VARTERESZ MAGDA

Mesterséges intelligencia 2
el6adasok

2006/07-es tanév



Tartalomjegyzék

1. Logikai kalkulusok

2. A predikatumkalkulus
2. 1. A természetes levezetes . . . . . .

3. Formulak normalformai
3.1. Kvantormentes formulak normélformai . . . . . . . . . . ...
3.2. Kvantoros formulak prenex alakja . . . . . . . ...
3.2.1. A prenex-konjunktiv vagy prenex-diszjunktiv normélalakra hozas algoritmusa . . . . . . . . . . ... ... ..
3.3. Skolem-normalforma . . . . . . .. L
3.3.1. Prenexformula ,atirdsa” univerzalis Skolem-formaba . . . . . . . . . . ... ... L
3.4. Klozok, Horn-klozok . . . . . . . .
3.4.1. Horn-Kklozok . . . . . . .

4. Termhelyettesités
4.1. Illeszts helyettesités . . . . . . . L L
4.1.1. Ilesztd algoritmus . . . . . . . . oL e

5. A rezolucios kalkulus

5.1. Rezolucio az itéletlogikdban . . . . . . . . L L
5.1.1. Rezolucios stratégiak . . . . . . . . o
5.2. A Herbrand-univerzum és az elsérendd klozhalmazok . . . . . . . . . .



Tartalomjegyzék

Tartalomjegyzék
5.2.1. A Herbrand-univerzum elGallitasa . . . . . . . . . . . . . . e 86
5.3. A rezoluciés kalkulus az elsérendt logikédban . . . . . . . . ... 104
5.3.1. Rezolucids levezetési stratégiak . . . . . . . ..o 122
6. A tablok modszere — tablokalkulus 126
6.1. Jelolt tablo az itéletlogikaban . . . . . . . Lo 126

6.2. Az elsrendd table . . . . . 139



1. fejezet

Logikai kalkulusok

Felépithetd a logika szemantikal fogalmakra hivatkozas nélkiil is:

szintaktika szemantika
logikai nyelv mmterpretacio
formula logikai érték
levezethet6ség | kovetkezmény

A levezethetdség togalméat kalkulus megadéasaval definidlhatjuk.



1. Logikai kalkulusok

Egy kalkulus megadéasakor telsoroljuk az
e alapformulait és a
e levezetési szabalyait.

Ekkor definidlhato a levezethetéség fogalma. Egy I' formulahalmaz-
bol levezethets a B formula (jelolése: T'' = B)

e ha B alaptormula, vagy B € I,

e illetve ha van olyan levezetési szabaly, mely B-t eldallitja, és
az(ok) a formula(ak), amely(ek)bdl ez a levezetési szabaly B-t
elGallitja, az(ok) I-bol levezethetd(ek).



1. Logikai kalkulusok

Egy kalkulus helyes, ha I' = B, akkor I' = B.

Egy kalkulus teljes, ha I' = B, akkor I' - B.
ey kalkulus adekvat, ha helyes is, teljes is.

Fey logikai rendszer megalkotéasakor
e clGsz0r egy szemantikai rendszert definialunk,

e majd megkisérliink ehhez legalabb helyes, de ha lehet, adekvat
logikal kalkulust szerkeszteni.



2. fejezet

A predikdatumkalkulus

Alapsémaék:

1.AD(BDA)

2. (AD(BDC)D(ADB)D(ADC0))
3.AD(BDAANDB)

4 ANBDA

5, ANBDB

6. ADC)D((BDC)D(AVBDC(O))
.ADAVDEB



2. A predikdtumkalkulus

8. BDAVEB

9.(AD> B) D ((AD-B) D —A)

10.-—AD A

11. Vo A(z) D A(z)f

12.Vz(C' D A(z)) D (C D VzA(x)), = & Fv(C)
13. A(z)} D dzA(z)

14. Vo (A(x) D C) D (IzA(x) D C), = & Fv(C)

Levezetési szabalyok:

A ADB
B

A
VoA

modus ponens

altalanositasi szabaly



2. A predikatumkalkulus

A séméakban és szabalyokban az
o A, B, C formulakkal;
e 1 valtozoval;
e t x-szel azonos tipusu termmel

helyettesithetd be. Az alapsémékbol igy alapformulakat kapunk.

Lemma.
A predikatumkalkulus minden alapformuléja logikai torvény.

Lemma.

AJADBEDB

Lemma.

Ha ' = A(x) és x € Par('), akkor I' = Vz A(x).



2. A predikdtumkalkulus

2.1. DEFINICIO. (FORMULA-FA ES MAGASSAGA)
e Minden A formula 1 magassagt formula-fa, melyben A alsé for-
mula, és nincs nala feljebb levé formula;

e Ha D1 my, Dy mo magassagi olyan formula-fak, melyben az also
formulak A és A D B, akkor
D1 Do
B
is formula-fa B als6 formulaval; B-nél Dy és Do minden formulaja
feljebb van; a formula-fa magassdga max {my, ma} + 1;

e ha D m magassagi olyan formula-fa, amelyben az als6 formula

A, akkor a
D

VoA

alakzat is formula-fa, melyben Vx A alsé formula, melynél D min-
den formulaja feljebb van, és a formula-fa magassaga m + 1.



2. A predikatumkalkulus

A formulataban azon formulak, melyeknél nincs feljebb levé:
e alapformulak,
e hipotézisek, vagy nyilt premisszak.

Példa.

Q(x) D P
Ve(Q(x) D P) Ve(Q(z) D P) D (F=Q(x) D P)

JzQ(x) D P

3 magassagu formulafa

als6 formula: JxQ(x) O P

alapformula: Vx(Q(x) D P) D (FxQ(z) D P)
hipotézis: Q(x) D P



2. A predikdtumkalkulus

2.2. DEFINICIO. Levezetés-fa egy formula-fa, melyben ha A-bol
az altalanositas szabalyaval akarjuk a VxA-t nyerni, akkor  nem
paraméter egyetlen a Vax A-nal feljebb levé hipotézisben sem.

2.3. DEFINICIO. A T" formulahalmazbdl a B formula levezethetd,
ha keészithetd olyan levezetés-fa, melyben B alsé formula, és a hi-
potésisek mind elemei I'-nak.

Jelolése: T+ B (szekvencia)
2.4. TETEL. A predikiatumkalkulus adekvat logikai kalkulus.



2. A predikatumkalkulus

2.5. TETEL. (HELYESSEG.) HaI' - B, akkor I' = B.

BIZONYITAS. A I' = B szekvenciat megalapozd levezetéstfa ma-
gassaga szerinti indukcioval bizonyitunk. Legyen a levezetésta ma-
cassaga k.

e £ =1 esetén
—vagy axioma B, ekkor = B, igy nyilvan I' = B is.
—vagy B € I', azaz hipotézis, ekkor minden olyan interpreta-

cioban és valtozokiértékelés mellett, amikor minden hipotézis
igaz, nyilvin B is igaz, tehat I' = B.

e Az indukcios feltevéstink szerint legyen igaz az allitds minden n-
nél nem magasabb formulafa esetén.



2. A predikdtumkalkulus

e Legyen most K = n+ 1. Haa ' = B szekvenciat megalapozo
formulafat

—a modus ponens levezetési szaballyal nyertiik

al'FAésT'H A D B szekvencidkat megalapozo, legfeljebb
n magassagi levezetéstakbol. Az indukcids feltevés miatt ek-
kor igaz az allitas, tehat ' = A és I' = A D B. De minden
olyan interpretacioban és valtozokiértékelés mellett, amikor a
['-beli hipotézisek mind igazak, ezek szerint igazak ezen inter-
pretaciokban és valtozokiértékelések mellett az A ésaz A DO B
formula is, igy a B formula is. Tehat I' = B is.



2. A predikatumkalkulus

—az altalanositas szabalyaval nyertiik, B tehat Vx A(x) alak.
Az n magassagi levezetésta, amibdl nyertiik, a I' = A szekven-
ciat alapozza meg, ahol © & Par(I'). Az indukcios feltevés mi-
att ekkor igaz az allités, tehat I' = A(x). De minden olyan in-
terpretacioban és valtozokiértékelés mellett, amikor a I'-beli hi-
potézisek mind igazak, ezek szerint igaz ezen interpretaciokban
¢s valtozokiértékelések mellett az A(x) is. Mivel x & Par(I'),
minden ilyen valtozokiértékelés minden x-variansa mellett is
igazak a hipotézisek, igy az A(x) is, tehat a Ve A(x) is. Ezért
[ =VzA(x).



2.1. A természetes levezetés

2. A predikidtumkalkulus

2.1. A természetes levezetés

Az azonossag torvénye
Struktiralis szabalyok
bovités

- A
[BF A

felcserélés

[ B.C,AF A

I.C.B.AF A

DAFA

szikités

[.B,B.AFA

[BAFA

vagas

A AAFB

I.AF B



2. A predikatumkalkulus 2.1. A természetes levezetés

Logikai szabalyok
BEVEZETES ELTAVOLITAS

implikacio

I'VAFB I'FA I'FADB
I'FADB I'FB
konjunkcio

A T'B T,ABFC
-AAB D.AABFC

diszjunkcio
' A NAFC TI'BEC
I'AV B INVAVBEC
I'-B

I'AV B



2.1. A természetes levezetés

2. A predikidtumkalkulus

BEVEZETES

negaclo

IAFB I,AF =B

['F-A

ekvivalencia

'AFB I'BFA
I'FA=RB

ELTAVOLITAS

[ A

I'—A

I'FA T'HFA=DB

' B
I'B I'FA=2EHB

' A



2. A predikatumkalkulus 2.1. A természetes levezetés

BEVEZETES ELTAVOLITAS

univerzalis kvantor

['F A(x)
['FVxA(x) (x ¢ Par(I'))

['FVzA(x)
[ A(z)y

cgzisztencialis kvantor
['= A(x)f ['A(x) - B
['FdzA(x) [ dzA(x) - B

(x & Par(L))



2.1. A természetes levezetés 2. A predikatumkalkulus

2.6. TETEL. (DEDUKCIO-TETEL.)
Hal'AF B, akkorI'F A D B.

BIZONYITAS. A I, A - B szekvenciat megalapozd levezetésta ma-
cassaga szerintl indukcioval bizonyitunk. Legyen a levezetésta ma-
gassaga k.

e k = 1 esetén

—vagy axioma B, vagy B € I', ekkor
B B D> (A D B)

)

ADB

ey ' A D B.
—vagy B =A. De ekkor H A D A.

e Az indukcits feltevéstink szerint legyen igaz az allitas minden n-
nél nem magasabb formulafa esetén.



2. A predikatumkalkulus 2.1. A természetes levezetés

e Legyen most k =n+1. Haal,AF B szekvenciat megalapozo
formulafat

—a modus ponens levezetési szaballyal nyertiik
alVAF CéI,AF C DO B szekvenciakat megalapozo,
legteljebb n magassagi levezetéstakbol. Az indukcios felteveés
miatt ekkor igaz az allitas, tehat

'FADCé&T'HFAD(CDB)
I’

[’ :

. AD((CDB);; (AD((CDODB)D(ADC)D(ADB))

AiC ; (ADC)D(ADB)

ADB
Tehat ' A D B.



2.1. A természetes levezetés 2. A predikatumkalkulus

—az altalanositas szabalyaval nyertiik, B tehat VaC'(x) alaki.
Az n magassagn levezetésfa, amibdl nyertiik, a I'y A F C(x)
szekvenciat alapozza meg, ahol x € Par(I'; A). Az indukcios
feltevés miatt ekkor igaz az allités, tehat I' = A D C(x).

[

AD 5C’(:L’)

Vr(A D C(x)) D (A D Vxl(x)) Vr(A D C(x))

A D VaC(x)
Tehat I' = A D VaCl(x).



3. fejezet

Formulak normalformai

3.1. Kvantormentes formuldk normalformai

e [ioy atomi formulat vagy negaltjat literalnak fogjuk nevezni.
e [llemi konjunkci6

1. egy literal,

2. vagy egy elemi konjunkeio és egy literal konjunkcioja;
e Ellemi diszjunkcid

1. egy literal,

2. vagy egy elemi diszjunkci6 és egy literal diszjunkcioja.

23



3.1. Kvantormentes formulak normalformai 3. Formulak normalformai

e Konjunktiv normalforma

1. egy elemi diszjunkcio,
2. vagy egy konjunktiv norméalforma ¢és egy elemi diszjunkcio kon-
junkcidja.
e Diszjunktiv normalforma
1. egy elemi konjunkcio,
2. vagy egy diszjunktiv norméalforma és egy elemi konjunkcio disz-

junkcioja.

Lemma.
Az els6rendid logikal nyelv minden kvantormentes formulajahoz
konstrualhato vele logikailag ekvivalens konjunktiv és diszjunktiv

normalforma.



