távolságban az áramlási 
sebesség: 

     
       

   
        

Az eredmény mutatja, hogy a stacionárius, lamináris áramlás sebessége a cső középpontjától 

mért távolsággal négyzetesen csökken a cső fala felé, azaz a sebességprofil parabolikus. 
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Hagen-Poiseuille törvény 

A sebességeloszlás felhasználásával meghatározhatjuk az áramlás erősségét. Az   sugarú 

csőben a középvonaltól   távolságban jelöljünk ki    szélességű csőgyűrűt (ábra). Ezen a 
gyűrűszerű keresztmetszeten az átfolyó folyadékáram erőssége: 

  
  

  
        

A sebességeloszlást felhasználva ez az áramerősség az 

  
  

  
 

     

   
             

alakot ölti. A cső teljes keresztmetszetén átáramló folyadék áramerősségét úgy kapjuk meg, 

hogy az elemi térfogatok összegét vesszük a teljes keresztmetszetre, tehát 

  
 

 
 

       

  
 
 

 
∫             

 

 

 

Az integrálást elvégezve 

  
 

 
 

        

   
   

A fenti összefüggést Hagen-Poiseuille-törvénynek nevezzük. Eszerint stacionárius, lamináris 

áramlás során a cső keresztmetszetén áthaladó folyadékáram (pl. véráram) erőssége egyene-

sen arányos a cső végei közötti nyomáskülönbséggel, a cső sugarának negyedik hatványával 

és fordítottan arányos a cső hosszával, valamint a folyadék dinamikai viszkozitásával. 

Stokes-törvény 

Áramlási térbe helyezett golyó közelében réteges áramlás alakulhat ki. A belső súrlódás miatt 

a közeg a golyóra erőt fejt ki, ami a számítások szerint egyenesen arányos a közeg és a golyó 

relatív sebességével, a golyó sugarával és a közeg dinamikai viszkozitásával: 

        

Ez a Stokes-féle súrlódási törvény. A Stokes-törvény sokféle kísérlet kiértékelésében játszik 

fontos szerepet. A kisméretű golyók esése súrlódó folyadékban gyorsan egyenletessé válik. A 

golyó sebességét megmérve következtethetünk a folyadék, vagy a golyóra ható erők tulajdon-

ságaira. 
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9.) Elektrosztatika I. 

Elektrosztatikai alapjelenségek 

Thalész görög filozófus, matematikus és csillagász Kr. e. 600 körül tett említést először arról, 

hogy a gyapjúval megdörzsölt borostyánkő1 apró testeket magához vonz, majd eltaszít. Ezt 

követően számos megfigyelő észlelte, hogy dörzsöléskor nagyon sok anyag a borostyánkőhöz 

hasonló tulajdonságot vesz fel. A megdörzsölt anyagoknak azt a tulajdonságát, hogy könnyű 

testeket képesek magukhoz vonzani, borostyánkőerőnek nevezték el. A borostyánkő görög 

neve         ,s innen származik az elektromos elnevezés. Azt az állapotot pedig, amelybe a 
borostyánkő, a különböző üvegek és műanyagok dörzsöléskor kerülnek, elektromos állapot-

nak, a megdörzsölt testek között ható erőt pedig elektromos erőnek nevezzük. 

A megdörzsölt testek között ható erőt a testeken levő elektromos töltésnek tulajdonítjuk, más 

szóval: elektromos erő kifejtésére az elektromos töltés képesíti a testeket. 

Az elektromos erő vonzó és taszító is lehet, ezért kétféle elektromos töltésnek kell lennie. 

Ezeket pozitív és negatív töltésnek nevezzük. Megállapodás szerint negatívnak mondjuk a test 

elektromos töltését akkor, ha a semleges állapothoz képest elektrontöbblete van, pozitívnak 

pedig akkor, ha elektronhiányos. A tapasztalat szerint az azonos előjelű elektromos töltések 

taszítják, a különböző előjelűek pedig vonzzák egymást. Az elektromosan semleges testek 

között elektromos erő nem lép fel. 

Coulomb-törvény, a töltés egysége 

Coulomb az elektromos erők mérésére torziós mérleget használt, amely függőleges torziós 

szálra erősített vízszintes rúd, végein egyenlő méretű, pontszerűnek tekinthető fémgömbökkel 

Ha a rúd végén levő    töltésű fémgömb közelébe vele egynemű (vagy ellentétes előjelű)    
töltésű fémgömböt vitt, a torziós szál elcsavarodott, mert a töltések között taszítóerő (ill. von-

zóerő) hat. 

A mérések szerint vákuumban (légüres térben) – gyakorlatilag levegőben is – a pontszerű 

töltések (ponttöltések) között ható erő nagysága      egyenesen arányos a    és a    töltések 

szorzatával, és fordítva arányos   távolságuk négyzetével: 

     

    

  
 

ahol    arányossági együttható (mértékegységes szám). Megállapodás szerint    számértéke a 

                    ⁄         ⁄  vákuumbeli fénysebesség négyzetet számértéké-

nek     -szerese: 

{  }      {  }        

Az elektromos töltés skalár fizikai mennyiség (röviden: skalár); SI-egysége Coulomb tisztele-

tére a coulomb, jele:  . Meghatározása: az egyenletek alapján     az a töltés, amely a tőle     

távolságra levő és vele azonos nagyságú töltésre         erőt fejt ki. Az     mint sztatikus 

töltés igen nagy, a valóságban többnyire csak törtrészei fordulnak elő. 

