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1. fejezet

Logikai kalkulusok

Felépíthető a logika szemantikai fogalmakra hivatkozás nélkül is:

szintaktika szemantika
logikai nyelv interpretáció
formula logikai érték
levezethetőség következmény

A levezethetőség fogalmát kalkulus megadásával definiálhatjuk.
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1. Logikai kalkulusok

Egy kalkulus megadásakor felsoroljuk az

• alapformuláit és a

• levezetési szabályait.

Ekkor definiálható a levezethetőség fogalma. Egy Γ formulahalmaz-
ból levezethető a B formula (jelölése: Γ ⊢ B)

• ha B alapformula, vagy B ∈ Γ,

• illetve ha van olyan levezetési szabály, mely B-t előállítja, és
az(ok) a formula(ák), amely(ek)ből ez a levezetési szabály B-t
előállítja, az(ok) Γ-ból levezethető(ek).



1. Logikai kalkulusok

Egy kalkulus helyes, ha Γ ⊢ B, akkor Γ |= B.
Egy kalkulus teljes, ha Γ |= B, akkor Γ ⊢ B.
Egy kalkulus adekvát, ha helyes is, teljes is.

Egy logikai rendszer megalkotásakor

• először egy szemantikai rendszert definiálunk,

• majd megkísérlünk ehhez legalább helyes, de ha lehet, adekvát
logikai kalkulust szerkeszteni.



2. fejezet

A predikátumkalkulus

Alapsémák:

1. A ⊃ (B ⊃ A)

2. (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

3. A ⊃ (B ⊃ A ∧ B)

4. A ∧ B ⊃ A

5. A ∧ B ⊃ B

6. (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ B ⊃ C))

7. A ⊃ A ∨ B
7



2. A predikátumkalkulus

8. B ⊃ A ∨ B

9. (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A)

10. ¬¬A ⊃ A

11. ∀xA(x) ⊃ A(x)xt

12. ∀x(C ⊃ A(x)) ⊃ (C ⊃ ∀xA(x)), x 6∈ Fv(C)

13. A(x)xt ⊃ ∃xA(x)

14. ∀x(A(x) ⊃ C) ⊃ (∃xA(x) ⊃ C), x 6∈ Fv(C)

Levezetési szabályok:

modus ponens
A A ⊃ B

B

általánosítási szabály
A

∀xA



2. A predikátumkalkulus

A sémákban és szabályokban az

• A, B, C formulákkal;

• x változóval;

• t x-szel azonos típusú termmel

helyettesíthető be. Az alapsémákból így alapformulákat kapunk.

Lemma.
A predikátumkalkulus minden alapformulája logikai törvény.

Lemma.
A, A ⊃ B |= B

Lemma.
Ha Γ |= A(x) és x 6∈ Par(Γ), akkor Γ |= ∀xA(x).



2. A predikátumkalkulus

2.1. definíció. (Formula-fa és magassága)
• Minden A formula 1 magasságú formula-fa, melyben A alsó for-

mula, és nincs nála feljebb levő formula;

• Ha D1 m1, D2 m2 magasságú olyan formula-fák, melyben az alsó
formulák A és A ⊃ B, akkor

D1 D2

B
is formula-fa B alsó formulával; B-nél D1 és D2 minden formulája
feljebb van; a formula-fa magassága max {m1, m2} + 1;

• ha D m magasságú olyan formula-fa, amelyben az alsó formula
A, akkor a

D

∀xA
alakzat is formula-fa, melyben ∀xA alsó formula, melynél D min-
den formulája feljebb van, és a formula-fa magassága m + 1.



2. A predikátumkalkulus

A formulafában azon formulák, melyeknél nincs feljebb levő:

• alapformulák,

• hipotézisek, vagy nyílt premisszák.

Példa.

Q(x) ⊃ P
∀x(Q(x) ⊃ P ) ∀x(Q(x) ⊃ P ) ⊃ (∃xQ(x) ⊃ P )

∃xQ(x) ⊃ P

3 magasságú formulafa
alsó formula: ∃xQ(x) ⊃ P
alapformula: ∀x(Q(x) ⊃ P ) ⊃ (∃xQ(x) ⊃ P )
hipotézis: Q(x) ⊃ P



2. A predikátumkalkulus

2.2. definíció. Levezetés-fa egy formula-fa, melyben ha A-ból
az általánosítás szabályával akarjuk a ∀xA-t nyerni, akkor x nem
paraméter egyetlen a ∀xA-nál feljebb levő hipotézisben sem.