3. Formulak normalformai

3.1. Kvantormentes formulak normalformai

Kétszeres tagadas:

De Morgan torvényei:

Disztributivitas:



3.1. Kvantormentes formulak normalformai 3. Formulak normalformai

A konstrukeio lépései:
1. a logikai jelek kozotti oOsszetiiggések alapjan az implikaciokat el-
tavolitjuk;
2. De Morgan torvényeivel elérjiik, hogy negacio csak atomokra vo-

natkozzon;

3. a disztributivitast felhasznélva elérjiik, hogy a konjunkciok és
diszjunkciok megtelel§ sorrendben kovessék egymaést:

4. esetleg egyszertsitiink.



3. Formulak normalformai 3.1. Kvantormentes formulak normalformai

Példa.

(AD B)V (=B D>AV-C)
| implikéacio-eltavolitas
(mAV B)V (mBAN=(AV=(C))
| negacié atomokra vonatkozik
(mAV B)V (mBAN-ANANC)
| konjunkciok diszjunkcioja
(WAV BV -=B)A(mAV BV -A)A(-AV BV ()

| egyszeriisités
(wAV B)A(=AV BV (C)
| egyszertsités
-AV B



3.2. Kvantoros formulak prenex alakja 3. Formulak normalformai

3.2. Kvantoros formuldk prenex alakja

Egy Q1z1Q9xo ... QnapnA (n > 0) alaka formulat, ahol a A kvan-
tormentes formula, prenex alakt formulanak neveziink.

Példa.

AVavy(P(z,y) D -Q(x)), a JaVy(P(z,y) vV Rz, 2)), a =P(x, z)
formulak prenexformulak, viszont a VaVyP(x,y) D —Q(x) formula
nem prenexformula.

Lemma.
Eey elsérendi logikai nyelv tetszéleges formuldjahoz konstrualhato
vele logikailag ekvivalens prenex alakt formula.



3. Formulidk normalformai 3.2. Kvantoros formulak prenex alakja

De Morgan kvantoros torvényei (1) =VxA ~ dx—A
(2) mdxA ~ Var-A
Kvantorok kétoldali kiemelése valtozotisztasag
(3) Ve A AVYyB ~ Vz(A A B(yl||x))
(4) JzAV JyB ~ Jx(AV B(yl||x))
Kvantorok egyoldali kiemelése valtozotisztasag
(5) QrANB ~ Qr(AN B)
(6) QrAV B ~ Qz(AV B)



3.2. Kvantoros formulak prenex alakja 3. Formulak normalformai

A konstrukeio lépései:
1. valtozo-tiszta alakra hozzuk a formulat;

2. alkalmazzuk De Morgan kvantoros és a kvantorkiemelésre vonat-
koz6 logikal torvényeket.

Peélda.
VeP(x) D -3zQ(x)

| valtozo-tiszta alakra hozas

Ve P(x) D =3JyQ(y)

| egyoldali kvantorkiemelés
Vo P(z) D Vy—Q(y)

)
Jz(P(x) O Vy—=Q(y))
J2Vy(P(r) D =Q(y))



3. Formulidk normalformai 3.2. Kvantoros formulak prenex alakja

3.2.1. A prenex-konjunktiv vagy prenex-diszjunktiv normalalakra hozas algoritmusa

1. Az implikaciok helyére a logikai jelek kozotti osszetliggések alapjan
veltik ekvivalens implikaciot nem tartamazo formulakat irunk.

2. A kétszeres tagadas és De Morgan torvényeit alkalmazzuk a for-
mulaban szereplé negaciokra addig, amig minden negacié hatés-
kore atomi formula nem lesz.

3. Az igy nyert formuldhoz vele kongruens (logikailag ekvivalens)
valtozoiban tiszta formulat konstrualunk.

4. A kvantorkiemelésre vonatkozo ekvivalenciakat alkalmazzuk ad-
dig, amig az Osszes kvantor a formula elé nem keriil. Ezzel a
formulat prenexalakra hoztuk.

5. Prenex-konjunktiv, illetve prenex-diszjunktiv normalformula el6-
allitasahoz a kapott prenextormula magjat a disztributivitast al-
kalmazva konjunktiv, illetve diszjunktiv norméalforméara hozzuk.



3.2. Kvantoros formulak prenex alakja 3. Formulak normalformai

Példa. Hozzuk a
Ve (VyP(z, y)AJy—(Q(y) D P(z,a))) D ~VaIy(P(y,z) D R(z,y))

formulat prenexalakra.

1. Az implikaciok atirasa:
~(Va(Vy Pz, y) Ay (Q(y)A~P(z,a))))V-VaeIy(=P(y, x)VR(z,y)).
2. A kétszeres tagadas és De Morgan torvényeinek alkalmazésa:

Jz(Jy—P(x, y)VVy(=Q(y)VP(z,a)))VIxVy(P(y, x)\=R(z,y)).

3. Az egzisztencialis kvantor kétoldali kiemelésére vonatkozo ekvi-
valencia alkalmazasa:

Ju(Jy—P(z,y)VVy(-Q(y)V Pz, a)) VVy(P(y, x) A\~ R(2,y))).

4. A formuldban az y valtoz6é harom prefixumban is meg van ne-
vezve. Két helyen a kotott valtozokat szabalyosan atnevezzik a



3. Formulidk normalformai 3.2. Kvantoros formulak prenex alakja

formulaban még nem szereplé y; és yo valtozokra:

Jz(Jy—P(x, y)VVy1 (-Q(y1)VP(z, a))VVya (P(y2, T) A= R(z, y2)))-

5. Ezutan méar mindegyik kvantor kiemelhets (tetszéleges sorrend-
ben), egy lehetséges eredmény:

Fx Yy 1Yy (— P (2, y)V(=Q(y1)V P(z, a))V(P(y2, ) A2 R(x, ).

6. A formula magja diszjunktiv normalforma, de a disztribucio fel-
hasznalasaval atirhato konjunktiv normalformaba, ha az a tovabbi
feldolgozas szempontjabol gy célszert:

JrIyviy V(= P(z,y) vV =Q(y1) V P(z,a) V P(y2,x)) A
A (=P(x,y) V =Q(y1) V P(x,a) V ~R(z,19))).



3.3. Skolem-normalforma 3. Formulak normalformai

3.3. Skolem-normalforma

A VaVy(P(x,y) D =Q(x)) prenexformula prefixumaban csak uni-
verzalis kvantorok vannak. Az ilyen, azaz Vx1Vxy...Vr,A alaku
formulak fontosak lesznek a tovabbiakban.

Univerzdlis Skolem-formuldnak nevezzilk az olyan prenexformulat,
amelynek a prefixumaban csak univerzalis kvantor szerepel. Ha a
Skolem-formula magja konjunktiv normalforma, akkor a formulat
Skolem-normdlformdnak nevezziik.

Tétel.
Tetszbleges A els6rendi formulahoz konstrualhato olyan univerzalis

Skolem-formula, mely pontosan akkor kielégithetetlen, ha A kielégi-
thetetlen.



3. Formulak normalformai 3.3. Skolem-normalforma

3.3.1. Prenexformula ,atirdsa” univerzalis Skolem-formaba

1. Uj Skolem-szimbolumok bevezetése:

Vizsgaljuk meg a
VxN:CQ .. .ij_lﬂijj+1£Ijj+1 ce QnajnA

prenextformuléat, amelynek a prefixuméabol az egzisztencialis kvan-
torokat eliminalni szeretnénk. Legyen a prefixumban az elsé eg-
zisztencialis kvantor a prefixum j-edik kvantora.

— Ha 5 = 1, akkor minden olyan interpretacioban és xk valto-
zokiértékelés esetén, amely mellett a formula igaz, az inter-
pretacio Z/lﬂxl univerzumaban van legalabb egy u € Z/lﬂxl, hogy
k*(x1) = u mellett a Qoxy ... QnrnA formula igaz lesz. Ezt
az elemet Skolem-konstansnak nevezzik.



3.3. Skolem-normalforma 3. Formulak normalformai

Bovitstik ki az elsérendd nyelvinket egy 0j 7y, fajta s konst-
ansszimbolummal, mely az egyes interpretaciok univerzumai-
ban rendre egy-egy Skolem-konstanst — ha egyaltalan van ilyen
— nevez meg.

— Legyen most 5 > 1. Egy Z interpretacioban valamely s valto-
zokiértékelés mellett a

\V/$1V$2 .. .ij_laijj+1£Cj+1 ce annA

formula pontosan akkor igaz, ha k-ban az xy, x9, ..., 2,1 val-
tozokhoz barmilyen mas — az interpretacio megtelel6 univerzu-
maibol vett — elemet rendelve mindig van legalabb egy elem
Ur, -ben, amellyel pedig az x; valtozot értékelve az igy nyert
valtozokiértekelés mellett a dx; hataskore igaz.



3. Formulak normalformai 3.3. Skolem-normalforma

Azaz minden (up,ug,...,uj_1) € Uy, X ... X L{ij_l elem
/

7 — l-eshez tartozik legalabb egy u € U?ija hogy Kk azon K

variansa mellett, melyre

U; ha x € {xl,ajg,...,ij_l},

K(z)=4q u haz=uzj,

k() egyébkeént,

a Jx; hataskore igaz lesz. Legyen
7.
J7i Uy, XX Z/l%j_1 — Z/l%j

egy fliggvény, amely minden (uy, ug, . . . ,uj_l)—hez egy ilyen u
értéket rendel. Ezt a tiigevényt Skolem-fiigguénynek nevezziik.
Bévitsiik ki az elsérendi nyelviinket egy 4j f (g, . . ., T 1 ij)
alakt tiiggvényszimbolummal. A kibévitett nyelv interpretalasa
soran f-et, ha van Skolem-tiiggvény, Skolem-fliggvénnyel inter-
pretaljuk.



3.3. Skolem-normalforma 3. Formulak normalformai

2. Kvantoreliminalasi lépés:

Ezutan a prefixumbol elhagyjuk a dr;-t, és a formula magja-
ban elvégezziik az (z; || s), illetve az (z; || f(z1,20,...,2;-1))
termhelyettesitést. A kapott

Q279 ... QnrnAlxy || ),
illetve
\V/CCl\V/SCQ .. .\V/Ij_le+1a}j+1 c e annA<x] H f(:ljl, LYy oo 7$j—1)>

formula az eredeti formulaban szerepld elsé egzisztencialis kvan-
tort mar nem tartalmazza.



3. Formulak normalformai 3.3. Skolem-normalforma

Megmutatjuk, hogy ezzel a lépéssel az eredeti formuléaval a kielégit-
hetdség szempontjabol egyenértéki formulat kaptunk.

(a) Egyrészt minden olyan interpretacioban, amelyben az eredeti
formula valamely valtozokiértékelés mellett igaz volt, az 1]
fliggvényszimbolumot (konstansszimbolumot) interpretalhatjuk
egy Skolem-fiiggvénnyel (Skolem-konstanssal) gy, hogy a val-
tozokiértékelés mellett igaz lesz az atalakitott formula is.

(b) Ha pedig az eredeti formula minden interpretacioban, minden
valtozokiértékelés mellett hamis volt, azaz kielégithetetlen, ak-
kor az atalakitott formula is az lesz, mivel ekkor nincs Skolem-
fligevény (konstans) egyetlen interpretald struktiaraban sem.

3. Az 1j Skolem-szimbolumok bevezetésének és a kvantoreliminalas-
nak a lépéseit végrehajtjuk a soron kovetkezo egzisztencialis kvan-
torra, amig minden egzisztencialis kvantort nem eliminaltunk.



3.3. Skolem-normalforma 3. Formulak normalformai

Példa. Irjuk at Skolem-normélforméba a

JrIyVy Vo (=P (z,y) V —~Q(y1) V Pz, a) V P(ya,x)) A
A (=P(z,y) VvV =Qy1) V P(x,a) V ~R(x,12)))
prenex-konjunktiv formulat. A két egzisztencidlis kvantor a prefi-

xum elsé két kvantora, ezért két Skolem-konstanst kell bevezetniink.
Jeloljiik az a-tol kiilonbozo két G konstanst s; és so-vel.

Yy1Vy2((—P(s1,52) V =Q(y1) V P(s1,a) V P(y2,51)) A
A (= P(s1,82) V=Q(y1) V P(s1,a) V = R(s1,42))).



3. Formulidk normalformai 3.4. Klé6zok, Horn-klézok

3.4. Kloézok, Horn-kl6zok

Az itéletlogikaban az elemi diszjunkciot kloznak is nevezik.
Az elsérendd kloz pedig egy olyan zart univerzalis Skolem-formula.,
amelynek a magja elemi diszjunkcio.

ey Skolem-norméalforma magja egy konjunktiv normaéalforma.