A Coulomb-törvényből következik, hogy a    ponttöltéstől   távolságra végtelen sok pont 

található, amelyekben az oda helyezett    ponttöltésre ugyanakkora nagyságú erő hat. Ezek a 

pontok   sugarú,      nagyságú gömbfelületen találhatók. Ebből következik, hogy a ponttöl-

tések közötti erőhatás gömbszimmetrikus jellegű. Ezt hangsúlyozva a    együtthatót váku-

umban (gyakorlatilag levegőben is) 
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alakban szokás írni, ahol    a vákuum permittivitása (régebbi neve: vákuum dielektromos 
állandója) és éréke: 

   
 

    
             

  

    
 

A vákuum permittivitásának bevezetésével a vákuumbeli Coulomb-törvény: 

   
 

    
 
    

  
 

Ha a   ,    ponttöltések végtelen kiterjedésű, mindenütt homogén (egynemű) szigetelő kö-

zegben, ún. homogén dielektrikumban vannak, akkor a köztük ható   erő kisebb, mint az    
vákuumbeli erő. Ennek alapján célszerű definiálni egy, a közegre jellemző állandó számot, az 

ún. relatív permittivitást (jele:   ; régebbi neve: relatív dielektromos állandó), amely megmu-

tatja, hogy a ponttöltések között ható erő hányszor nagyobb vákuumban, mint homogén szige-

telő közegben: 

   
  

 
 

A relatív permittivitás értelmezéséből következik, hogy a vákuum relatív permittivitása  . A 

tapasztalat azt mutatja, hogy a levegő relatív permittivitása alig nagyobb  -nél, de egyes die-

lektrikumok permittivitása jelentős eltérést mutat. 

A relatív permittivitás és a vákuumbeli Coulomb-törvény alapján adódik a homogén szigete-

lőkben nyugvó ponttöltések között ható Coulomb-erő: 

  
  

  
 

 

      
 
    

  
 

ahol        a permittivitás (régebbi neve: dielektromos állandó). 

A két pontszerű töltés közötti elektromos kölcsönhatás további fontos tulajdonsága, hogy a 

ponttöltések között ható erő iránya az összekötő egyenesbe esik. Ennek megfelelően a fellépő 

elektromos erő vektor fizikai mennyiség (röviden: vektor). Értékét a Coulomb-törvény vektori 

alakja fejezi ki: a    ponttöltés a tőle | |    távolságra levő    ponttöltésre 

    
 

      
 
    

  
 
 

 
 

erőt fejt ki, ahol   ⁄  a    ponttöltéstől a    felé mutató egységvektor. Hasonlóan adódik a    

ponttöltés által a    ponttöltésre ható          erő is. A két erő tehát – összhangban New-
ton III. törvényével – azonos nagyságú, de ellentétes irányú. 

Dipólus 

Az elektromos dipólus két azonos nagyságú, de ellentétes előjelű, egymástól   távolságra levő 

   pontszerű töltés. Jellemzésére a  

     
elektromos dipólusmomentum szolgál, ahol   megállapodás szerint a negatív töltésközéppont-

tól a pozitív töltésközéppont felé mutat. Nagysága: | |   | |, ill.     . SI -egysége a cou-

lomb·méter, jele:    . 
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Szuperpozíció 

A Coulomb-törvény szigorúan csak két pontszerű és nyugvó töltés közötti erőhatás leírására 

alkalmas. Ha viszont valamely   ponttöltésre egyidejűleg több    ponttöltés fejt ki erőt, akkor 
az erőhatások függetlenségének elve (szuperpozíció elve) szerint ezek együttes hatása egye-

nértékű vektori eredőjük hatásával: 

     ∑  
   

|    | 
 

 
    

|    |
 

Elektromos térerősség és potenciál kapcsolata 

Elektromos térerősség 

Fizikai mezőnek (fizikai térnek) nevezünk minden olyan fizikai mennyiséget, amely a három-

dimenziós geometriai tér különböző pontjaiban meghatározott értéket vesz fel. 

A tapasztalat szerint az elektromos töltésű testek közvetlen érintkezés nélkül is egymásra erőt 

fejtenek ki. Ezt a jelenséget úgy magyarázhatjuk, hogy az elektromos töltésű test maga körül 

fizikai tulajdonságokkal rendelkező, ún. elektromos mezőt (elektromos erőteret) kelt, amely a 

benne levő elektromos töltésű testekre erőt fejt ki. Eszerint a töltések közötti erőhatást az 

elektromos mező közvetíti. Ennek megfelelően az elektromos mező által a   pontszerű töltés-

re ható erő 

     

alakban írható, ahol a   töltés csak a test elektromos állapotára,   pedig csak az elektromos 
mezőre jellemző fizikai mennyiség, neve elektromos térerősség. Ezt a tapasztalati törvényt 

elektromos erőtörvénynek nevezzük. 

Az elektromos erőtörvény alapján az elektromos mező egy adott pontját jellemző elektromos 

térerősség: 

  
 

 
 

Az elektromos térerősség megmutatja az egységnyi pozitív töltésre ható erőt; vektor fizikai 

mennyiség, nagysága: | |  | |  ⁄ . illetve        , iránya pozitív   töltés esetén az   

erőével azonos, negatív töltés esetén ellentétes; SI-egysége a newton per coulomb, jele:    . 

Meghatározása:       a térerősség az elektromos mező azon pontjában, ahol az     pontszerű 

töltésre     erő hat. 

Potenciál 

A potenciál fogalmának meghatározásához előbb meg kell határozni az elektromos mező által 

végzett munkát. 

Homogén elektromos mező munkája 

Ha a   ponttöltés a homogén elektromos mező által kifejtett      erő hatására egyenes 

vonalú pályán mozog az   kezdőpontból a   végpontba, miközben   elmozdulást szenved, ill. 
| |    utat tesz meg, akkor a homogén elektromos mező munkája: 

    | || |       | || |           

Inhomogén elektromos mező munkája 

A csak helykoordinátáktól függő, de időben állandó inhomogén elektromos mező munkája is 

kiszámítható. Evégből a pályagörbét – amelyen a   ponttöltés mozog gondolatban felbontjuk 

olyan kicsiny,  -tól   felé mutató    elemi elmozdulásokra, amelyek mentén az elektromos 
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mező   térerőssége, s így az általa kifejtett      elektromos erő is állandónak tekinthető. 