2.3. definíció. A Γ formulahalmazból a B formula levezethető,
ha készíthető olyan levezetés-fa, melyben B alsó formula, és a hi-
potésisek mind elemei Γ-nak.
Jelölése: Γ ⊢ B (szekvencia)

2.4. tétel. A predikátumkalkulus adekvát logikai kalkulus.



2. A predikátumkalkulus

2.5. tétel. (Helyesség.) Ha Γ ⊢ B, akkor Γ |= B.

Bizonyítás. A Γ ⊢ B szekvenciát megalapozó levezetésfa ma-
gassága szerinti indukcióval bizonyítunk. Legyen a levezetésfa ma-
gassága k.

• k = 1 esetén

– vagy axióma B, ekkor |= B, így nyilván Γ |= B is.

– vagy B ∈ Γ, azaz hipotézis, ekkor minden olyan interpretá-
cióban és változókiértékelés mellett, amikor minden hipotézis
igaz, nyilván B is igaz, tehát Γ |= B.

• Az indukciós feltevésünk szerint legyen igaz az állítás minden n-
nél nem magasabb formulafa esetén.



2. A predikátumkalkulus

• Legyen most k = n + 1. Ha a Γ |= B szekvenciát megalapozó
formulafát

– a modus ponens levezetési szabállyal nyertük
a Γ ⊢ A és Γ ⊢ A ⊃ B szekvenciákat megalapozó, legfeljebb
n magasságú levezetésfákból. Az indukciós feltevés miatt ek-
kor igaz az állítás, tehát Γ |= A és Γ |= A ⊃ B. De minden
olyan interpretációban és változókiértékelés mellett, amikor a
Γ-beli hipotézisek mind igazak, ezek szerint igazak ezen inter-
pretációkban és változókiértékelések mellett az A és az A ⊃ B
formula is, így a B formula is. Tehát Γ |= B is.



2. A predikátumkalkulus

– az általánosítás szabályával nyertük, B tehát ∀xA(x) alakú.
Az n magasságú levezetésfa, amiből nyertük, a Γ ⊢ A szekven-
ciát alapozza meg, ahol x 6∈ Par(Γ). Az indukciós feltevés mi-
att ekkor igaz az állítás, tehát Γ |= A(x). De minden olyan in-
terpretációban és változókiértékelés mellett, amikor a Γ-beli hi-
potézisek mind igazak, ezek szerint igaz ezen interpretációkban
és változókiértékelések mellett az A(x) is. Mivel x 6∈ Par(Γ),
minden ilyen változókiértékelés minden x-variánsa mellett is
igazak a hipotézisek, így az A(x) is, tehát a ∀xA(x) is. Ezért
Γ |= ∀xA(x).



2.1. A természetes levezetés 2. A predikátumkalkulus

2.1. A természetes levezetés

Az azonosság törvénye
Γ, A ⊢ A

Struktúrális szabályok

bővítés szűkítés

Γ ⊢ A

Γ, B ⊢ A

Γ, B, B, ∆ ⊢ A

Γ, B, ∆ ⊢ A

felcserélés vágás

Γ, B, C, ∆ ⊢ A

Γ, C, B, ∆ ⊢ A

Γ ⊢ A ∆, A ⊢ B

Γ, ∆ ⊢ B



2. A predikátumkalkulus 2.1. A természetes levezetés

Logikai szabályok
BEVEZETÉS ELTÁVOLÍTÁS

implikáció
Γ, A ⊢ B

Γ ⊢ A ⊃ B

Γ ⊢ A Γ ⊢ A ⊃ B

Γ ⊢ B

konjunkció
Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B

Γ, A, B ⊢ C

Γ, A ∧ B ⊢ C

diszjunkció
Γ ⊢ A

Γ ⊢ A ∨ B

Γ, A ⊢ C Γ, B ⊢ C

Γ, A ∨ B ⊢ C

Γ ⊢ B

Γ ⊢ A ∨ B



2.1. A természetes levezetés 2. A predikátumkalkulus

BEVEZETÉS ELTÁVOLÍTÁS

negáció
Γ, A ⊢ B Γ, A ⊢ ¬B

Γ ⊢ ¬A

Γ ⊢ ¬¬A

Γ ⊢ A

ekvivalencia
Γ, A ⊢ B Γ, B ⊢ A

Γ ⊢ A ≡ B

Γ ⊢ A Γ ⊢ A ≡ B

Γ ⊢ B

Γ ⊢ B Γ ⊢ A ≡ B

Γ ⊢ A



2. A predikátumkalkulus 2.1. A természetes levezetés

BEVEZETÉS ELTÁVOLÍTÁS

univerzális kvantor
Γ ⊢ A(x)