Ha egy zart K Skolem-normalformara ,yvisszafel¢” alkalmazzuk a
konjunkciora vonatkozo kétoldali kvantorkiemelési szabalyt, akkor
elsérendd klozok konjunkciojat kapjuk. Legyen S ezen klozok hal-
maza.

Tétel.
Legyen K egy zart Skolem-normalforma, S pedig a K magjabol

nyert elsérendid klozoknak a halmaza. K pontosan akkor kielégithe-
tetlen, ha S kielégithetetlen.



3.4. Klézok, Horn-kl6zok 3. Formulak normalformai

Példa. Az el6z6 példaban kapott Skolem-norméalforméaban alkalmaz-
zuk a kvantorkiemelésre vonatkozo ekvivalenciat |visszatelé™

Vy1Vy2 (= P(s1,52) V =Q(y1) V P(s1,a) V P(y2,51)) A
AV Vya(—P(s1,52) V ~Q(y1) V P(s1,a) V ~R(s1,12)).

Hozzuk a formulat valtozoiban tiszta alakra:

Yy Vyo (=P (s1, 52) V =Q(y1) V P(s1,a) V P(y2, 51)) A
AVzVro(—P(s1,59) V -Q(x1)V P(s1,a) V= R(s1,x2)).

Mivel egy elsérend kloz minden valtozoja univerzalisan kvantalt, az
els6rendi klozhalmazokban a klozok prefixumait (helykimélési céllal)
nem tintetjiik fel. Tehat a fenti elsérendd klozhalmazt igy adjuk
meg:

{ —P(s1,s9) V=Q(y1) V P(s1,a)V P(y, s1),
—P(s1,50) V 2Q(z1) V P(s1,a) V ~R(s1,22) }.



3. Formulidk normalformai 3.4. Klé6zok, Horn-klézok

Példa. Irjuk at Skolem-normélforméba a
Vedy3z((-P(z,y) A Q(z, 2)) V R(z,y, 2))

prenexformulat. Eldszor irjuk at a formula magjat konjunktiv nor-
malformaba:

Vr3y3z((=P(z,y) V R(z,y,2)) A (Q(z,2) V R(,y, 2))).
A Skolem-tiiggvények egyvaltozosak, vezessiink be az elsérendi nyelvbe
jeloléstikre két 1j figgvényszimbolumot: f-et és g-t. A Skolem-
normalforma:
Va((=P(z, f(x))VR(z, f(z), 9(x))MQ(z, g(x))VE(z, f(x), g(x)))).
Elsérendi klozok konjunkciojaként felirva a formulat:
Va(=P(z, f(x))VR(z, f(x), 9(x)))AVe(Q(z, g(x))VR(z, f(z), g(x))).

A valtozoiban tiszta elsérendi klozhalmaz pedig:

{ =Pz, f(x))V R(z, f(x),9(x)), Qly,9(y)V R(y, f(v),9(y)) }.



3.4. Klézok, Horn-kl6zok 3. Formulak normalformai

3.4.1. Horn-kl6zok

A Horn-klozok olyan klozok, melyekben legteljebb egy pozitiv literal
van.

o tény: A
e szabaly: = ByV-ByVv...V-B,V A
octl: "B1V-ByV...VBy,

Tehat a Horn-klozok olyan univeralisan kvantalt zart formulak, me-
lyek magja a szabalyok esetén

BiNByAN...NB, DA,

cél esetén pedig
—~(B{ANByA ...\ Bp)

alakban 1s irhato.



4. fejezet

Termhelyettesités

Egy olyan fiiggvényt, amely az elsérend nyelv véges sok valtozéjan
van értelmezve és minden valtozohoz a valtozo tajtajaval megegyezd
fajtaju termet rendel, termhelyettesitésnek neveziink. Ures a term-
helyettesités, ha az értelmezési tartomanya tires.

Legyen Dom(0) = {xi,x9,...,21} és O(x;) = t; minden ¢ =
1,2,...,kra(k>1). 6-t megadhatjuk tablazattal:

o — X1 xro ... Ik
o\t ty .t
vagy felsorolassal:

— (517175527~-axk H tl,t27-~atk>
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4. Termbhelyettesités

0_, jelolje azt a termhelyettesitést, melyre Dom(6_;) = Dom(8) \
{x} és minden z € Dom(0_;) esetén 0_,(z) = 0(z2).

Legyen 6 tetsz6leges termhelyettesiteés.

1. Ha ¢ € Chnst, akkor (cf) = c.

xr, hax ¢ Dom(0)
f(x), ha x € Dom(#)
3. (f(t1, b2, ..., t)0) = [((£10), (220), ..., (tx0))
4. (P(ty,to,...,t1.)0) = P((t10), (t20), ..., (t1.0))
5. (mAf) = —(Af).
6. (
7

2. Ha x valtozo, akkor (z6) = {

((Ao B)f) = ((Af) o (B#)), ahol o binér logikai tsszekitdjel.
(QrAf) = Qx(AO_;), ahol @) kvantor.



4. Termbhelyettesités

A 0 termhelyettesités megengedett a K kifejezés szamdra, ha minden
r € Dom(#) esetén x minden K-beli szabad el6fordulasa kiviil esik
a O(x) term valamennyi valtozojat megnevezd kvantor hataskorén.

1. Termek és atomi formulak szaméara minden termhelyettesités me-
gengedett.

2. 0 A szamara egy termhelyettesités megengedett, ha megengedett
A szamara.

3. (A o B) szaméara egy termhelyettesités megengedett, ha megen-
cedett A és B szamara is.

4. Qr A szamara egy 6 termhelyettesités megengedett, ha

(a) egyetlen z € Par(QrA) N Dom(0) valtozd esetén sem fordul
el§ x a 6(z) termben,

(b) O_z pedig megengedett A szaméra.



4. Termbhelyettesités

Peélda.
AVZR(z, f(x,2)) D JzQ(x, f(x, 2

)
(0 )

termhelyettesités megengedett, az

(00 i)

termhelyettesités pedig nem megengedett, mert a helyettesitendd
szabad el6fordulasi x az x-et kotd 4 hataskorében van, és a helyére
befrandd f(x,y) termben is elSfordul az x valtozo.

) formula szamara az



4. Termbhelyettesités

Legyen K egy Kkifejezés és 6 egy termhelyettesités. Konstrualjunk
meg egy K-val kongruens olyan K’ formulat, amely szaméra 6 me-

gengedett. Ekkor a (K'0) kifejezés a 0 termhelyettesités K-ban vald
szabdlyos végrehajgtdasanak eredménye. Jeldlése: [K6).

1. Ha K term vagy atomi formula, akkor [K6] = (K6).

2. [0 A0 = —|AF)

3. [(Ao B)f] = (|Af] o | BA))

4(a) Ha egyetlen z € Par(QzA) N Dom(8) valtozo esetén sem for-

dul elg a 6(z) termben x, akkor |[QrAf] = Qu|A0_,).

(b) Ha van olyan z € Par(QxA) N Dom(#) véltozd, hogy x pa-
raméter 6(z)-ben, akkor vilasszunk egy 14j valtozot — példaul
u-t —, mely nem fordul el sem QxA-ban, sem Rng(8) termjei-
ben, és

QrAl] = QulA(x || u)f—_z].



4. Termbhelyettesités

Peélda.
AVZR(Z, f(x,z)) D JzQ(x, f(x,z)) formulaban az

(00 i)

termhelyettesités szabalyos végrehajtasanak eredménye a

VIR(Z, f(y,2)) D F2Qz, f(2, f(z,7)))

formula.



4. Termbhelyettesités

Legyenek

I R T 7 N A /)
9(?51 tQ...tk) o (81 82...Sg>

egy nyelv termhelyettesitései. 6 és n kompoziciojin a

<(977><(:C1 L2 oo Tk Yy yZQy’L]>

tin) (tan) ... (tgn) sip Siy --- Si;
termhelyettesitést értjik, ahol
Uiy, Yins - -9} = Dom() \ Dom(6).



4. Termbhelyettesités

Példa.
Legyenek

Ty X , TYyYry 2z
6 = . és m = - N
(z/aerx,y)> ! (CfZ'y z fCrwt)>
LP1 termhelyettesitésel. Ekkor

[Ty oy Z
(On) = (z c fle,T) X f(x,@)

m@_<xyi y z )

czy flz,9) fly, [(z,9))

A példa mutatja, hogy a kompozicié mivelete egy nyelv termhelyet-
tesitéseinek halmazan nem kommutativ.

és



4. Termbhelyettesités

Lemma.
Legyenek 6 ¢és n egy nyelv termhelyettesitései. Ekkor tetszdleges ¢

term esetén
(£(0n)) = ((t0)n).

Tétel.

Fey elsérendt logikai nyelv tetszdleges 6, n és ( termhelyettesitései
esetén

(1) ((0n)C) = (8(n¢)) (a kompozicid asszociativ)
(2) s =<6 =0 (e neuralis elem)

Azaz a kompozicio miiveletével a termhelyettesitések halmaza neut-
ralis elemmel rendelkezd télcsoport.



4. Termbhelyettesités

Legyenek 6 és n termhelyettesitések. Az n helyettesités dltaldnosabb
a 6 helyettesitésnél, ha van olyan A termhelyettesités, hogy 8 = nA.
Példa.

Az

" (f(g(afjh(zm g(h(z).b) hfx)) o <f<g<iay>> géj»b))

helyettesitések esetén n altalanosabb a 6 helyettesitésnél, mert

0 = n\, ahol
A= (i hé) h(Zx))

A relacio reflexiv és tranzitiv.



4. Termbhelyettesités 4.1. Illeszté helyettesités

4.1. Illesztd helyettesités

Legyen W = { Ay, Ag, ..., Ap} azonos predikitumszimbolumot tar-
talmazo atomi formulak legalabb kételemi véges halmaza. Az olyan
6 termhelyettesitést, amelyre az A6, A96, ..., A6 atomi formulék
rendre azonosak, W illesztd helyettesitésének nevezziik. W illesztd
helyettesitése W legdltaldnosabb illesztd helyettesitése, ha W minden
illeszt6 helyettesitésénél altalanosabb.

Példa.

A P(x, f(a,y)) és a P(b, z) atomoknak egy illesztd helyettesitése:

(v )

legaltalanosabb illeszté helyettesitése:

(:gf(;,y»



4.1. Illeszté helyettesités 4. Termbhelyettesités

Vizsgaljuk a W elemeit parhuzamosan, szimbolumonként balrol job-
bra haladva. Alljunk meg annél az elsé szimboélumnal, amelyik a W
nem minden atomi formulajaban egyforma. Emeljiik ki W minden
atomi formulajabol azt a résztermet, amely az ezen a pozicion lévo
szimbolummal kezdddik. E résztermek D halmazat a W dsszeférhe-
tetlenséqr halmazdnak nevezziik.

Példa.
Legyen

W ={P(z, f(y,2)), P(x,a), P(x,g(h(k(x))))}-

W osszetérhetetlenségi halmaza

D ={f(y,2), a, g(h(k(z)))}



4. Termbhelyettesités 4.1. Illeszté helyettesités

4.1.1. Illeszté algoritmus

lL.k:=0, Wp=W, o:=c¢.

2. Ha W}, egyetlen atomot tartalmaz, akkor sikeresen vége: o a
W legaltalanosabb illeszté helyettesitése. Egyébként hatarozzuk
meg W, Osszeférhetetlenségi halmazat: Dj-t.

3. Ha van Dg-ban olyan zj. individuumvaltozo és t;. term, hogy ;.
nem fordul el t;-ban, akkor a 4. lépéssel folytatjuk. Egyébként
sikerteleniil vége: W nem illeszthetd.

doopgr = oplay | tr), Wi = 1Al || t) [ A € Wyt (Meg:
jegyezziik, hogy Wi 1 ={Aop 1| A e W})

5.k :=k+1, és a 2. lépéssel folytatjuk.



4.1. Illeszté helyettesités 4. Termbhelyettesités

Tétel

Ha W egymaéashoz illeszthet6 atomi formulak véges, nemiires hal-
maza, akkor az illesztd algoritmus mindig a 2. 1épéssel fejezddik be,
és az utolso oy legaltalanosabb illeszt6 helyettesités lesz W-re.



4. Termbhelyettesités 4.1. Illeszté helyettesités

Példa.
Dontsiik el az illeszt6 algoritmussal, hogy illesztheték-e a

W ={P(a,z, f(g(y), Pz f(z), f(u)) }
halmaz atomi formulai egymashoz.
1. Wo =W,
2. Dy =Aa,z}.

3. z egy individuumvaltozo, a egy a z-t nem tartalmazo term.

o) = E.

doop:=oo(z |l a)=¢e(z | a)= (2] a)

Wi = { Pla,z, f(9(y)(z || a), P(z, f(2), f(u)(z || a) } =
= { Pla,z, f(9(y)), Pla, f(a), f(u)) }.