Ezután skaláris szorzással az előző képlet alapján meghatározzuk mindegyik    elemi elmoz-

dulás során végzett          elemi munkát, majd az így nyert elemi munkákat összead-

juk  -tól  -ig: 

     ∑    

 

 

 

Az elektromos mező munkája pontosan is megadható. Ha ugyanis a    elemi elmozdulás 

minden határon túl tart nullához       , akkor 

       
    

 ∑    

 

 

  ∫     

A feszültég 

Megállapodás szerint az elektromos mező   és   pontja közölti     feszültségen értjük a me-

ző   ponttöltésen végzett     munkájának és a   töltésnek a hányadosát: 

    
   

 
 

SI-egysége a volt, jele  , meghatározása:           az elektromos mező két pontja között a 

feszültség akkor, ha az     töltés     munka árán jut el egyik pontból a másikba. 

Elektromos térerősség és potenciál kapcsolata 

Homogén elektromos mezőben 

    
   

 
 

    

 
            

Ebből 

  
   

     
 

illetve      esetén 

  
   

 
 

Inhomogén elektromos mezőben 

A feszültség definíciója és az elektromos mező munkája alapján: 

    
   

 
 

 ∫     
 

 

 
 ∫     

 

 

 

amennyiben     . 

Az elektrosztatikus tér konzervatív 

Vegyünk egy   zárt görbét, melynek legyen          pontja, az ezekbe mutató helyvektorok 

pedig         . Ha kiszámoljuk, hogy mekkora az elektrosztatikus tér munkavégzése, mialatt a 

  töltést e   görbe mentén             útvonalon át körbemozgatja, az alábbi össze-

függést kapjuk. Az elektromos mező munkáját megadó képletbe helyettesítve: 
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A fenti egyenleteket összeadva megkapjuk a teljes munkát: 

    [                       ]         

Vagyis bármely zárt görbe mentén az elektrosztatikus tér munkavégzése zérus, azaz az elekt-

rosztatikus tér konzervatív. Ez egyben azt is jelenti, hogy 

∮       

minden zárt görbe mentén. 

Kiterjedt testek elektromos tere (alkalmazások) 

Térfogati töltéseloszlás 

Ha   elektromos töltés a   térfogatban egyenletes eloszlású, akkor télfogati (térbeli) töltéssű-
rűségen értjük a 

  
 

 
 

hányadost, amely megmutatja az egységnyi térfogatban található elektromos töltést. SI-

egysége a coulomb per köbméter, jele:    ⁄ . 

Ha a test    térfogatelemeiben   töltés van, akkor nem egyenletes térbeli töltéseloszlás ese-
tén a térbeli töltéssűrűség helyről helyre változik: 

     
    

  

  
 

  

  
 

Felületi töltéseloszlás 

Ha   elektromos töltés   felületen (pl. gömbfelületen) egyenletesen oszlik el, akkor a 

  
 

 
 

hányadost felületi töltéssűtűségnek nevezzük, amely megmutatja az egységnyi felület töltését. 

SI-egysége a coulomb per négyzetméter, jele:    ⁄ . 

Ha a test    felületelemein    töltés található, akkor nem egyenletes felületi töltéseloszlás 
esetén a felületi töltéssűrűség helyről helyre változik: 

     
    

  

  
 

  

  
 

Alkalmazások 

Síklemez elektromos tere 

Egy adott sík által keltett elektromos mező ereje a síkra felhalmozott töltések mennyiségétől, 

vagyis a felületi töltéssűrűségtől függ. A végtelen kiterjedésű sík által keltett elektromos mező 

  
 

   
 

tehát a térerősség nem függ a síktól való távolságtól. 

Üreges gömb elektromos tere 

Üreges gömb esetén a térerősség meghatározását úgy végezhetjük el, hogy a gömböt övenként 

kiintegráljuk. Ekkor azt kapjuk, hogy a gömb belsejében a térerősség zérus, a gömb palástjá-
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tól kifelé haladva pedig olyan, mintha a gömbön fölhalmozott töltés pontszerűen, a közép-

pontban összpontosult volna. Így a gömb térerőssége 

     {
 

 

  
         

                     

 

Tömör gömb elektromos tere 

Tömör gömb belsejében csak abban az esetben halmozható fel töltés, ha a gömb anyaga szige-

telő. Ekkor a tömör gömb belül feltölthető, töltéssűrűségét a         térfogati töltéssűrű-
ség jellemzi. A térerősség a tömör gömb belsejében lineárisan növekszik, 

      
(
 
    ) 

  
 

a gömbön kívül pedig a már fent látott módon csökken. Így tehát 

     

{
 
 

 
  (

 

  
) (

 

 
)          

 

 
 

  
                       

 

Fluxus fogalma, meghatározása 

A fluxus szemléletes jelentése a felületen átáramló „anyag” mennyisége. 

Homogén elektromos mező fluxusa nyitott felület esetén 

Ismeretes, hogy a homogén elektromos mező   térerősségére merőleges egységnyi felületen 

annyi elektromos erővonalat rajzolunk át, mint amekkora a térerősség { } számértéke. Ennek 

megfelelően merőleges viszonyok esetén az   síkfelületen {  } erővonal halad át. Megálla-

podás szerint: ha az           térerősségvektorra az | |    felület merőleges, vagyis ha 

  és   azonos irányú (ábra), akkor a homogén elektromos mező fluxusán értjük a 

     

szorzatot. Az így definiált elektromos fluxus szemléletesen az   térerősségvektorra merőleges 

  síkfelületen áthaladó elektromos erővonalak számát mutatja meg. SI-egysége: 
 

 
  . 

Ha az A síkfelület nem merőleges a térerősségre, hanem   és   (ill.  ) egymással   szöget 

zár be (ábra), akkor az elektromos mező fluxusát az   térerősségvektornak az   felületre me-

rőleges |  |           összetevőjével kell számítani: 

                 

Nyitott sík felületesetén tehát a homogén elektromos mező fluxusa az   térerősségvektor és 

az   felületvektor skaláris szorzata. 