Γ ⊢ ∀xA(x)
(x 6∈ Par(Γ))

Γ ⊢ ∀xA(x)

Γ ⊢ A(x)xt

egzisztenciális kvantor
Γ ⊢ A(x)xt

Γ ⊢ ∃xA(x)

Γ, A(x) ⊢ B

Γ,∃xA(x) ⊢ B
(x 6∈ Par(Γ))



2.1. A természetes levezetés 2. A predikátumkalkulus

2.6. tétel. (Dedukció-tétel.)
Ha Γ, A ⊢ B, akkor Γ ⊢ A ⊃ B.

Bizonyítás. A Γ, A ⊢ B szekvenciát megalapozó levezetésfa ma-
gassága szerinti indukcióval bizonyítunk. Legyen a levezetésfa ma-
gassága k.

• k = 1 esetén

– vagy axióma B, vagy B ∈ Γ, ekkor

B ; B ⊃ (A ⊃ B)
A ⊃ B

így Γ ⊢ A ⊃ B.

– vagy B = A. De ekkor ⊢ A ⊃ A.

• Az indukciós feltevésünk szerint legyen igaz az állítás minden n-
nél nem magasabb formulafa esetén.



2. A predikátumkalkulus 2.1. A természetes levezetés

• Legyen most k = n + 1. Ha a Γ, A ⊢ B szekvenciát megalapozó
formulafát

– a modus ponens levezetési szabállyal nyertük
a Γ, A ⊢ C és Γ, A ⊢ C ⊃ B szekvenciákat megalapozó,
legfeljebb n magasságú levezetésfákból. Az indukciós feltevés
miatt ekkor igaz az állítás, tehát
Γ ⊢ A ⊃ C és Γ ⊢ A ⊃ (C ⊃ B).

Γ
Γ ...
... A ⊃ (C ⊃ B); (A ⊃ (C ⊃ B)) ⊃ ((A ⊃ C) ⊃ (A ⊃ B))

A ⊃ C ; (A ⊃ C) ⊃ (A ⊃ B)
A ⊃ B

Tehát Γ ⊢ A ⊃ B.



2.1. A természetes levezetés 2. A predikátumkalkulus

– az általánosítás szabályával nyertük, B tehát ∀xC(x) alakú.
Az n magasságú levezetésfa, amiből nyertük, a Γ, A ⊢ C(x)
szekvenciát alapozza meg, ahol x 6∈ Par(Γ, A). Az indukciós
feltevés miatt ekkor igaz az állítás, tehát Γ ⊢ A ⊃ C(x).

Γ
...

A ⊃ C(x)
∀x(A ⊃ C(x)) ⊃ (A ⊃ ∀xC(x)) ∀x(A ⊃ C(x))

A ⊃ ∀xC(x)

Tehát Γ ⊢ A ⊃ ∀xC(x).



3. fejezet

Formulák normálformái

3.1. Kvantormentes formulák normálformái

• Egy atomi formulát vagy negáltját literálnak fogjuk nevezni.

• Elemi konjunkció

1. egy literál,

2. vagy egy elemi konjunkció és egy literál konjunkciója;

• Elemi diszjunkció

1. egy literál,

2. vagy egy elemi diszjunkció és egy literál diszjunkciója.
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3.1. Kvantormentes formulák normálformái 3. Formulák normálformái

• Konjunktív normálforma

1. egy elemi diszjunkció,

2. vagy egy konjunktív normálforma és egy elemi diszjunkció kon-
junkciója.

• Diszjunktív normálforma

1. egy elemi konjunkció,

2. vagy egy diszjunktív normálforma és egy elemi konjunkció disz-
junkciója.