5.D1={z, f(a) }

6. x egy individuumvaltozo, f(a) egy az x-et nem tartalmazo term.



4.1. Illeszté helyettesités 4. Termbhelyettesités

.oy =01z || fla)) = (z | a)(z || fla)) = (2,2 || a, fla))

Wy = { P(a,=, f(g(y)))( | f(a)), P(a, f(a), f(u))(z || f(a))} =
= { P(a, f(a), f(g(y))), P(a, f(a), f(u)) }.

8. Dy ={g(y),u}.

9. u egy individuumvaltozo, g(y) egy az u-t nem tartalmazo term.

10. 03 := o(u || g(y)) = (2,2 || a, f(a))(u || g(y)) =
(z,z,u || a, f(a),g(y)).
W3 .= { P(a, f(a), flg)(u || 9(v)), Pla, f(a), f(u))(u| g(y)) } =
= { P(a, f(a), f(g(y))), Pla, f(a), (())}:
= { P(a, f(a), flg())) }.

11. Ws-ban egyetlen atom van, igy o3 a legaltalanosabb illeszt6 he-
lyettesités W-re.




4. Termbhelyettesités 4.1. Illeszté helyettesités

Példa.
Vizsgaljuk meg, hogy illeszthetSk-e egymashoz a

W =1{Q(f(a).g(x)). Qy,y) }

P

halmaz atomi formulai.
L. Wy =W, op:=c
2. Dy ={f(a),y}.

3. y egy individuumvaltozo, f(a) egy az y-t nem tartalmazo term.

dop:=ooly || fla) =<y || fla)) = (y |l fla)).
W= {Q(f(a),9@))(y || f(a), Qly,y)(y |l fla)) } =
= {Q(f(a), 9(x)), Q(f(a), f(a)) }.
5. Dy = {g(z), fla)}

6. A D1-ben nincs individuumvaltozo, ezért az algoritmus azzal az
eredménnyel fejezddik be, hogy W atomjai nem illeszthetdk.




5. fejezet

A rezolici6s kalkulus

5.1. Rezolucié az itéletlogikaban

Legyenek C7 és Cy pontosan egy komplemens literalpart tartalmazo
klozok. Ha C = C’{ V L1 és Cy = C’é V' Lo, ahol L1 és Lo a komp-
lemens literalpar, a C’{ V C’é klozt a (C, C9) klozpar rezolvensének
nevezzilk. Ha C7 = Ly és Cy = Lo, rezolvensiik az tres kloz(0J).

Az a tevékenység, amelynek eredménye a rezolvens, a rezolvdlds,
azon literalpar literaljai pedig, amely lehetévé teszi a rezolvenskép-
zést, a kirezolvdlt literdlok.
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5. A rezoliiciés kalkulus 5.1. Rezolicié az itéletlogikaban

Példa.

Vizsgaljunk most meg néhany klozpart, van-e rezolvensiik.

klozpar rezolvens

(XVY, =Y VZ) XVZ
(X VY, =YV Z) nincs: mindkét azonos alapu literdl negalt

(a)

(b)

(¢c) (XVAY, ZVv-=V) nincs: nincs azonos alapi literél

(d) (=X V=Y, X VYV Z) nincs: két komplemens literalpar van
(e) (X, ~X) [

C



5.1. Rezolicié az itéletlogikaban 5. A rezoliciés kalkulus

Egy S klozhalmazbol a C kloz rezolicios levezetése egy olyan véges
ki,ko, ... km (m > 1) klozsorozat, ahol minden j = 1,2,...,m-re

1. vagy kj € 5,
2. vagy van olyan 1 < s,¢ < j, hogy k; a (ks, kt) klozpar rezolvense,
és klozsorozat utolso tagja, ki, éppen a C' kloz.

A rezolucios kalkulus eldontésproblémaja az, hogy levezethetd-e S -
bol az tires kloz. A rezolucios levezetés célja tehat az tires kloz le-
vezetése S-b6l. Azt, hogy S-b6l levezethets az iires kloz, ugy is ki
lehet fejezni, hogy S-nek van rezolicios cdifolata.



5. A rezoliiciés kalkulus 5.1. Rezolicié az itéletlogikaban

Példa.

Probaljuk meg az iires klozt levezetni az
S={-XVY, "YVZ XVV,-VVYVZ -Z}
klozhalmazbol. A levezetés barmelyik S-beli klozzal indithato.

1. -VVYVZ |eS§|
2. =7 €S|
3. AV VY | 1, 2 rezolvense |
4. =Y vV 7 eS|
5. =Y | 2. 4 rezolvense |
6. -V | 3, b rezolvense |
7. XVV €S|
3

. X | 6, 7 rezolvense |




5.1. Rezolicié az itéletlogikaban 5. A rezoliciés kalkulus

9. X VY eS|
10. Y | 8, 9 rezolvense |
11. [ | 5, 10 rezolvense |

Tehat S-nek van rezolucios cafolata.



5. A rezoliiciés kalkulus 5.1. Rezolicié az itéletlogikaban

Legyenek C = C’{ V Liés Cy = Cé V Lo, ahol L1 és Lo az egyetlen
komplemens literalpar.

Tétel.

{Cl, 02} ):0 C{ vV Cé.

BIZONYITAS. Ha C] = Ly és Cy = Loy, akkor nincs a {C,Cy}
klozhalmazt kielégits interpretacio, tehat igaz az allitas. Egyébként
a {C',Cy} klozhalmazt kielégits tetszGleges interpretacio

— vagy olyan, hogy az Li-hez rendel ¢ értéket (Zr,),

— vagy olyan, hogy az Lo-hoz rendel 7 értéket (Zp,,).

1y, kielégiti a {C1, Co} klozhalmazt, azaz itt a Cp és a Cy klozok
igazak, de Lo hamis, ezért C’é igaz, tehat igaz C{ V Cé is. Hason-
loképpen lathatjuk be, hogy a Zp,, interpretaciokban pedig C{ 1gaz.
Tehat mind Zy, , mind Zp,, kielégiti a Ch v C’é klozt.



5.1. Rezolicié az itéletlogikaban 5. A rezoliciés kalkulus

Tétel.

Ha a C kloz a (C', C9) klozpar rezolvense, akkor azon Z interpreta-
ciok a {C', Cy} klozhalmazt nem elégitik ki, amelyekben C' hamis.

BIZONYITAS.

— Ha C; = Ly és Uy = Lo, rezolvensiik az tires kloz. Az tires kloz
kielégithetetlen, azaz minden interpretacioban hamis. Tehat azt
kell belatni, hogy a {C, Co} klozhalmaz kielégithetetlen. De C}
és C9 egy komplemens literalpar, igy egyetlen interpretacié sem
elégitheti ki egyszerre Gket.

— Legyen C] = C’{\/Ll és Cy = Cé\/L27 ahol L1 és Lo komplemens
literalpar. Legyen Z egy olyan interpretacio, melyben C' hamis.
Fz azt jelenti, hogy C{ és C’é minden literalja hamis Z-ben, azaz
a O és C9 klozokban L1 és Lo kivételével minden literal hamis.
Az Ly és Lo literalok koziil viszont csak az egyik lehet igaz, ezért
a {C'1,Cy} klozhalmazt az T interpretacié nem elégiti ki




5. A rezoliiciés kalkulus 5.1. Rezolicié az itéletlogikaban

Lemma.
Legyen S tetsz6leges klozhalmaz és a kv, ko, . . ., ky, klozsorozat re-
zolucios levezetés S-bol. Ekkor k; minden j = 1,2, ..., m-re tauto-

logikus kévetkezménye az S klozhalmaznak, azaz S = k;.

BIZONYITAS.
1. A levezetés els6 kloza, kp, biztosan eleme S-nek, tehat S =q k1.

2. Tegyiik most fel, hogy minden 7 < n-re igazoltuk mar, hogy
S =0 k.

3. Belatjuk, hogy k,,r1-re is igaz az allitds. Ha k11 € S, akkor
S o kpa1. Ha k1 valamely kg, k¢ klozok rezolvense, akkor az

els tétel miatt {ks, kt} o kpo1. Az indukcios feltevés miatt
S o ks és S =g kt. EbbSL S = kit
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Tétel. |A rezolucios kalkulus helyessége |
Legyen S tetsz6leges klozhalmaz. Ha S-bdl levezethetd az tires kloz,
akkor .S kielégithetetlen.

BIZONYITAS. Tegytik fel, hogy van olyan Z interpretaci6, ami kielégiti
S-et. Az el6bb bizonyitott lemma szerint egy S-bdl vald rezolicios
levezetésbeli barmely k; klozra S =g kj, tehat T kielégiti a re-
zoltucios levezetés minden klozat 1s. De az tires kloz kielégithetetlen,
tehat nem lehet eleme a levezetésnek. Igy tehat ha S-bél levezethet
az tres kloz, akkor S kielégithetetlen.

Tétel. |A rezolucios kalkulus teljessége |
Ha az S véges klozhalmaz kielégithetetlen, akkor S-bdl levezethetd
az ures kloz.
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Kovetkeztetés rezolicidos kalkulussal

Legyen {Aq, Ao, ..., Ay} a feltételformulak halmaza és B a tétel-
formula. A feltételhalmazhoz hozzavessziik a tételformula negéltjat
és a kapott {Aq, Ag, ..., Ap} U{=B} formulahalmazbol elGallitjuk
az S klozhalmazt. Ha S-nek van rezoltcios cafolata, akkor

{Ay, Ay, ..., An} Eo B.
Példa.
Vegyiik a kovetkezé formulahalmazt:
{XDY,YDZ XVU UDVDZ ~Z}.

A tételformula =X . A tétel negaltjat hozzatessziik a feltételformulak
halmazahoz, és ha a kapott formulahalmaz kielégithetetlen, akkor
igazoltuk, hogy =X tétel. A rezolucios kalkulus el6készitéseként a
feltételformulakbol klozokat allitunk eld:

=X VY, -YVZ XVU -UV~-VVZ -Z}.
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Ezt a klozhalmazt kib6vitjitk az X formulaval (klozzal), és rezoltcios
levezetéssel megprobaljuk levezetni az tires klozt.

. - XVY | €S|
2. YV Z | €S|
3. "XV Z |1, 2 rezolvense |
4. =7 €S|
5. =X 3, 4 rezolvense |
6. X eS|
7. O | 5, 6 rezolvense |

Tehat a =X tétel.
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5.1.1. Rezolucios stratégiak

Egy rezolucios levezetés szerkezetét levezetési fa segitségével szem-
léltethetjiik. A levezetési fa csticsal klozok. Két cstiesbol pedig pon-
tosan akkor vezet él egy harmadik, kozos csticsba, ha ott a két kloz
rezolvense talalhato.

Egy S klozhalmazbol vald linedris rezolicios levezetés egy olyan
ki,01,ko, b, ... ky—1,lm—1, km rezoliicios levezetés, amelyben min-
den j = 2,3,...,m-re k; a (kj_1,£,_1) klozpar rezolvense. A k;
klozokat centrdlis Klozoknak, az £; klozokat melléRkldzoknak nevez-
zuk.

A linearis rezolicios levezetés definiciojabol vilagos, hogy tetszdleges
rezolicios levezetés atirhato linearissa, azaz

Tétel.
A lineéaris rezolucios kalkulus teljes.
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A linearis levezetés szerkezetét szemléltetd levezetési fa a kovetkezd:

kozponti klézok mellékkl6zok
kl / El
kQ / €2
k3
|
|
|
|
|
|

I
ki1 li_q

/

ki
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Szokés a levezetési fat egyetlen agként (lineéris graffal) is abrazolni.
Ekkor a centralis klozokat a csicsokhoz, a mellékklozokat pedig az
¢lekhez rendeljiik.

Ky linearis
rezolucio
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Amennyiben egy levezetést linearis graffal abrazolunk, a gyokér-
ben 1évé ky klozzal kezd6d6 osszes levezetést egyetlen taval abrazol-
hatjuk. Ez a teljes levezetési fa. Egy cstcsbol annyi él indul ki,
ahany klozhalmazbeli klozzal, illetve a levezetés soran addig elgallt
rezolvenssel képezhets rezolvense a csticshoz rendelt kloznak. A li-
nearis rezolicios kalkulus teljessége miatt ha van az iires kloznak le-
vezetése k1-bol, akkor azt meg is talaljuk a levezetések teljes fajanak
bejarasaval.
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Példa.
(a) Legyen S ={XV Z, =XV Z, XV~-Z =XV-Z} S5-bilaz
X V Z klozzal kezd6d6 egy lehetséges linearis levezetés:

1. XvZ |e§]
2. 2 XVZ |eS]

3. Z | 1, 2 rezolvense |
4. XVv—-Z e8|

5. X | 3, 4 rezolvense |
6. " XV-Z eS|

7. =7 | 5, 6 rezolvense |
8. Z | centralis kloz |
9. O | 7, 8 rezolvense |
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A levezetést szemléltetd levezetési fa:

XVvZ -XVZ
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(b) Legyen S = {XV Z, - XV Z, 2YV~-Z -XVY -7}

P

Allitsunk el egy részletet a teljes levezetési tabol. Induljunk ki a
X V Z klozbol.