Inhomogén elektromos mező fluxusa nyitott felület esetén 

Inhomogén elektromos mező és görbült nyitott felületesetén az elektromos mező fluxusát úgy 

számítjuk ki, hogy a felületet gondolatban felosztjuk olyan kicsiny, már síknak tekinthető    
felületelem-vektorokra, amelyeknek minden pontjában az elektromos mező homogénnek 

(         ) tekinthető. Ezután a szöget bezáró felület esetére adott képlettel skaláris szor-

zással meghatározzuk mindegyik    felületelemen átmenő         elemi elektromos 
fluxust, majd ezeket összegezzük a teljes nyitott felületre: 
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  ∑     

       

       

 

A fenti összefüggés szigorúan csak akkor érvényes, ha a    felületelemet minden határon túl 

csökkentjük       . 

Ekkor nyitott felületesetén az inhomogén elektromos mező fluxusa: 

     
    

∑     

       

       

 ∫    
 

 

vagyis az elektromos mező fluxusa az   térerősségvektor felületi integrálja. 

Az elektromos mező fluxusa zárt felület esetén 

Az elektromos fluxus fogalmának ismeretében könnyen kiszámítható a nyugvó   ponttöltés 
elektromos mezőjének fluxusa. Evégből gondolatban vegyük körül az 

  
 

      
 
 

  
 

térerősségű elektromos mezőt keltő   ponttöltést egy   sugarú,         felületű koncentri-

kus gömbbel (ábra). Ezen a gömbfelületen az elektromos erővonalak merőlegesen haladnak 

át, és a térerősség nagysága állandó, s így a   ponttöltés elektromos mezőjének fluxusa: 

      
 

      
 
 

  
     

 

    
 

Pozitív töltés esetén    , negatív töltés esetén    . 

Az ábra alapján szemléletesen is belátható, hogy ha a   ponttöltést    koncentrikus gömbfelü-

let helyett tetszőleges alakú, de véges térrészt határoló   zárt felülettel vesszük körül, akkor a 
rajta átmenő elektromos fluxus változatlan marad. Ha viszont a zárt felületen belül nincs töl-

tés, akkor    . 

Gauss-törvény 

Tekintsük az elektromos fluxust zárt felület esetén. Ennek kiszámolásához a már fentebb 

megadott felületi integrált használjuk: 

  ∮    
 

 
 

  
∑  

 

 

ahol ∑   a zárt felületen belüli töltésmennyiség. Így arra jutottunk, hogy a fluxus a zárt felü-
leten belüli töltéssel arányos. 

Ha bevezetjük a         mennyiséget, akkor ez a fenti összefüggés a következő alakban 
írható: 

∮    
 ⏟    

             
        

 ∑   ∫       
 ⏟      
        
        

 

ahol      a térfogati töltéssűrűség-függvény. 
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Elektrosztatikai alapelveken működő eszközök 

Kondenzátor 

Ha egy síklemezre töltéseket halmozunk fel, akkor (a már említett számítások alapján) a le-

mez környezetében uralkodó térerősség 

  
 

   
 

ahol       a felületi töltéssűrűség. Ha ugyanezt az összeállítást két, egymással szembefor-
dított síkfelülettel végezzük, melyekre ugyanakkora mennyiségben ellentétes előjelű töltése-

ket halmozunk fel, akkor a két lemez közti térerősség 

   
 

   
 

 

  
 

Ez az így létrehozott eszköz, melynek neve kondenzátor, képes nagymennyiségű töltés tárolá-

sára, így az elektronikában előszeretettel alkalmazzák. 

Elektroszkóp, elektrométer 

Az elektroszkóp a testek elektromos állapotának kimutatására használható eszköz. Lelke a 

szigetelővel felfüggesztett vezetőből készült rúd, és az annak végén (általában zárt edényben 

elhelyezett) könnyen mozgó fémrúdból vagy kettéhajtott fémfóliából áll. Ha az elektrométer 

kivezetéséhez elektromos állapotban lévő testet érintünk, akkor a töltések az eszköz vezetőjé-

ben szertevándorolnak, és (azonos neműségükből fakadó taszító hatásuk révén) a mutatót ki-

lendítik illetve a fémfólia szárai széjjelhajlanak, eltávolodnak egymástól. 

Töltött részecske mozgása homogén elektromos térben (katódsugárcső) 

A homogén elektrosztatikai mező   térerősségének irányára merőlegesen,    sebességgel 

haladó pontszerű töltésre (pl. elektronra)      erő hat. Ennek az erőnek a    irányú kom-

ponense nulla, ezért a ponttöltés   irányú mozgása egyenletes mozgás és   idő alatt 

      

utat tesz meg. Ugyanekkor a negatív ponttöltés az   tengellyel ellentétes irányban  

  
 

 
 

  

 
 

gyorsulással mozog, és mivel   irányú sebessége az origóban zérus, ezért az   tengely mentén 
a megtett út: 

  
 

 
   

  

  
   

Katódsugárcső 

Az elektrosztatikai eltérítésű elektronsugárcső (katódsugárcső) elektromos áram hőhatására 

elektronokat kibocsátó katódból, nyílással ellátott anódból,   –   eltérítő lemezpárokból és 

az elektronok észlelésére szolgáló fénykibocsátó rétegből (ernyőből) áll (ábra). Az elektron-

nyalábot az eltérítő lemezpárokra vitt, a megjelenítendő információt hordozó elektromos jel 

függőleges, ill. vízszintes irányban téríti ki. Az így működő elektronsugárcső kiválóan alkal-

mas változó áramok, például bioáramok (szív- és agyi áramok) vizsgálatára és elektromos 

jelek kijelzésére. 
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10.) Elektrosztatika II. 

Kapacitás fogalma 

Ha az egymás közelében levő két vezető egyik tagjára   , a másikra pedig    töltést vi-

szünk, akkor közöttük   feszültségű elektromos mező alakul k. A tapasztalat azt mutatja, 

hogy a vezetőrendszerre vitt   töltésnek és a rajta kialakuló   feszültségnek a hányadosa egy 
adott vezetőrendszer esetén állandó. Ezt a vezetőrendszer geometriai viszonyaitól (a vezetők 

alakjától és térbeli helyzetététől), valamint a vezetők közötti közegtől függő 

  
 

 
 

pozitív hányadost a vezetőrendszer kapacitásának nevezzük. 