Lemma.
Az elsőrendű logikai nyelv minden kvantormentes formulájához
konstruálható vele logikailag ekvivalens konjunktív és diszjunktív
normálforma.



3. Formulák normálformái 3.1. Kvantormentes formulák normálformái

Jelek közötti összefüggések: (1) ¬(A ⊃ B) ∼ A ∧ ¬B

(2) A ⊃ B ∼ ¬A ∨ B

Kétszeres tagadás: (3) ¬¬A ∼ A

De Morgan törvényei: (4) ¬(A ∧ B) ∼ ¬A ∨ ¬B

(5) ¬(A ∨ B) ∼ ¬A ∧ ¬B

Disztributivitás: (6) A ∧ (B ∨ C) ∼ (A ∧ B) ∨ (A ∧ C)

(7) A ∨ (B ∧ C) ∼ (A ∨ B) ∧ (A ∨ C)



3.1. Kvantormentes formulák normálformái 3. Formulák normálformái

A konstrukció lépései:

1. a logikai jelek közötti összefüggések alapján az implikációkat el-
távolítjuk;

2. De Morgan törvényeivel elérjük, hogy negáció csak atomokra vo-
natkozzon;

3. a disztributivitást felhasználva elérjük, hogy a konjunkciók és
diszjunkciók megfelelő sorrendben kövessék egymást;

4. esetleg egyszerűsítünk.



3. Formulák normálformái 3.1. Kvantormentes formulák normálformái

Példa.
(A ⊃ B) ∨ ¬(¬B ⊃ A ∨ ¬C)

↓ implikáció-eltávolítás

(¬A ∨ B) ∨ (¬B ∧ ¬(A ∨ ¬C))

↓ negáció atomokra vonatkozik

(¬A ∨ B) ∨ (¬B ∧ ¬A ∧ C)

↓ konjunkciók diszjunkciója

(¬A ∨ B ∨ ¬B) ∧ (¬A ∨ B ∨ ¬A) ∧ (¬A ∨ B ∨ C)

↓ egyszerűsítés
(¬A ∨ B) ∧ (¬A ∨ B ∨ C)

↓ egyszerűsítés
¬A ∨ B



3.2. Kvantoros formulák prenex alakja 3. Formulák normálformái

3.2. Kvantoros formulák prenex alakja

Egy Q1x1Q2x2 . . . QnxnA (n ≥ 0) alakú formulát, ahol a A kvan-
tormentes formula, prenex alakú formulának nevezünk.

Példa.
A ∀x∀y(P (x, y) ⊃ ¬Q(x)), a ∃x∀y(P (x, y)∨R(x, z)), a ¬P (x, x)
formulák prenexformulák, viszont a ∀x∀yP (x, y) ⊃ ¬Q(x) formula
nem prenexformula.

Lemma.
Egy elsőrendű logikai nyelv tetszőleges formulájához konstruálható
vele logikailag ekvivalens prenex alakú formula.



3. Formulák normálformái 3.2. Kvantoros formulák prenex alakja

De Morgan kvantoros törvényei (1) ¬∀xA ∼ ∃x¬A

(2) ¬∃xA ∼ ∀x¬A

Kvantorok kétoldali kiemelése változótisztaság

(3) ∀xA ∧ ∀yB ∼ ∀x(A ∧ B(y||x))

(4) ∃xA ∨ ∃yB ∼ ∃x(A ∨ B(y||x))

Kvantorok egyoldali kiemelése változótisztaság

(5) QxA ∧ B ∼ Qx(A ∧ B)

(6) QxA ∨ B ∼ Qx(A ∨ B)



3.2. Kvantoros formulák prenex alakja 3. Formulák normálformái

A konstrukció lépései:

1. változó-tiszta alakra hozzuk a formulát;

2. alkalmazzuk De Morgan kvantoros és a kvantorkiemelésre vonat-
kozó logikai törvényeket.

Példa.
∀xP (x) ⊃ ¬∃xQ(x)

↓ változó-tiszta alakra hozás

∀xP (x) ⊃ ¬∃yQ(y)

↓ egyoldali kvantorkiemelés

∀xP (x) ⊃ ∀y¬Q(y)

∃x(P (x) ⊃ ∀y¬Q(y))

∃x∀y(P (x) ⊃ ¬Q(y))



3. Formulák normálformái 3.2. Kvantoros formulák prenex alakja

3.2.1. A prenex-konjunktív vagy prenex-diszjunktív normálalakra hozás algoritmusa

1. Az implikációk helyére a logikai jelek közötti összefüggések alapján
velük ekvivalens implikációt nem tartamazó formulákat írunk.