XVvZ
-XVY
-XVZ Y v -Z
YvZ Z

Xv-Y X
-Z ﬁY\/ﬁ/ \Z -XVvZ ﬁXV/ \XVY
Y -Y (| YvVvZ A Y
-XVY -7 -Z

-X Y |
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A gyakorlatban elterjedt két jol hasznalhato, de nem teljes rezoli-
cios stratégia a linedris input- és az eqyséqgrezolicios stratégia. A
két eljaras ekvivalens egymassal, azaz egy klozhalmaznak pontosan
akkor van linearis inputrezolicios cafolata, ha van egységrezolicios
cafolata.

Egy S klozhalmazbol valo linearis inputrezoliicios levezetés egy olyan
ki,01,ko, 0o, ... ky—1,lm—1, km linearis rezolicios levezetés, mely-
ben minden j = 1,2,...,m — l-re £; € 5, azaz a linearis input
rezolicios levezetésben a mellékklozok S-nek elemei.

Egy S klozhalmazbol valdo egységrezolicios levezetés egy olyan
ki, ko, ..., ky rezolucios levezetés, ahol minden 7 = 1,2,...,m-
re ha k; ¢ S, akkor k; két olyan 6t a levezetésben megelézs ks, ki

(1 < s,t < j) kloznak a rezolvense, amelyek koziil az egyik egység-
kloz.
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A linearis inputrezolicios stratégia nem teljes: Legyen a levezetésben
km az tres kloz, vagyis a (ky, — 1, £y, — 1) klozpar rezolvense. £, 1
egységkloz és £y,—1 € S, tehat S-ben kell egységkloznak lenni. (Az
egységrezolucio esetén pedig a levezetést el sem lehet kezdeni, ha
nincs S-ben egységkloz. )

Példa.

Legyen a klozhalmaz

S={YV-Z XVZ -XV-Y, -XVZ -Z}

Egy linearis inputcafolat:

1. YV=Z |e§]
2. " XVZ |ef§|
3. "X VY |1, 2rezolvense |
4. =X VY €S|




5.1. Rezolicié az itéletlogikaban 5. A rezoliciés kalkulus

5. =X | 3, 4 rezolvense |
6. XvZ |eS§]|
7. Z | 5, 6 rezolvense |
8. = Z €S|
9. O | 7, 8 rezolvense |

A linearis inputrezoltuciohoz tartozo levezetési ta:

YV-Z -XVZ

\

“XVY -XV-Y

A\

v Z

-Z

N
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Egy egységcafolat:

1. - XVZ|eS|

2. =Z eS|

3. =X 1, 2 rezolvense |

4. XVvZ |eS§|

5. Z 3, 4 rezolvense |

6. U 2, 5 rezolvense |
Az egységcatolathoz tartozo levezetési fa:
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Bar a linearis inputrezolicios stratégia nem teljes, meg lehet adni
olyan formulaosztalyt, amelyre az. Az olyan klozokat, amelyek leg-
feljebb egy pozitiv literalt tartalmaznak, Horn-klozoknak nevezziik.
A Horn-formuldk pedig azok a formulak, melyek konjunktiv normél-
forméaja Horn-klozok konjunkcidja. Bebizonyitottak, hogy a linearis
inputrezoliiciés stratégia Horn-formulak esetére (szokés azt is mon-
dani, hogy a Horn-logikdban) teljes.
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5.2. A Herbrand-univerzum és az elsOrendii
kl6zhalmazok

Jo lenne, ha létezne olyan specialis ‘H univerzum, hogy egy S elsérendii
klozhalmaz pontosan akkor lenne kielégithetetlen, ha kielégithetet-
len ezen ‘H univerzum felett. Egy ilyen univerzum létezését mutatta
meg Herbrand.
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5.2.1. A Herbrand-univerzum eldallitasa

Legyen S tetszéleges klozhalmaz, a lefr6 nyelve pedig ( Pr, Fn, Cnst).

L o — Cnst, ha Cnst # 0,
T {a) egyébkent,

2. Hix1 = H; UT;, ahol
T, =A{t|t= f(t1,t9,...,ty), ahol f € Fn, tj € H;, j=1,2,...,n}
1 =1 + 1 és ismételjiik meg a lépést.

3 H= U;)i() H;.

A H halmaz az S klézhalmaz Herbrand-univerzuma.

tovabba 7 := 0.
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Példa.
Legyen S ={P(a),~P(x)V P(f(x))}. Ekkor

Hy = {a},

Hi = {a7f<a>}a

Ho = {a, f(a), f(f(a))},

H = {a, fla), f(fla), f(f(f(a))),..}
Példa.

Legyen S — {P(x) v Q(z), R(=), T(y) V - W (y)}.
Mivel S-ben nincs konstansszimbolum, ezért legyen ‘Hy = {a}.
S-ben fiiggvényszimbolum sincs, ezért

Ho=H1=...=H=1{a}.
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rezolicios kalkulus

Példa.
Legyen S ={P(f(z),a,g(y),b)}. Ekkor

Hy = {a,b, f(a), f(),g(a), g(b) }
HZ — {CL, b,f(CL),f(b) (a),g(b),
f(f(a)), (9(a)), f(g(D)
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Legyen az S klozhalmaz leir6 nyelve ( Pr, Fn, Cnst ), Herbrand-univer-

zuma pedig H. S leird nyelve Herbrand-interpretdcioimak nevezziik

és Tyy-vel jeloljiik a nyelv azon interpretacioit, melyek univerzuma

éppen H,

— minden ¢ € Cnst konstansszimbolumhoz Z3y a ¢ € H univerzum-
elemet (Onmagat) rendeli, és

— minden £ aritasu f € F'n fiiggvényszimbolumhoz 74y hozzaren-
deli azt az f2H: HF — H miveletet, amelyikre minden
hi,ho, ..., h; € H esetén

fh ha, o g) = B ho, o By,
Egy S elsérendi klozhalmaz Herbrand-interpretacioi tehat csak az

S-ben el6torduld predikdtumszimbolumok interpretalasaban kiilon-
boznek.



5.2. A Herbrand-univerzum és az elsérendii kl6zhalmazok 5. A rezoliiciés kalkulus

Legyen S egy els6rendil klozhalmaz és ‘H a klozhalmazhoz tartozo
Herbrand-univerzum. A H Herbrand-univerzum feletti zart atomok
egy 1ogzitett sorozatat Herbrand-bdzisnak nevezzik.

Vilagos, hogy ha adva van az S elsérend klozhalmaz egy Z9y Herbrand-
interpretacidja, azt a kovetkezé modon is leirhatjuk:
legyen { Ay, Ao, ...} az S klézhalmaz Herbrand-bazisa és legyen

I — Aia ha AZ igaz IH—ban,
7 | =4;, ha A; hamis Zg-ban.

Ekkor a Z3; Herbrand-interpretaciot az { L1, Lo, . .. } literdl-halmaz
egyértelmien megadja.
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Példa.
Legyen S = {P(x) V Q(x), R(f(y))}. S Herbrand-univerzuma:
H = {a, fla), f(f(a)), f(f(f(a))),. ..}
S Herbrand-bazisa:
1P(a), Qa), R(a), P(f(a)), Q(f(a)), R(f(a)),. ..}

Néhany Herbrand-interpretacio:

Iy = {P(a),Q(a), R(a), P(f(a), Q(f(a)), R(f(a)),. ..}
Iy = {ﬂp<a)7_'Q(a>7ﬁR(a> _'P(f(a>)
I3 — {P(a),Qla), ~R(a), P(f(a)),Q(f(a)), R
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Az aldbbi abran lathato szemantikus tan bejeloltitk az Zy,79,713
Herbrand-interpretéaciokat.

A rezolucios kalkulus

S oP@
H H
Qa) 77" "\ Q) Q@) -Q(a)
ug [] ] ]
R(a)/ \oR() \R(@)
/ \
N N H H H H H N
P(f(a), —P(f(a)) -P(f(a)
I “\
/ \
R
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Legyen az S klozhalmaz leir6d nyelve (Pr, Fn, Cnst), és legyen ennek
7 valamely U univerzum feletti interpretacioja.

Az T-nek megfeleld Herbrand-interpreticio S-nek egy olyan
14, Herbrand-interpretacioja, amelyre teljesiil, hogy van olyan

o:H—U

fligovény, hogy
a P(hi, ho, ..., hy) zart atom pontosan akkor igaz Z4y-ban, ha
a (,neki megfelels”) P(xq, x9,...,xy) atom igaz Z-ben az

r1 — @(h1), 22— @(h2), ..., zn — ©(hy)

valtozokiértékelés mellett.

Most megmutatjuk, hogy valamely S elsérendi klézhalmaz leiro
nyelvének tetszodleges Z interpretacidjahoz van megtelel6 Herbrand-
mterpretacio.
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Legven Z = (Zpq Lpy, Loy, ahol az interpretacié univerzuma U.
Legyen a @: 'H — U a kovetkezdképpen definidlva:

— ha Cnst = (0, akkor a H-ben szerepld extra konstanshoz ¢ ren-
deljen tetszbleges U-beli elemet,

— minden ¢ € Chst (egyuttal ¢ € H) konstansszimbolum esetén
©(c) legyen az I y,q(c) U-beli elem,

— hapedigh € H f(hy, ho, ..., h)alaka, akkor o(f(hy, ha, ..., ht))
legven a fZ(¢(hy), o(ha), ..., @(ht)) U-beli elem.

Most megadjuk az Z-nek megtelel6 Herbrand-interpretaciot:
Ha az S Herbrand bézisabeli Aj-nek ,megfeleld” Z-beli atom igaz,
a Herbrand-interpretaciot megado¢ literalhalmazba irjuk be Aj-et,
egyébként pedig —Aq-et. Mivel a bazis elemei kiilonbozéek, a Her-
brand-bazis elsé k atomja igazsagértékének rogzitése utan Agq is
megkaphatja” a neki ,megfelel¢” Z-beli atom igazsagértékeét.
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Példa.

Legyen S = {P(x), Qy, f(y,a))}.

Legyen 7 a kivetkez6: U = {1, 2}, az a interpretaltja 2, a predikatum-
és fliggvényszimbolumokhoz pedig az alabbi relacio- és miivelettablak-
kal definialt relaciokat és miiveleteket rendeli Z.

rli1l2 Qfl12 [ fL12
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S Herbrand-univerzuma:

H ={a, f(a,a), f(a, f(a,a)), f(f(a,a),a), f(f(a,a), f(a,a)),...}.
S Herbrand-bazisa:

{P(a),Qla,a), P(f(a,a),Qa, f(a,a),Q(f(a,a),a),...}.
Ekkor a ¢: H — U megteleltetés:

a2 (Kitelezd), f(a,a) 1, fla, f(a,a) — 2, f(f(a,a),a) — 2, ...

Az ZT-nek megfelel¢ Herbrand-interpretacio:

Iy = 1~P(a),Qla,a), P(f(a,a)), ~Qa, f(a, a)), Q(f(a,a),a),...}.
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Példa.

Legyen S = {P(x),Qy, f(y,2))}. Vegyiik észre, hogy S leiro
nyelve az el6z6 példabeli leird nyelvtél csak abban kiilonbozik, hogy
ebben nincs konstansszimbolum. Interpretaljuk a S nyelvét az 77
interpretacioval, ami csak annyiban kiilonbozik Z-t6l, hogy kons-
tansszimbolumot nyilvan nem kell interpretalnia.

Most a ¢: H — U megteleltetés soran a-hoz barmely univerzume-
lem hozzarendelhetd. Tartsuk meg a tobbi Herbrand-univerzumbeli
elemre az el6z6 példabeli megfeleltetést.

— Ha a — 2, akkor az Z"-nek megfelel6 Herbrand-interpretacio a
fenti Zyy.

— Ha a — 1, az Z"-nek megfelels Herbrand-interpretacio

I’;—( — {P(CL), _'Q(a7 CL), P(f<a7 CL)), _'Q(av f(CL, a>>7 _'Q(f(aa CL), CL), S
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Tétel.

Ha egy Z interpretacio kielégit egy S elsérendi klozhalmazt, akkor
az I-nek megfelel¢ Herbrand-interpretacio is kielégiti S-t.
BIZONYITAS.

A definicio szerint ha Zy, az Z-nek megfelel¢ Herbrand-interpretécio,
akkor van olyan ¢: H — U tiiggvény, hogy az Z ugyanazt az igaz-
sagértéket rendeli a P(xq, x9, ..., xy) atomhoz az

1 +— ©(ht),z9 — @(h9),...,xn +— ©(hy)

valtozokiértékelés mellett, mint az Zyy a P(hy, ha, ..., hy)-hez min-
den hy, ho, ..., hy € 'H esetén.
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Tétel.