Kondenzátorok 

Az egymás közelébe helyezett két vezetőből álló rendszert kondenzátornak nevezzük, és ka-

pacitása sokkal nagyobb, mint a különálló egyetlen vezetőnek. A szemben álló fémtestek a 

kondenzátor fegyverzetei. Fontos jellemzőjük, hogy kis térfogatban is nagy mennyiségű töl-

tést képesek tárolni. Geometriai alakjuk szerint sík-, gömb- és hengerkondenzátorokat külön-

böztetünk meg. 

A kondenzátor fegyverzetei közé került    töltésnek a fegyverzeteken fölhalmozott    és    

töltések által keltett   feszültséggel jellemezhető elektromos tér ellenében történő mozgatásá-
hoz munkát kell végezni. E munkavégzés 

        
 

 
    

Innen a munkákat összegezve 

  
 

 
∫     

 

 

 
 

 
    

Síkkondenzátor 

Az   lapfelületű és   laptávolságú kétlemezes síkkondenzátor kapacitása 

  
 

 
 

 

 
    

 
 
  

     
  

  
     

 

 
 

Hengerkondenzátor 

A hengerkondenzátor fegyverzetei közti térerősség: 

Az   hosszúsághoz képest kicsin    és       sugarú koaxiális hengereken lévő    és    

töltések által létrehozott elektrosztatiki mező térerőssége         távolságban a Gauss-

törvény szerint 

  
 

      
 
 

  
 

A fegyverzetei közti feszültség a feszültség és térerősség képlete alapján 

  ∫     
  

  

 ∫
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Így ebből a kapacitás 

  
 

 
 

 

 
       

  
  

  

       
 

  
  
  

 

Kondenzátorok soros és párhuzamos kapcsolása 

Ha a            kapacitású kondenzátorokat az ábrának megfelelően kapcsoljuk egymás-
hoz, akkor kondenzátorok párhuzamos kapcsolásáról beszélünk. A párhuzamos kapcsolás 

folytán a            töltésű kondenzátorok mindegyikére ugyanakkora   feszültség jut, 

sebből kifolyólag a    eredő kapacitás, illetve a párhuzamosan kapcsolt kondenzátorokat he-
lyettesítő egyetlen kondenzátor kapacitása: 

   
 

 
 

          

 
            

A            kapacitású kondenzátorok az ábrán látható ódon sorosan vannak kapcsolva. A 

soros kapcsolás fontos jellemzője, hogy mindegyik fegyverzeten azonos Q abszolút értékű 

töltés van, és ennélfogva a sorba kapcsolt kondenzátorokra jutó       feszültség az egyes 

kondenzátorok       ⁄        ⁄          ⁄  részfeszültségeinek összege: 

 

  
 

 

  
 

 

  
   

 

  
 

Ebből    eredő kapacitás reciproka, illetve a sorosan kapcsolt kondenzátorokat helyettesítő 
egyetlen kondenzátor kapacitásának a reciproka: 

 

  
 

 

  
 

 

  
   

 

  
 

Energiasűrűség elektrosztatikus térben 

Az elektromos mező a töltésre erőt fejt ki, képes elmozdítani, rajta munkát végezni. Vagyis az 

elektromos mezőnek munkavégző képessége, más szóval energiája van. 

Az elektromos mező energiája a síkkondenzátor példáján keresztül könnyen kiszámítható. 

Ugyanis, ha a    töltésű fémlemez  

  
 

   
 
 

 
 

térerősségű elektromos mezőjében a    töltésű fémlemezt végtelen kicsiny távolságról   
távolságra távolítjuk el, akkor az általunk végzett munkának az energia-megmaradás szerint 

meg kell egyeznie a  

    
 

 
 

kapacitású síkkondenzátor energiájával: 

           
 

   
 
 

 
  

 

 

  

  
 
 

 
 

 

  

 
 

Ha figyelembe vesszük, hogy      , akkor a kondenzátor energiája 
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Homogén elektromos mező energiasűrűsége 

Az energiasűrűség az elektromos mező és az általa kitöltött térrész térfogatának hányadosa: 

  
  

  
 

 
    

  
 

 
   

 
 
    

  
 

 

 
   

  

E fenti összefüggés továbbvitelből adódik hogy 

 

 
   

  
 

 
   

 

 
    

Elektromos tér vezetők és szigetelők jelenlétében 

Vezetők esetében 

A vezetőre vitt egynemű töltések között fellépő taszítóerő hatására a töltések a lehető legtávo-

labbi helyet, a vezető külső felületét foglalják el, a vezető belseje pedig egyensúlyban töltés-

mentes. 

Mivel a vezető belsejében nincs elektromos töltés, ezért itt- összhangban a Gauss-törvénnyel 

az   térerősség zérus. A vezető külső felületén található töltés elektrosztatikai mezőjének   
térerőssége a vezető külső felületére mindig merőleges. Ha ugyanis a térerősségnek lenne a 

felülettel párhuzamos összetevője, akkor a felületen levő töltésekre a felülettel párhuzamos 

erő hatna, a töltések elmozdulnának, nem állhatna fenn elektrosztatikai egyensúlyi állapot. 

Csúcshatás 

A nem gömbszimmetrikus vezető külső felületén a töltéseloszlás nem egyenletes: a vezető 

élein és csúcsain, vagyis a nagy görbületű helyeken nagyobb a felületi töltéssűrűség és a vele 

arányos térerősség, mint a kisebb görbületűeken. Műszaki szempontból fontos ennek ismere-

te, mert pl. a csúcsok közelében a nagy térerősségű mezők hatására, a kritikus térerősség (át-

ütési szilárdság) fölött a fém elveszíti töltését, kisülések jönnek létre. 