2. A kétszeres tagadás és De Morgan törvényeit alkalmazzuk a for-
mulában szereplő negációkra addig, amíg minden negáció hatás-
köre atomi formula nem lesz.

3. Az így nyert formulához vele kongruens (logikailag ekvivalens)
változóiban tiszta formulát konstruálunk.

4. A kvantorkiemelésre vonatkozó ekvivalenciákat alkalmazzuk ad-
dig, amíg az összes kvantor a formula elé nem kerül. Ezzel a
formulát prenexalakra hoztuk.

5. Prenex-konjunktív, illetve prenex-diszjunktív normálformula elő-
állításához a kapott prenexformula magját a disztributivitást al-
kalmazva konjunktív, illetve diszjunktív normálformára hozzuk.



3.2. Kvantoros formulák prenex alakja 3. Formulák normálformái

Példa. Hozzuk a

∀x(∀yP (x, y)∧∃y¬(Q(y) ⊃ P (x, a))) ⊃ ¬∀x∃y(P (y, x) ⊃ R(x, y))

formulát prenexalakra.

1. Az implikációk átírása:

¬(∀x(∀yP (x, y)∧∃y(Q(y)∧¬P (x, a))))∨¬∀x∃y(¬P (y, x)∨R(x, y)).

2. A kétszeres tagadás és De Morgan törvényeinek alkalmazása:

∃x(∃y¬P (x, y)∨∀y(¬Q(y)∨P (x, a)))∨∃x∀y(P (y, x)∧¬R(x, y)).

3. Az egzisztenciális kvantor kétoldali kiemelésére vonatkozó ekvi-
valencia alkalmazása:

∃x(∃y¬P (x, y)∨∀y(¬Q(y)∨P (x, a))∨∀y(P (y, x)∧¬R(x, y))).

4. A formulában az y változó három prefixumban is meg van ne-
vezve. Két helyen a kötött változókat szabályosan átnevezzük a
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formulában még nem szereplő y1 és y2 változókra:

∃x(∃y¬P (x, y)∨∀y1(¬Q(y1)∨P (x, a))∨∀y2(P (y2, x)∧¬R(x, y2))).

5. Ezután már mindegyik kvantor kiemelhető (tetszőleges sorrend-
ben), egy lehetséges eredmény:

∃x∃y∀y1∀y2(¬P (x, y)∨(¬Q(y1)∨P (x, a))∨(P (y2, x)∧¬R(x, y2))).

6. A formula magja diszjunktív normálforma, de a disztribúció fel-
használásával átírható konjunktív normálformába, ha az a további
feldolgozás szempontjából úgy célszerű:

∃x∃y∀y1∀y2((¬P (x, y) ∨ ¬Q(y1) ∨ P (x, a) ∨ P (y2, x)) ∧

∧ (¬P (x, y) ∨ ¬Q(y1) ∨ P (x, a) ∨ ¬R(x, y2))).
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3.3. Skolem-normálforma

A ∀x∀y(P (x, y) ⊃ ¬Q(x)) prenexformula prefixumában csak uni-
verzális kvantorok vannak. Az ilyen, azaz ∀x1∀x2 . . .∀xnA alakú
formulák fontosak lesznek a továbbiakban.

Univerzális Skolem-formulának nevezzük az olyan prenexformulát,
amelynek a prefixumában csak univerzális kvantor szerepel. Ha a
Skolem-formula magja konjunktív normálforma, akkor a formulát
Skolem-normálformának nevezzük.

Tétel.
Tetszőleges A elsőrendű formulához konstruálható olyan univerzális
Skolem-formula, mely pontosan akkor kielégíthetetlen, ha A kielégí-
thetetlen.
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3.3.1. Prenexformula „átírása” univerzális Skolem-formába

1. Új Skolem-szimbólumok bevezetése:

Vizsgáljuk meg a

∀x1∀x2 . . .∀xj−1∃xjQj+1xj+1 . . . QnxnA

prenexformulát, amelynek a prefixumából az egzisztenciális kvan-
torokat eliminálni szeretnénk. Legyen a prefixumban az első eg-
zisztenciális kvantor a prefixum j-edik kvantora.