Egy S elsérendii klozhalmaz akkor és csak akkor kielégithetetlen, ha

S-t nem elégiti ki a Herbrand-univerzuma feletti egyetlen Herbrand-

mterpretacio sem.

BIZONYITAS.

1. Tegyiik fel, hogy S kielégithetetlen. Ekkor S-t nem elégitheti
ki (semmilyen univerzum felett) egyetlen interpretacio sem, igy
egyetlen Herbrand-interpretacio sem.

2. Tegyiik fel, hogy S ugyan kielégithetetlen az altala meghatarozott
Herbrand-univerzumon, de S nem kielégithetetlen, azaz van olyan
U univerzum és 7 interpretacio, amely S-t kielégiti. Legyen Zqy
a Z-nek megfelel6 Herbrand-interpretacio. Az el6z6 tétel miatt
I kielégiti S-t, pedig Z3y a Herbrand-univerzum feletti inter-
pretacio. Ellentmondasra jutottunk, tehat ha S kielégithetetlen
a Herbrand-univerzuman, akkor S kielégithetetlen.



5.2. A Herbrand-univerzum és az elsérendii kl6zhalmazok 5. A rezoliiciés kalkulus

5.1. MEGJEGYZES. Egyik tétel sem all fenn, ha S nem elsérend
klozhalmaz. Vagyis, ha S tetszbleges zart formulak halmaza, akkor
altalaban nem igaz, hogy S kielégithetetlenségének vizsgalata esetén
elég lenne S-et csak a Herbrand-strukturakkal interpretalni.

Példaul legyen S = {P(a),dx—P(x)}. Az S masodik formulaja
nem elsérendt kloz. S Herbrand-univerzuma: ‘H = {a}, S Herbrand-
bazisa: {P(a)}. Az S formulahalmazt egyik Herbrand-interpretacio
sem elégiti ki. Azonban S kielégithetd, hiszen az az U = {0,1}
feletti Z interpretacio, melyben PZ(0) = i, P£(1) = h és a — 0,
kielegiti S-et.
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Legyen S egy klozhalmaz, ‘'H a Herbrand-univerzuma, k egy valto-
zokiértékelés. Ekkor

o — ( L1 o ... Tk )
k(x1) k(x2) ... K(zg)
egy termhelyettesitése S leird nyelvének. A C(t1,to,...,tyn)0 for-
mulat a YV VaoVa,C(ty, te, ..., tn) kloz egy H feletti alappéldd-
nydnak (alapkloz) nevezzik.
Példa.
Az S ={=Plx)VQ(f(x),x), P(g9(b)), ~Q(y, z)} klozhalmaz klozai

Herbrand-univerzum feletti alappéldanyai:

{=P(b) VQ(f(),b),=P(f(b)) vV Q(f(f(D)), f(D)),
—P(g(b)) VvV Q(f(9(0)),g(d)),...,P(g(b)),
_‘Q(bv b)? _'Q(f(b)7 b)? IR _'Q(f(g(b))a g(b)), . }
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Most ismertetjiik az elsérendii rezolicios kalkulushoz is elvezetd Herbrand-
tetelt.

Tétel.

ey S elsérendii klozhalmaz akkor és csak akkor kielégithetetlen, ha

az S klozal Herbrand-univerzum feletti alappéldanyainak van véges
kielégithetetlen S’ részhalmaza.
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Példa.

(a) Legyen S = {P(x),-P(f(a))}. Az S elsérendd klozhalmaz

kielegithetetlen, mert S Herbrand-univerzum feletti alapklozainak

1P(fla)), ~P(f(a))}

cgy véges kielégithetetlen részhalmaza.

(b) Az S = {-P(x) VQ(f(x),z), P(g(b)), ~Q(y, 2)} kiclégithetet-

len, mert S Herbrand-univerzum feletti alapklozainak

{=P(g(0)) vV Q(f(g(b)), (b)), P(g(b)), =Q(f(g(b)),g(b))}

egy véges kielégithetetlen részhalmaza. Lzek az alapklozok az
r — g(b), y — f(g(b)), z — g(b) valtozokiértékelés mellett
alltak eld.
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5.3. A rezolucios kalkulus az els6rendii logikaban

Példa.

Cr=Vz(P(f(z) VQ(z)) s Co=VaVy(=P(f(z))V R(z,y))

Ha a magjaikat a nulladrendi esethez hasonléan rezolvalnank, a
C =Vavy(Q(z) V R(z,y))

klozhoz jutnank. Lassuk be, hogy

{Va(P(f(2))VQ(z)), YaVy(=P(f(2))VR(z,y)) } | VaVy(Q(z)V R(z,y)).
Ha 7 kielégiti a C; és Cy klozokat, a P(f(z))V Q(x) és =P(f(x))V

R(z,y) formuldk Z-ben minden véltozokiértékelés mellett igazak.

Tehat ha |P(f(z))[2" = h, akkor |Q(z) 2" = i, ésha |~ P(f(z))|2 " =

h, akkor |R(z,y)|*"* = i. Mivel minden x-ra |P(f(z))[*"
esetén |~ P(f(z))|FF = h és forditva, vagy a |Q(xz)[*
|R(z,y)

= 1

N =1, vagy az
L= i fenndll, 6s igy [VaVy(Q(x) V R(z, y))[F

=,
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Ha ilyen modon képezve elsérendi klozok rezolvensét szeretnénk ezt
rezoltcios levezetési szabalyként alkalmazni, akkor igazolni kell al-
talanosan is a példabeli allitast.

Tétel.

Legyenek most C7 és C9 olyan elsérendi klozok, melyek pontosan
egy komplemens literdlpart tartalmaznak, azaz C7 és C9 magjal
C’fw = C’fw’ V Ly és C’éw = C’éw’ V Lo alaktak, ahol Ly és Lo
komplemens literalpar. Ha M = CiM’ V C’QM’ a C' kloz magja.,
akkor {C1,Cy} E C.

BIZONYITAS. Tegyiik fel hogy az Z interpretéacio kielégiti a {C7, Co}
elsérendd klozhalmazt. Kovessiik az el6z6 gondolatmenetet. Az 7

interpretacioban tetszéleges x valtozokiértékelés mellett vagy Lq és
Céw’, vagy Lo és CiM’ igaz. Azaz I-ben C' igaz.
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Komplemens part nem tartalmazo két elsérendi kloz Herbrand-univerzum
feletti alappéldanyaiban lehet komplemens par.

Példa.
L VaVy(P(x)V-Q(x, f(y))), Y2Vu(=P(g(2))V=P(v)), YuQ(g(u),u) }.

Egvyik klozparban sincs komplemens literalpar. A Herbrand-univerzum:

{a, gla), fla), g(f(a), g(g(a)), f(f(a)), flg(a)), ...}.

ey alaprezolicios levezetés:

L.

2
3
4.
. [

Qg(f(a)), fla)) | u— fla)]

- P(g(fla) vV =Q(g(f(a), fla) | z— g(f(a)), y+—a]

- Plg(f(a)))

~P(g(f(a))) | 2= fla), vi—=g(f(a)) |
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Tegylink egy 1] valtozot a kivalasztott alapklozokban az a helyébe.

L Qg(f(w)), f(w)) | (u ] fw))
2. Pg(f(w))) vV =Q(g(f(w)), f(w)) | (z, y || g(f(w)), w) |
(f(w))

3. P(g(f(w)))
4. ~P(g(f(w))) | (2, v || f(w), g(f(w))) |
5. O

Fz a levezetés a

{Vw(P(g(f(w))) vV =Q(g(f(w)), f(w))),
Vw—P(g(f(w))), VwQ(g(f(w)), f(w)) }

klozhalmazbol valo egy elsérendii rezoltcios levezetés. Ezt a klozhal-
mazt tgy kaptuk az eredetibdl, hogy az elsérendd klozok magjaiban
az atomi formulakban az individuumvaltozok helyébe olyan termeket
helyettesitettiink, amelyek azonos alapt literalokat eredményeztek.
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Fzzel a — logikaban egyébként nem megengedett — helyettesitéssel
(illeszt helyettesités)

e a klozhalmaz kielégithetGsége megdrzddik,

e a kapott elsérendd klozhalmaz alappéldanyaiban a lehetséges komp-
lemens parok megjelennek.

Tétel.
Leayen OM a O elsorendd kloz magja. Tegyiik fel, hogy

PCLT(CM> ={x1,%9,...,%n}.

Legyen 0 = (x1,x9,...,xn || t1,%9,...,tn) tetszbleges termhelyet-
tesités C' leird nyelvében, és

Par(CMO) = {y1, o, ..., yi}

FEkkor tetsz6leges olyan Z7; Herbrand-interpretacioban, amelyben C
igaz, a Yyivyo . . .Vyk(C’MH) kloz is igaz.
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BIZONYITAS. Tegytik fel, hogy a Zy; Herbrand-interpretacioban a
C kloz, azaz YxVxo.. Vo,CM igaz. Ekkor CM a Herbrand-
interpretaciobeli minden valtozokiértékelés mellett igaz. Ez azt je-
lenti, hogy CM Herbrand-univerzum feletti alapklozai Ly-ban igazak.
Nyilvan CM@-nak az Zy,-beli tetszoleges s valtozokiértékelés mel-
letti ‘H fteletti alappéldanyai mind CM 1 feletti alapklozai, hisz
a t1,to,...,ty termek xk melletti H feletti alappéldanyai jelennek
meg az X1, X9, ..., Ty valtozok helyett CM hen. Ezek viszont mint
Herbrand-univerzumbeli elemek CM alappéldanyaiban is el6tordul-
nak.



5.3. A rezoliiciés kalkulus az elsérendii logikdban 5. A rezoliciés kalkulus

Legyen W egy C elsérendi klozban eléfordulé legalabb két azonos
alapi egytforman negalt literal alapjainak halmaza. Ha WV atomjai
illeszthetGk egyméshoz és o a W legaltalanosabb illeszté helyet-
tesftese, akkor a CMg magn klozt a C Kloz faktordnak nevezziik.

Ha a taktor egységkloz, akkor C' eqységfaktordnak hiviuk.
Példa.

Legyen C' = VaVy(P(z) vV P(f(y)) V =Q(x)).
A két P-vel kezd6dd atom legaltalanosabb illesztS helyettesitése a

o= (z| fly)).

Ennek megfelelGen a

Vy(P(f(y)) vV —=Q(f(y)))
kloz a C' kloz taktora.
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Legyenck C7 és Cy valtozoikban tiszta klozok. Legyenek C7 és Co
magjal rendre C’fw = C{W V Ly és 05\4 = 05\4/ V Lo alakiak,
ahol L1 és Lo ellentétesen negalt literdlok. Ha az Ly és az Lo li-
teralok alapjai illesztheték egymaéashoz, legyen o a legaltalanosabb
illeszt6 helyettesitésiik. Ekkor a C és C9 klozok bindris rezolvense
a C’fw’a V CéW/O' magu kloz.

A (7 és a O9 klozok elsdrendi rezolvense a kovetkezG binaris rezol-
vensek valamelyike:

1. a Cq és a C9 klozok binaris rezolvense,

2.a C7 kloz és a Cy kloz egy taktoranak a binaris rezolvense,

3. a O kloz egy taktoranak és a Cy kloznak a binaris rezolvense,

4.a C7 kloz egy faktoranak és a C9 kloz egy faktoranak a binaris
rezolvense.
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Példa.

Legyen C’fw = P(x)VQ(x) és 05\4 = —=P(a)V R(z). Mivel x mind
C{W—ben, mind Céw—ben el6fordul, a C’éw—ben atnevezziik. Ezutan
05\4 = —=P(a) V R(y). A rezolvalashoz valasszuk az Ly = P(x) és
az Lo = = P(a) literdlokat. Alapjaik legaltalanosabb illesztd helyet-
tesitése: (x || a). Igy tehat a C és a O klozok binaris rezolvense

Qz)(x [l a) vV R(y)(z || a) = Q(x) V R(y),

ahol a P(x) és a = P(a) literdlok szerint rezolvaltunk.

Peélda.

C! = P(z)V P(f(y))V R(g(y)) és C1 = =P(f(g(a))) vV Q(b). A
(' faktoranak magja P(f(y)) V R(g(y)). Cy faktoranak és Co-nek
binéris rezolvense a R(g(g(a))) V Q(b) kloz. Ennélfogva a C és a
Oy klozok egyik elsérendi rezolvense R(g(g(a))) VvV Q(b).
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Jeloljiik C és Cy els6rendii rezolvensét — utalva a rezolvensképzés
modjara — a kovetkezSképpen: ((ChA1)o — Lio)V ((Corg)o — Loo).
Tétel.