A csúcsokon kialakuló nagy térerősséggel kapcsolatos a csúcshatás. Ez abban nyilvánul meg, 

hogy a csúcsnál fellépő nagy térerősségű elektromos mező hatására a környező gáz (többnyire 

levegő) egyes molekulái elektromos megosztás révén dipólusokká válnak, a csúcshoz mennek 

és a csúccsal ellentétes előjelű töltésük semlegesítődik. Így a csúcs elektromos mezője a most 

már vele azonos előjelű gázionokat eltaszítja, légáram, ún. „elektromos szél” keletkezik. 

Szigetelők esetében 

Az      relatív permittivitású szigetelőket (dielektrikumokat) belső szerkezetük alapján 
három csoportra oszthatjuk. 

Vannak szigetelők, amelyeknek molekuláiban a protonok és az elektronok elektromos töltés-

középpontja egybeesik. Külső elektromos mező hatására azonban a töltésközéppontok külön-

válnak, a molekulák ún. indukált (keltett) dipólusokká alakulnak át, és a hőmozgás által korlá-

tozott mértékben beállnak az elektromos térerősség irányába. Így viselkednek általában a 

szimmetrikus felépítésű molekulák, mint amilyen pl. a hidrogén, az oxigén, a benzol stb. 

Ismeretesek olyan szigetelők is, amelyeknek molekulái külső elektromos mező nélkül is per-

manens (állandó) dipólusok. Ezek a hőmozgás következtében rendezetlenül helyezkednek el, 

elektromos mező hatására azonban többé-kevésbé szintén beállnak a térerősség irányába. Az 

ebbe a csoportba tartozó szigetelők molekulái általában aszimmetrikus felépítésűek, mint pl. a 

víz, a sósav stb. 

otthon
Cross-Out
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Végül vannak olyan szigetelők is, amelyeknek egyes tartományait (doménjeit) külső elektro-

mos mező nélkül is egyirányú dipólusok alkotják. Ezeket a tartományokat a külső elektromos 

mező kisebb-nagyobb mértékben a térerősség irányába fordítja. Az ilyen tulajdonságú anya-

gokat ferroelektromos anyagoknak nevezzük. Ferroelektromos tulajdonságot mutat a kálium-

dihidrogén-foszfát és a bátium(II)titanát. Mindegyiknek igen nagy az    relatív permittivitása, 

a     értéket is meghaladhatja, ezért előnyösen alkalmazhatók a kondenzátorokban szigetelő-

anyagként. 

Polarizáció 

A szigetelők elektromos mezőmódosító hatásának mélyebb megértése céljából tekintsünk egy 

vákuum-szigetelésű kétlemezes síkkondenzátort! Ennek fegyverzeteire vitt    és   , ún. 

valódi (szabad) töltések    térerősségű elektromos mezőt hoznak létre. Ha ezután a konden-
zátor fegyverzetei közötti térrészt szigetelővel töltjük ki, akkor a szigetelő dipólusai a valódi 

töltések elektromos mezőjének hatására rendeződnek, és ennek következtében a dielektrikum 

felületén     és     ún. polarizációs töltések jelennek meg. Mivel a polarizációs töltés 

mindegyik fegyverzetnél az ott levő valódi töltéssel ellentétes előjelű, ezért a közegbeli   
térerősségű elektromos mezőt a 

        

ún. látszólagos töltés kelti, amelynek abszolút értéke |  |  | |  |  |,vagyis kisebb, mint a 
| | valódi töltés. A |  |  | | folytán a közegbeli   térerősség kisebb a vákuumbeli    tér-

erősségnél. A térerősségnek ezt a csökkenését vesszük figyelembe az    relatív permitti-
vitással. Ez az oka annak is, hogy dielektrikumban a ponttöltések között ható Coulomb-erő a 

vákuumbeli Coulomb-erő   -ed része. 
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11.) Egyenáramok 

Szabad töltéshordozók 

Vannak olyan berendezések (pl. akkumulátorok), amelyeknek   térerősségű elektromos me-
zője a fémek könnyen mozgó (szabad-, vegyérték-, valencia-, vezetési, delokalizált) elektron-

jait, az elektrolitok pozitív és negatív ionjait      erővel haladó (transzlációs) mozgásra 

kényszeríti. Ezeknek a töltéshordozóknak (elektronoknak, ionoknak) elektromos mező hatásá-

ra kialakuló rendezett mozgását elektromos áramnak (pontosabban: vezetési elektromos 

áramnak) nevezzük. 

Áramerősség, áramsűrűség fogalma, egysége 

Áramerőség 

Az elektromos áram hatásai a tapasztalat szerint intenzívebben jelentkeznek, ha a vezető bár-

mely keresztmetszetén egységnyi idő alatt több töltés halad át. Ezt úgy fejezzük ki, hogy az 

intenzívebb hatásoknak nagyobb áramerősség (áramintenzitás) felel meg. 

Megállapodás szerint a vezető teljes keresztmetszetén áthaladó   töltés és a   áthaladási idő 

  
 

 
 

hányadosát áramerősségnek nevezzük. Ha értéke időben állandó, akkor az áramot egyená-

ramnak mondjuk. 

Az áramerősség megmutatja a vezető teljes keresztmetszetén egységnyi idő alatt átáramló 

töltést; skalár fizikai mennyiség, iránya nincs, csak mérőiránya; egyenáramok esetén állandó, 

változó áramok esetén időben változik; SI-egysége az amper, jele:  . Meghatározása: 

          az elektromos áram erőssége, ha a vezető teljes keresztmetszetén     alatt     
töltés halad át. 

A változó erősségű áramot a pillanatnyi áramerősséggel (jele:  ) jellemezzük. Megállapodás 

szerint   pillanatnyi áramerősségen értjük a vezető teljes keresztmetszetén    nagyon kicsi idő 

alatt áthaladó    töltés és a    idő hányadosát: 

  
  

  
 

A pillanatnyi áramerősség pontosan is megadható. Ha ugyanis    minden határon túl tart nul-

lához        , akkor 

     
    

  

  
 

  

  
 

vagyis a pillanatnyi áramerősség a töltés idő szerinti differenciálhányadosa. 