− Ha j = 1, akkor minden olyan interpretációban és κ válto-
zókiértékelés esetén, amely mellett a formula igaz, az inter-
pretáció Uπx1

univerzumában van legalább egy u ∈ Uπx1
, hogy

κ∗(x1) = u mellett a Q2x2 . . . QnxnA formula igaz lesz. Ezt
az elemet Skolem-konstansnak nevezzük.
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Bővítsük ki az elsőrendű nyelvünket egy új πx1 fajta s konst-
ansszimbólummal, mely az egyes interpretációk univerzumai-
ban rendre egy-egy Skolem-konstanst – ha egyáltalán van ilyen
– nevez meg.

− Legyen most j > 1. Egy I interpretációban valamely κ válto-
zókiértékelés mellett a

∀x1∀x2 . . .∀xj−1∃xjQj+1xj+1 . . . QnxnA

formula pontosan akkor igaz, ha κ-ban az x1, x2, . . . , xj−1 vál-
tozókhoz bármilyen más – az interpretáció megfelelő univerzu-
maiból vett – elemet rendelve mindig van legalább egy elem
Uπxj

-ben, amellyel pedig az xj változót értékelve az így nyert
változókiértékelés mellett a ∃xj hatásköre igaz.
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Azaz minden (u1, u2, . . . , uj−1) ∈ Uπx1
× . . . × Uπxj−1

elem

j−1-eshez tartozik legalább egy u ∈ Uπxj
, hogy κ azon κ′

variánsa mellett, melyre

κ′(x) =







ui ha x ∈ {x1, x2, . . . , xj−1},
u ha x = xj,
κ(x) egyébként,

a ∃xj hatásköre igaz lesz. Legyen

fI : Uπx1
× . . . × Uπxj−1

→ Uπxj

egy függvény, amely minden (u1, u2, . . . , uj−1)-hez egy ilyen u
értéket rendel. Ezt a függvényt Skolem-függvénynek nevezzük.
Bővítsük ki az elsőrendű nyelvünket egy új f (πx1, . . . , πxj−1, πxj)
alakú függvényszimbólummal. A kibővített nyelv interpretálása
során f -et, ha van Skolem-függvény, Skolem-függvénnyel inter-
pretáljuk.
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2. Kvantoreliminálási lépés:

Ezután a prefixumból elhagyjuk a ∃xj-t, és a formula magjá-
ban elvégezzük az (xj ‖ s), illetve az (xj ‖ f (x1, x2, . . . , xj−1))
termhelyettesítést. A kapott

Q2x2 . . . QnxnA(x1 ‖ s),

illetve

∀x1∀x2 . . .∀xj−1Qj+1xj+1 . . . QnxnA(xj ‖ f (x1, x2, . . . , xj−1))

formula az eredeti formulában szereplő első egzisztenciális kvan-
tort már nem tartalmazza.
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Megmutatjuk, hogy ezzel a lépéssel az eredeti formulával a kielégít-
hetőség szempontjából egyenértékű formulát kaptunk.

(a) Egyrészt minden olyan interpretációban, amelyben az eredeti
formula valamely változókiértékelés mellett igaz volt, az új
függvényszimbólumot (konstansszimbólumot) interpretálhatjuk
egy Skolem-függvénnyel (Skolem-konstanssal) úgy, hogy a vál-
tozókiértékelés mellett igaz lesz az átalakított formula is.

(b) Ha pedig az eredeti formula minden interpretációban, minden
változókiértékelés mellett hamis volt, azaz kielégíthetetlen, ak-
kor az átalakított formula is az lesz, mivel ekkor nincs Skolem-
függvény (konstans) egyetlen interpretáló struktúrában sem.

3. Az új Skolem-szimbólumok bevezetésének és a kvantoreliminálás-
nak a lépéseit végrehajtjuk a soron következő egzisztenciális kvan-
torra, amíg minden egzisztenciális kvantort nem elimináltunk.
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Példa. Írjuk át Skolem-normálformába a

∃x∃y∀y1∀y2((¬P (x, y) ∨ ¬Q(y1) ∨ P (x, a) ∨ P (y2, x)) ∧

∧ (¬P (x, y) ∨ ¬Q(y1) ∨ P (x, a) ∨ ¬R(x, y2)))

prenex-konjunktív formulát. A két egzisztenciális kvantor a prefi-
xum első két kvantora, ezért két Skolem-konstanst kell bevezetnünk.
Jelöljük az a-tól különböző két új konstanst s1 és s2-vel.