Legyen a C' elsérendi kloz a C és C9 elsérendi klozok elsérendd

rezolvense. Ekkor {C1,Cy} | C.

BIZONYITAS. C és Oy valtozoikban tiszta klozok. Rezolvensiik al-
taldnos esetben C' = ((C1A1)o — Lio) V ((Codg)o — Loo). Az elébb
bizonyitott tétel miatt, ha az Zy Herbrand-interpretacio kielégiti
{C4, Cy}-t, akkor Ty kielégiti a {C1 A0, Codoo} klozhalmazt is.
Az a két literal, amely szerint rezolvaltunk, a Ci Ao és Colgo klo-
zokban komplemens literalpar, igy

{ CiA 10, Codoo } = C.
Ez viszont azt jelenti, hogy {C1,Cy} E C.
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Eey S elsérendi klozhalmazbdl valo elsérendid rezolicios levezetés

els6rendd klozok egy olyan véges ki, ko, ..., km (m > 1) sorozata,
ahol minden 7 =1,2,...,m-re
1. vagy k; € 5,

2. vagy van olyan 1 < s,t < 7, hogy k; a ks és k¢ klozok elsérend
rezolvense.
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Tétel. |Els6rend rezolicios kalkulus helyessége. |
Ha egy S elsérendi klozhalmazbol van az tires kloznak elsérendii
rezolicios levezetése, akkor S kielégithetetlen.

BIZONYITAS. Tegyiik fel, hogy van az iires kloznak els6rendi re-
zolticios levezetése S-bol: ki, ko, ... ky—1,km =0 (m > 1).
Tegyiik fel ugyanakkor, hogy van olyan Z interpretacio, mely kielégiti
S-t. Ezért ha a rezolucios levezetésben kj; € S, T kielégiti kj-t. Ha
pedig a rezolicios levezetésben k; a kg és b (1 < s, < j) Klo-
zok elsérendd rezolvense és 7 kielégiti a kg és ky klozokat, akkor 7
kielégiti a rezolvensiiket, k;-t is. Fzért indukeioval konnyen lathato,
hogy Z-nek ki kellene elégitenie a {kq, ko, ..., km—1, km} klozhal-
mazt 1s. De ky, = [, az iires kloz pedig kielégithetetlen, tehat S-nek
1s kielégithetetlennek kell lennie.
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Példa.
A

{ VaVy(P(z)V=Q(z, f(y))), V2¥u(=P(g(2))V=P(v)), YuQ(g(u),u) }

klozhalmazbdl szerkessziink meg egy elsérendi rezoliicios levezetést:

1. Qg(u),u)
. P(x) vV =Q(z, f(y) | (z,u | g(f(y)), f(y)) ]

2
3. P(g(f(y)))

4. =P(g(2)) vV =P(v) [ (v g(2)) faktorizacio, (= || f(y)) |
5

.U
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A faktorizacio az elsérendt rezolicios elv lényeges eleme, alkalmaza-
sa nélkil az elsérendi rezoliicios eljaras nem lenne teljes.

Példa.

Adott a kovetkezd formulahalmaz:

{V:UVy(P(:E) D Qy,y) V Az, y)),
VaVy—(P(z) A Qy,y) A Q(x,y)),
VrP(z) }.

A formulak alapjan kapott klézhalmaz:

S = {=P(x)VQ(y,y)VQ(z,y), ~P(z)V-Q(y,y)V-Q(xz,y), P(z) }.
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1. A Herbrand-univerzum: ‘H = {a}. A Herbrand-bazis: {P(a), Q(a,a)}.
A 'H feletti alapklozhalmaz: {=P(a)VQ(a,a), ~P(a)V-Q(a,a), P(a)}.

Alaprezolucios levezetés:

1. P(a)

2. =P(a)V Q(a,a)

3. Qa,a) | 1, 2 rezolvense |
4. =P(a)V =Q(a,a)

5. =Q(a,a) | 1, 4 rezolvense |
6. O | 3, 5 rezolvense |
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2. Els6rendi rezolucios levezetés S-bol, taktorizacio nélkiil:

1. P(x)

2. ~P(x)V Qy,y) vV Qz, y)

3. Qy,y)V Qx,y) | 1, 2 rezolvense |
4. =P(x)V =Q(y,y) vV -Q(z,y)

5. =Q(y,y) V ~Q(x,y) | 1, 4 rezolvense |

A levezetés nem folytathatd, mivel nincs olyan klozpar, amely
cgyetlen komplemens literalpart tartalmazna. Igy az tires klozt
nem kapjuk meg.
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3. Rezolucios levezetés S-bdl, faktorizacioval:

(a) Alkalmazzuk S klozaira a o0 = (z || y) legaltalanosabb illeszt
helyettesitést.

So =1{Ply)VQy,y), ~Ply) vV -Qy,y), Ply) }.
(b) A levezetés Sg-bol:

1. P(y)

2. ~P(y) vV Q(y,y)

3. Qy,y) | 1, 2 rezolvense |
4. =P(y) vV ~Q(y,y)

5. =Q(y,y) | 1, 4 rezolvense |
6. OJ | 3, 5 rezolvense |
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Tétel. |Elsérendt rezolucios kalkulus teljessége.| Ha egy S elsGrend
klozhalmaz kielégithetetlen, akkor S-bdl van az iires kloznak rezolu-
cios levezetése.
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5.3.1. Rezolucios levezetési stratégiak

1. A teljes szintek modszere

Legyen S tetszéleges klozhalmaz. A teljes szintek modszere a kovet-
kez6képpen allitja el6 a levezetéshez a rezolvenseket:

1. Ry := {C | C'a (C], C9) par rezolvense, C7,Cy € S },
S1 =SURy, 1:=1.
2. Ha U € 5, sikeresen vége. Egyébként
R; = {C | C a (Cq, Cy) par rezolvense, C € S;, Cy € Ri_l},
Sit1: =95 UR,;, 1:=1+1 éstolytassuk a 2. lépéssel.
Fzzel a modszerrel sok egyforma kléz jelenik meg a rezolvensek
kozott, s6t olyan rezolvens klozok is a klozhalmazba keriilhetnek,

amelyekre a tovabblépésben biztosan nincs sziikség. E problémak
megoldasara sziiletett meg a torlési stratégia.
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2. A torlési stratégia

Minden ¢ = 1,2,... esetén az R; klozhalmazbol el kell hagyni a
folosleges klozokat: a tautologiakat és azokat, amelyeket més klozok
Jbartalmaznak”.

Jelolie Ct és D! rendre a C' és a D klozok literaljainak halmazat.
Egy C kloz befoglalja a D klozt, ha van olyan o termhelyettesités,
hogy Clo € D' Da betoglalt kloz.

Példa.

Legyen C'= P(xz) D = P(a) V Q(a).

Ekkor C' = {P(z)} és D' = {P(a), Q(a)}.

Ha o = (z || @), akkor Clo = {P(a)}.

Clo C D!, tehat C befoglalja D-t.

A tautologiakat és a befoglalt klozokat meg kell talalni. A tautolo-
glakat a taktorizacio segitségével tedhetjiik fel.
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A befoglaléasi teszt azonban nem olyan egyszert.

Legyenek C' és D klozok. Legyen 6 = (z1,x9,...,2y || a1,a9,...,ap),
ahol 1, o, ..., xy a D-ben el6tordulo valtozok és ay, as, . . ., ap sem
C-ben, sem D-ben el6 nem forduld kiilonbozé konstansszimbolumok.
Tegytik fel, hogy D = L1V LoV ...V L.

LW ={-L0, =Lob, ..., ~Lp0}, Uy:={C} i:=0,

2. Ha U € U;, akkor vége: C' befoglalja D-t. Egyébként

Ui = {C | C a Cy, Cy rezolvense, Cy € U;, Cy € W}

3. Ha U;yq iires, akkor vége: C' nem foglalja be D-t. Egyébként
1 =1+ 1, és folytatas a 2. lépéssel.
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Példa.

D = =P(h(y))VQ(f(h(y)),a)V-P(z) és C = ~P(x)VQ(f(x), a).
Befoglalja-e C' a D-t7?

D valtozoi az y és a z. Legyen 0 = (y, z || b, ¢).
Ekkor D = ﬂP( (b)) VQ(f(h(b)),a)V —P(c).

1. W = { P(h(b)), ~Q(f(h(b)),a), P(c)},
Uy = { - ()VQ(f( ),a) }.

2. Mivel O ¢ Up, azt kapjuk, hogy
= { QUf (D)), a), =P(h(b)), Q(f(c).a) }.

3. Mivel Uy # 0 és az O &€ Uy, az eljarast folytatva kapjuk, hogy
Uy = {00},

4. Mivel [0 € U», az eljarasnak vége: C befoglalja D-t.




6. fejezet

A tablok modszere — tablokalkulus

6.1. Jelolt tabl6é az itéletlogikaban

Vezessiink be a logika nyelvébe két 11j szimbolumot: a T-t és az F-et.

Ha A formula, T'A és F'A jelolt formuldk.

Egy interpretacioban T'A igaz, ha A igaz és T'A hamis, ha A hamis.
Tovabba F'A igaz, ha A hamis és F'A hamis, ha A igaz.
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Legyen S jelolt formulak tetszéleges halmaza. S lefele zdrt, ha min-
den olyan esetben, amikor

TANBe€S, akkorTAe SésTBe S,
TAVBeS, akkor TA € S vagy T'B € S
TAD Be€S, akkor FA € S vagy TB € S,
T—=A, akkor FA € S,

FANB €S, akkor FA € Svagy FB € S,
FAVBeS akkor FAe Sés FBe S,
FADBeS akkorTAe Sés FB e S és
8. F—A, akkor TA € S.

-J O Ot B~ WD

Jelolt formulék egy S halmaza Hintikka-halmaz, ha S lefele zart és
nem tartalmaz ellentétesen jelolt formulapart.
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Tétel.
Ha S Hintikka-halmaz, akkor kielégithetd.

BIZONYITAS. Az S Hintikka-halmaz lefele zart, tehat tartalmaz je-
[6lt atomokat, de nem tartalmaz ellentétesen jelolteket. Legyen e
tetszblegesen rogzitett igazsagérték. Legyen az Z interpretacié a
kovetkezd:

({ haTX €S,
I(X) =< hha FX e,
| e egyébként.

A szerkezeti indukcio elvének segitségével megmutatjuk, hogy tet-
széleges C' € S jelolt formula igaz Z-ben.
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(alaplépés:) Jelolt itéletvaltozokra Z definicidja miatt nyilvanvalo,
hogy igaz az allitas.

(indukcios 1épések:) — Legyen C' T'A A B alaku jelolt formula.
Mivel C' € S, igy TA € § és TB € S. Indukcios feltevésiink,
hogy T'A és T'B igazak. De mivel C' = T'A N B, ezért C' is
igaz. Hasonl6 az FAV B és az FFA O B formulak esete.

— Legyen C F'A A\ B alaku jelolt formula. Mivel C' € S| gy
FA e Svagy FB € S. Indukcios feltevésiink, hogy F'A vagy
F'Bigazak. DeigyaC = FAAB isigaz. Hasonlo aTAV B
és a T'A O B formulak esete.

— Legyen C' T—A alaku. Mivel C' € S, igy FA € S. Indukcios
feltevésiink, hogy F'A igaz, igy C igaz. Hasonlban az F—A
esetben.
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A tablok modszerében (mint kalkulusban) minden , formulafajtara”
van egy-egy levezetési szabaly. A levezetési szabalyt a formula kdz-
vetlen tablojanak is nevezik:

T-A F-A
| |
FA TA
TAANB FAANB
|
TA FA FB
s
TAV B FAV B
TA TB FA
Fg
TADB FADB
FA TB TA

FB
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Egy C' jelolt formula jelolt tabloja egy olyan binaris fa, melynek
csucsal jelolt formulak. A gyokérbe elhelyezziik a C' jelolt formulat.
Elgallitjuk C kozvetlen tablojat. Feltessziik, hogy a C-nek egy T°
tabloja adott. Legyen T-ben D egy levélesiics. Ekkor a T tablo
kozvetlen kiterjesztése a kovetkezd:

(A) Ha van még nem feldolgozott” TAAN B, FAV B, FA D B
alak jelolt formula a gyokérbsl a D cstucesba vezeté tton, akkor
kapcsoljuk D-hez ezen Ut folytatasaként a megteleld formula koz-
vetlen tablojabol nyert jelolt formulakat mint 0j csticsokat. Azaz
két egymast kovetd cstuesot illesztiink a tablohoz.