Áramsűrűség 

Ha a töltésáramlás egyenletesen oszlik el a vezetőnek az áramlás irányára merőleges   ke-

resztmetszetén, akkor áramsűrűségen (jele:  ) értjük a 

  
 

 
 

hányadost. Az áramsűrűség megmutatja az áramlás irányára merőlegesen felvett egységnyi 

keresztmetszeten átfolyó áram erősségét; vektor fizikai mennyiség, iránya minden pontban 

megegyezik a pozitív töltések valóságos vagy elképzelt mozgásirányával; SI-egysége az am-
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per per négyzetméter, jele:     . Meghatározása:        az elektromos áramsűrűség, ha az 

áramlás irányára merőleges      keresztmetszeten     erősségű áram folyik át. 

Differenciális Ohm-törvény, Ohm-törvény 

Georg Ohm német fizikus állapította meg, hogy elektromos mező hatására a homogén vezető-

ben kialakuló áram erőssége egyenesen arányos a vezetőre jutó feszültséggel: 

  
 

 
 

ahol   a vezető anyagi minőségétől és geometriai méreteitől (hosszától, keresztmetszetétől) 

függő fizikai mennyiség, a vezető elektromos ellenállása. 

Mérésekkel megállapítható, hogy az   hosszához képest kis átmérőjű,   állandó keresztmet-

szetű homogén vezető (vezeték, huzal, vezetőszál, lineáris vezető)   ellenállása: 

   
 

 
 

ahol a   arányossági együttható csak a vezeték anyagi minőségétől függő fajlagos (specifikus) 

ellenállás (rezisztivitás). 

difFERENCiáis 

Bos merda! 

Vékony vonalas vezető esetén a vezető keresztmetszetét jellemző méret elhanyagolható a ve-

zető hosszához képest, vagyis úgy tekintjük, hogy az áramsűrűség     egy adott keresztmet-

szet     minden pontjában ugyanakkora és a vezető hossztengelyének irányába mutat. A ve-

zető két sarka között a feszültség     . Ha a vezetőt kisebb vezetődarabokkal közelítjük, 

akkor e darabokra igazak az alábbi összefüggések: 

               

A vezetőn átfolyó áramerősséget az áramsűrűség-vektorból kapjuk: 

  ∫    
 

    

Mindezekből 

     

 

melyből következik, hogy 

     
 

        
 

A teljes vezetőre teljesül, hogy 

∫        
   

   

      

E két egyenletet fölhasználva 

  ∫
 

        
   

   

   

   ∫
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Joule-hő 

Az elektromos áram munkája a fogyasztó jellege szerint különféle energiaformákká alakulhat, 

pl. az elektromos motorokban mechanikai munkává és hővé, a fénycsövekben főleg sugárzási 

energiává. 

a) Az   ellenállású homogén fémes fogyasztóban elektromos mező hatására a töltéshordozók 
(szabadelektronok) rendezett mozgást végeznek, az elektromos mezőből energiát vesznek fel, 

de a rácsionokkal való gyakori ütközés során folyamatosan le is adják, aminek következtében 

a fémes vezető melegszik, vagyis nő a belső energiája. A belső energia növekedése azonban 

nem korlátlan. mert a felmelegedett vezető a környezetének adja át a felvett energiát. Termi-

kus egyensúlyban – amikor a vezető hőmérséklete már nem változik – a fogyasztó éppen any-

nyi hőmennyiséget, ún. Joule-hőt ad le környezetének, mint amennyi munkát az elektromos 

mező végez. 

A munkavégzés egyenlő az   feszültség hatására bekövetkező    töltés áramlásával, azaz 

            
  

 
   

Ellenállások soros és párhuzamos kapcsolása 

 

Feszültségforrások a gyakorlatban 

Feszültségforrásoknak nevezzük azokat a berendezéseket, amelyekben valamilyen energia, – 

pl. elektromos generátorokban mechanikai energia, termoelemekben hő, galvánelemekben és 

akkumulátorokban kémiai energia, fényelemekben fényenergia – alakul át elektromos energi-

ává. Velük mint töltésszivattyúkkal tartós elektromos áramlást tudunk  létrehozni, és az álta-

luk termelt elektromos energia a fogyasztóban alakul át másfajta energiává. 

Elektromotoros erő, belső ellenállás fogalma 

Az elektromotoros erő egy áramforrás üresjárati feszültsége, a két elektróda közötti maximális 

feszültség (potenciálkülönbség), amit akkor mérhetünk, ha az áramforráson keresztül nem 

folyik áram. Jelölésére   szolgál, mértékegysége a volt. 

Az elektromotoros erő formálisan az az erő, amelyet a két nyitott elektróda között keletkező 

potenciálkülönbség hoz létre. A potenciálkülönbséget a szétválasztott pozitív és negatív tölté-

sek okozzák, és ezáltal elektromos teret generálnak. Ha az áramforrásra egy áramkört kapcso-

lunk, akkor a két elektróda között áram fog folyni, többé nem mérhető az üresjárati feszültség, 

hanem egy kisebb feszültség, amely azért csökken le, mert a záródó áramkörön keresztül áram 

folyik, mely átfolyva a telep belső ellenállásán feszültségesést okoz. 

A belső ellenállás a telep szerkezeti kialakítása miatt jelenlévő ellenállás, mely úgy modellez-

hető, mintha a telep kivezetése között egy állandó üresjárati feszültséget biztosító feszültség-

generátor és egy vele sorosan kapcsolt    ellenállás lenne. 

And things… 

Random fact: 

          

A teljesítmény maximuma ott van, amikor       

  

otthon
Cross-Out

otthon
Cross-Out



 „Korlátozott terjesztésű”  1. számú példány 

 

Klasszikus fizika informatikusoknak — PPKE ITK 

 

 

írásbeli és szóbeli vizsga 1419 77 / 84 2014. június 26. 

 

 „Korlátozott terjesztésű”   
 
 

Kirchhoff törvények 

Összetett áramkörben (hálózatban) általában egynél több feszültségforrás és fogyasztó találha-

tó. A hálózat jellemzői a kettőnél több vezeték találkozási pontjában kialakuló áram elágazási 

csomópontok, a csomópontokat összekötő ágaknak nevezett szakaszok és az ágakból felépült 

körök, az ún. hurkok. 

A hálózatokban többnyire ismerjük a feszültségforrások elektromotoros feszültségét, a belső 

ellenállásokat és a fogyasztói ellenállásokat. Ismeretlenek azonban az ágakban folyó áramok 

erősségei és az egyes ellenállásokra jutó feszültségek. Ezek meghatározása szolgálnak a 

Kirchhoff törvények. 

Kirchhoff I. törvénye (csomóponti törvény) 

A törvény a töltésmegmaradás törvényének egyenes következménye. Stacionárius áramlás 

esetén ugyanis a hálózatban sehol sem halmozódhat fel elektromos töltés. A csomópontra 

vonatkozóan ez azt jelenti, hogy a csomópontba   idő alatt beáramló ∑   
    

  ∑   
    

   töl-

tésnek meg kell egyeznie az ugyanezen idő alatt a csomópontból kiáramló ∑   
    

  ∑   
       

töltéssel, vagyis a fentieket összeadva  -vel való osztás után 

∑  
    

 

 ∑  
    

 

 

A csomópontba befolyó áramok erősségeinek összege tehát egyenlő a csomópontból kifolyó 

áramok erősségeinek összegével. 

Ha a csomópontba befolyó áramok erősségét negatív, a kifelé folyókét pedig pozitív előjellel 

látjuk el, akkor egy adott csomópontban az áramerősségek algebrai összege zérus: 

∑  
 

   

Kirchhoff II. törvénye (huroktörvény) 

E törvény tulajdonképpen az egyszerű áramkörre vonatkozó           Ohm-törvény 
általánosítása tetszőleges számú feszültségforrást és fogyasztót tartalmazó összetett áramkör-

re. 

A huroktörvény szerint bármely egyenáramú körben az    fogyasztói ellenállásokra jutó     

feszültségek és az    belső ellenállásokra jutó     feszültségek összege egyenlő a körben 

levő feszültségforrások   elektromotoros feszültségeinek összegével: 

∑    ∑    ∑  
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12.) Időben állandó és változó mágneses erőterek 

Mágneses alapjelenségek 

Könyörgöm, ide most tényleg azt kell írni, hogy Magnesia városának pásztorai utálták azokat 

a köveket, amik hozzáragadtak a pásztorbothoz? 

Oersted-kísérlete 

Az elektromos és a mágneses jelenségek között először Hans Oersted dán fizikusnak és kémi-

kusnak sikerült kapcsolatot teremtenie 1820-ban. Kimutatta, hogy az elektromos áramot szál-

lító vezető közelébe vitt mágnestűre ugyanúgy, mint a permanens mágnes mágneses mezőjé-

ben erőnyomaték hat és ennek következtében eredeti észak-déli irányából kitér. E kísérleti 

tapasztalatból arra következtethetünk, hogy az elektromos áramnak mint mozgó töltésnek 

mágneses mezője van. Ez a mágneses mező nemcsak a mágnestűre, hanem az áramtekercsre 

is képes erőnyomatékot gyakorolni, az áramvezetőre és a mozgó töltésre erőt kifejteni. 

Erőhatás mágneses térben (Lorentz-erő) 

Az        mágneses erő megnyilvánulásának négy speciális, de gyakorlatilag fontos 
esetét vizsgáljuk. 

a) Ha a ponttöltés a mágneses mezőben nyugszik, vagyis    , akkor mágneses erő nem hat 

rá. 

b) Ugyancsak zérus a Lorentz-erő akkor, ha a ponttöltés   sebessége a   vektorral párhuza-
mos. 

c) Ha a Q ponttöltés   sebessége a   indukcióra merőleges, akkor a ponttöltésre ható   mág-

neses erő nagysága    , iránya pedig merőleges  -re is, meg  -re is. Mivel a  -re merőleges 

 -nek   irányába eső komponense zérus, ezért a mágneses erő a ponttöltés sebességének csak 

az irányát tudja megváltoztatni. Ennek következtében a ponttöltés   sugarú pályán egyenletes 

körmozgást végez. A körmozgáshoz szükséges       centripetális erőt a     mágneses erő 

szolgáltatja. 

 
  

 
     

Innen a ponttöltés pályájának sugara: 

  
  

  
 

d) Ha homogén mágneses mezőben a ponttöltés   sebessége a  -vektorral tetszőleges   szö-

get zár be, akkor a mozgás leírására célszerű a   sebességet felbontani egy  -re merőleges    

és egy vele párhuzamos    komponensre. 

A  -re merőleges    komponens folytán a ponttöltés (pl. proton, elektron) pályájának    sík-
ba eső vetülete 

  
   

  
 

sugarú körpálya, amelyet 
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idő alatt fut be, és ez az idő független a ponttöltés sebességétől. A  -vel azonos (vagy ellenté-

tes) irányú    sebességkomponenst viszont a mágneses mező megváltoztatni nem tudja, ezért 

a ponttöltés pályájának   irányú vetülete  -vel megegyező (vagy ellentétes) irányú egyenletes 

mozgást végez. A két mozgás eredője csavarvonalon történő mozgás lesz, amelynek menet-

emelkedése: 

           
 

  
 

Töltött részecskék mozgása mágneses térben 

Mágneses eltérítés, ciklotron 

Ez mind ott van fönt, kivéve a ciklotront, ami a füzetemben van, de majd ide lesz írva valami-

kor (SOHA!) 

Áramvezetőre ható erő 

Egyenes áramvezetőre ható erő mágneses mezőben 

        

 

 

 

     
    

  ∑      ∫      

Mágneses dipólusra ható forgatónyomaték 

 

 

 

 

 

 

 

Gerjesztési törvény és alkalmazásai 

 

  

otthon
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13.) Maxwell egyenletek 
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