(B) Ha van még nem feldolgozott” FAAN B, TAV B, TA D B
alaku jelolt formula a gyokérbdl a D cstucesba vezetd tton, akkor
D-hez kapcsoljunk két csticsot: a bal oldali a megfelel¢ formula
kozvetlen tablojabol nyert egyik, a jobb oldali pedig a masik jelolt
formula.
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(E) Ha van még nem ,feldolgozott” T—A, F—A alaki jelolt formula a
oyokérbdl a D csicsba vezetd tton, akkor kapcesoljuk D-hez ezen
at folytatasaként a megfeleld formula kozvetlen tablojabol nyert

jelolt formulat mint 1j cstcsot.
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6.1.

Jelolt tablé az itéletlogikaban

Példa.
Adjuk meg most az

FIXVIYANZ)D(XVY)AN(XVZ)

formula jelolt tablojat.

FXVXYANZ)D(XVY)AN(XVZ)
|
(
}vaYLvam

N

TX

<

Y ANZ)

TX TYANZ
FXVY FXVZ TY
|
| | r7
FX FX
| |
FY FZ FXVY FXVZ
X X ‘ ‘
FX FX

FY
X

FZz
X
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A tablo egy dga teljes, ha az agon 1évé fel nem dolgozott formulak
jelolt atomok. A tablo teljes, ha minden aga teljes.

A tabl6 egy dga zdrt, ha az agon egy formula T-vel és F'-fel jelolve
is el6fordul. A tablo zdrt, ha minden aga zart, egyébként a tablo
nytott.

Azt mondjuk, hogy az A formulanak létezik tablocdfolata, ha a T'A
tabloja zart, vagy hogy a B formula bizonyithato tabloval, ha F'B
tabloja zart.
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Tétel. |A tablokalkulus helyessége. |
Ha a T'A jelolt formula tabloja zart, akkor A kielégithetetlen.

BIZONYITAS. Tegyiik fel. hogy T'A tabloja zart, ekkor a tablé min-
den aga zart. Mivel a tablo gyokerében lévs T'A formula minden
agon szerepel, ezért ha A kielégithetd lenne, lenne olyan interpretéa-
ci0, melyben T'A igaz, de ekkor van olyan 4g, melyen haladva ebben
az interpretacioban igaz jelolt formulakat kapunk. De akkor az ag
nem lehet zart.
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Tétel.
Egy tablo barmely teljes, nyitott aga kielégithetd.

BIZONYITAS. Legyen S az T tablo egy teljes, nyitott 4gan az Osszes
jelolt formula halmaza. S Hintikka-halmaz, mert nincs olyan X
itéletvaltozo, hogy T X, FX € S, tovabba ha

1. TANBeS, akkorTAe SésTBe S,
2.TAVBeS, akkor TAe Svagy TB € S,
3. TAD Be€S, akkor FAe€ Svagy TB € S,
4. T—A, akkor FA € S,

5. FANB € S, akkor FA € S vagy FFB € S,
6. FAVBeS, akkor FAe Sés FB e S,
7. FADBeS, akkor TAe Sés FB € S és
8 ha FF—A, akkor TA € S.

A Hintikka-halmazok kielégithetdk, tehat .S kielégithetd.
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Tétel. |A tablokalkulus teljessége.|
Ha egy A formula kielégithetetlen, akkor T'A barmely teljes tabloja
zart.

BIZONYITAS. Tegyiik fel, hogy T" az T'A formula egy teljes tabloja.

Ha T nyitott, akkor A kielégithets. Ezért ha A kielégithetetlen,
akkor T biztosan zart.
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A tablo fogalmat most kiterjesztjiik formulahalmazokra is.

Eey {C1,Cq, ..., Cn} véges formulahalmaz tabldja gyokerében a for-
mulahalmaz minden formulaja szerepel. Ezutan a C teljes tablojat
a gyokérhez kapcsoljuk. A nyitott agakat a Cs teljes tablojaval foly-
tatjuk és igy tovabb.

Egy {C1, Oy, ...} megszamldalhatoan végtelen formulahalmaz tabldja
agyokerében a formulahalmaz minden formuléaja szerepel. Ezutan az
el6bbi modszerrel definialjuk a formulahalmaz tablojat.
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6.2. Az els6rendii tablo

Hogy a targyaléas egyszeriibb legyen, az (egyfajtaji) elsérendii logika
nyelv abécéjét — a nyelv kifejezGerejét megérizve — tjradefinialjuk. A
nyelv abécéjének logikan kiviili szimbolumai legyenek a kovetkezdk:

. minden £ = 1,2,... esetén k aritdst predikdtumszimbolumok
megszamlalhato sorozata,

2. Individuumvaltozok megszamlalhato sorozata,

3. az individuumvaltozoktol kiillonbozd an. (individuum-)paraméter-
szimbolumok megszamlalhato sorozata.

A nyelv szintaxisa csak a termek definialasaban valtozik: az indivi-
duumvaltozok és a paraméterszimbolumok lesznek a nyelv termjei.
Tiszta formulak azok az elsérendid formulak, amelyekben nem fordul
el paraméterszimbolum.



6.2. Az elsérendi tablo 6. A tablék médszere — tablékalkulus

A nyelv szemantikajanak megadéasa soran rogzitiink egy tetszdleges,
nemires halmazt, az univerzumot, jeloljiik ezt most is U-val.

A nyelv tiszta formulainak igazsagértékét a kiilonbozdé U feletti in-
terpretaciok és valtozokiértékelések mellett a szokadsos modon defi-
nialhatjuk.

Ha egy formulaban minden paraméterszimbolum helyére U-nak egy-
egy elemét frjuk be, an. U-formuldt nyeriink. Nyilvan a tiszta for-
mulak is U-formulak. Az Osszes — szabad individuumvaltozot nem
tartalmazo — zdrt U-formuldnak a halmazat jeloljiik EY val.

Legven A egy az uy, us, ..., up univerzumelemeket tartalmazo zart
U-formula. A az U feletti valamely Z interpretacidoban pontosan
akkor igaz, ha A-ba az wy,u9, ..., up helyére az A-ban nem szere-
pl6 x1, x9, ..., xy egymastol kilonbozd individuumvaltozokat irva.,
a nyert tiszta formula k(x;) = u; (¢ = 1,...,n) mellett igaz Z-ben.
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Hatarozzuk meg végiil a paraméterszimbolumokat is tartalmazo zart
— szabad individuumvaltozot nem tartalmazo — formulak szemanti-
kajat. Egy az ay, a9, ..., an paraméterszimbolumokat tartalmazo
zart tformulat az U teletti valamely Z interpretacio kielégiti, ha van
a paraméterszimbolumoknak U-ba valo olyan k leképezése, hogy az
k(a;) € U individuumokat rendre a; helyére frva, az igy nyert zart
U-formula igaz Z-ben.
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Legyven S C EY jelolt formuldk tetszGleges halmaza. S az U uni-
verzum ftelett S lefele zdrt, ha minden olyan esetben, amikor

1. TANBe S, akkorTAe SéTBe S,
2.TAV BeS, akkor TA € S vagy T'B € S

3. TADBe€eS, akkor FA € Svagy TB € S,

4. T—A, akkor FA € S,

5. TVxA € S, akkor minden v € U-ra TA}, € S,

6. TdxA € S, akkor legalabb egy u € U-ra T A} € S,



6. A tabléok modszere — tablékalkulus 6.2. Az elsérendii tablo

T FANB €S, akkor FA € Svagy FB € S,

8. FAVBe€S, akkor FAe€ Sés FBe S,

9. FAD Be S, akkorTAe Sés FB € S és

10. F'=A, akkor TA € S,

11. FVxzA € S, akkor legalabb egy v € U-ra FA] € S,
12. FAz A € S, akkor minden u € U-ra FA;, € S.

S C EY clsérendi Hintikka-halmaz, ha az U univerzum felett letele
zart és U-atom T-vel is és F'-fel is egyszerre nem fordul elé benne.
Tétel. |Hintikka-lemma az elsérendi logikaban.|

Ha S az U univerzum feletti elsérendd Hintikka-halmaz, akkor S
kielégithets (U felett).
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Az elsérendt tablok modszerében — az itéletlogikai tablokhoz hason-
l6an — minden formulatajtara van egy-egy levezetési szabaly, azaz
kozvetlen tablo.

TVzA F3zA
(©)

TA(z || ) FA(z || a)
T3z A FvzA
(D)

TA(z || a) (megkdotéssel) FA(z || a)

A megkotéssel” azt jelenti, hogy ha az a paraméterszimbolumot
kordbban mar bevezettiik valamely (C) vagy (D) kizvetlen tabloval
az agon, akkor nem hasznalhatjuk fel djra (mert az interpretacioban
szabadon valaszthato értéket szeretnénk majd biztositani e paraméter-
szimbolum szaméara). Ha viszont a (C) kozvetlen tablot alkalmazzuk
egy ilyven a un. krittkus paraméterszimbolum bevezetése utan, a fel-
hasznalhato C-ben.
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Egy tiszta formula jelolt tablojat a kozvetlen tablok segitségével az
itéletlogikal definici6 kiterjesztésével adhatjuk meg:

(C) Ha van TVxA, illetve FdxA alaka jelolt formula a gyokérbdl
a D csicsbha vezetd tton, akkor D-hez kapcsoljuk ezen ut foly-
tatasakéent T' A7 illetve F'AY formulat mint 4 cstcsot, ahol a
tetszbleges paraméterszimbolum.

(D) Ha van FVz A, illetve Tdx A alaku nem feldolgozott” jelolt for-
mula a gyokérbdl a D csitcsba vezeté tton, akkor D-hez kap-
csoljuk ezen ut folytatasaként T'AY | illetve F'AY formulat mint
1j cstcsot, ahol a kritikus paraméterszimbolum.
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A (D) kozvetlen tablot liberalizdlhatjuk a kévetkezdk szerint:

Ha az a paraméterszimbolumot ] paraméterszimbolumként vezet-
tiik be egy (C) kozvetlen tabloval a tablo aktualis d4gan, akkor késéhb
egy (D) kozvetlen tabloval djra felhasznalhatjuk (mivel a (C)-vel
bevezetett paraméterszimbolum interpretaciobeli értéke tetszdleges,
tehat a (D)-vel bevezetett érték is megfelel szamara.) Ezzel a libe-
ralizalassal a tablo sok esetben rovidithetd.
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Peélda.
A Jy(JzP(x) D P(y)) formula jelolt tabloja

1. nem liberalizalt paramétertechnikaval:

F 3y(3zP(x) D P(y))

F 3xP(z) D P(a)

T JxP(x)
|
F P(a)

T P(b)

F 3xP(z) D P(b)

F P(b)
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2. liberalizalt paramétertechnikaval:

F 3y(FzP(x) > P(y))

F 3xP(z) D P(a)

T JxP(x)
|
F P(a)

T P(a)
X
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A tablo egy aga zart, ha az agon (elsérendii) komplemens literalpar
fordul els, és a tablo akkor zart, ha minden aga zart, egyébként a
tablo nyitott.

Tétel. |Az elsGrendt tablo helyessége. |
Ha az elsérendd T'A formula tabloja zart, akkor A kielégithetetlen.

BIZONYITAS. Ha egy tablo zart, akkor T'A nem lehet igaz egyetlen
interpretacioban sem, hisz egyetlen aga sem lehet igaz egyetlen inter-
pretacioban sem. Tehat a gyokérben 1évé formula kielégithetetlen.
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A tablo egy aga befejezett, ha az agon 1évé tel nem dolgozott for-
mulak literalok, és ha egy TVx A, illetve FdxA formula és egy a
paraméterszimbolum elGfordul az agon, akkor T'A% . illetve F'AY is
szerepel ezen az agon. A tablo befejezett, ha minden aga befejezett.

Ezutan olyan szisztematikus tabloépitési stratégiat vezetiink be, amely
biztositja, hogy befejezett agak allhassanak eld:
e ElGszor az (A), a (B) és a (D) tabloépitési szabalyokat hajtjuk
végre, amig lehet.
e Ezutéan a (C) kozvetlen tablok alkalmazéasa kévetkezik az dgon
el6forduld paraméterszimbolumok segitségével.
A tabloépitést addig folytatjuk, amig az ag vagy befejezett, vagy
zart nem lesz.
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Tétel.
Egy betejezett szisztematikus tablo nyitott agai kielégithetdk.

BIZONYITAS. Egy befejezett szisztematikus tablo nyitott agan egy
els6rend Hintikka-halmaz all el6, ahol U az 4gon szerepld paraméters-
zimbolumok halmaza. Egy elsérendd Hintikka-halmaz pedig kielégi-
thetd.
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Tétel. |Az elsérendi tablo teljessége. |
Ha az A els6rendi formula logikai torvény, akkor van az F'A jelolt
formulanak zart, befejezett tabloja.

BIZONYITAS. Legyen A els6rendi logikai torvény. Legyen T az F'A
jelolt formula betejezett szisztematikus tabloja. Ha T-nek lenne nyi-
tott dga, akkor (és igy —A is) kielégithetd lenne, ellentétben azzal,
hogy A torvény.