∀y1∀y2((¬P (s1, s2) ∨ ¬Q(y1) ∨ P (s1, a) ∨ P (y2, s1)) ∧

∧ (¬P (s1, s2) ∨ ¬Q(y1) ∨ P (s1, a) ∨ ¬R(s1, y2))).
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3.4. Klózok, Horn-klózok

Az ítéletlogikában az elemi diszjunkciót klóznak is nevezik.
Az elsőrendű klóz pedig egy olyan zárt univerzális Skolem-formula,
amelynek a magja elemi diszjunkció.

Egy Skolem-normálforma magja egy konjunktív normálforma.
Ha egy zárt K Skolem-normálformára „visszafelé” alkalmazzuk a
konjunkcióra vonatkozó kétoldali kvantorkiemelési szabályt, akkor
elsőrendű klózok konjunkcióját kapjuk. Legyen S ezen klózok hal-
maza.

Tétel.
Legyen K egy zárt Skolem-normálforma, S pedig a K magjából
nyert elsőrendű klózoknak a halmaza. K pontosan akkor kielégíthe-
tetlen, ha S kielégíthetetlen.
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Példa. Az előző példában kapott Skolem-normálformában alkalmaz-
zuk a kvantorkiemelésre vonatkozó ekvivalenciát „visszafelé”:

∀y1∀y2(¬P (s1, s2) ∨ ¬Q(y1) ∨ P (s1, a) ∨ P (y2, s1)) ∧

∧ ∀y1∀y2(¬P (s1, s2) ∨ ¬Q(y1) ∨ P (s1, a) ∨ ¬R(s1, y2)).

Hozzuk a formulát változóiban tiszta alakra:

∀y1∀y2(¬P (s1, s2) ∨ ¬Q(y1) ∨ P (s1, a) ∨ P (y2, s1)) ∧

∧ ∀x1∀x2(¬P (s1, s2) ∨ ¬Q(x1) ∨ P (s1, a) ∨ ¬R(s1, x2)).

Mivel egy elsőrendű klóz minden változója univerzálisan kvantált, az
elsőrendű klózhalmazokban a klózok prefixumait (helykímélési céllal)
nem tüntetjük fel. Tehát a fenti elsőrendű klózhalmazt így adjuk
meg:

{

¬P (s1, s2) ∨ ¬Q(y1) ∨ P (s1, a) ∨ P (y2, s1),

¬P (s1, s2) ∨ ¬Q(x1) ∨ P (s1, a) ∨ ¬R(s1, x2)
}

.



3. Formulák normálformái 3.4. Klózok, Horn-klózok

Példa. Írjuk át Skolem-normálformába a

∀x∃y∃z((¬P (x, y) ∧ Q(x, z)) ∨ R(x, y, z))

prenexformulát. Először írjuk át a formula magját konjunktív nor-
málformába:

∀x∃y∃z((¬P (x, y) ∨ R(x, y, z)) ∧ (Q(x, z) ∨ R(x, y, z))).

A Skolem-függvények egyváltozósak, vezessünk be az elsőrendű nyelvbe
jelölésükre két új függvényszimbólumot: f -et és g-t. A Skolem-
normálforma:

∀x((¬P (x, f (x))∨R(x, f (x), g(x)))∧(Q(x, g(x))∨R(x, f (x), g(x)))).

Elsőrendű klózok konjunkciójaként felírva a formulát:

∀x(¬P (x, f (x))∨R(x, f (x), g(x)))∧∀x(Q(x, g(x))∨R(x, f (x), g(x))).

A változóiban tiszta elsőrendű klózhalmaz pedig:
{

¬P (x, f (x)) ∨ R(x, f (x), g(x)), Q(y, g(y)) ∨ R(y, f (y), g(y))
}

.
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3.4.1. Horn-klózok

A Horn-klózok olyan klózok, melyekben legfeljebb egy pozitív literál
van.

• tény: A

• szabály: ¬B1 ∨ ¬B2 ∨ . . . ∨ ¬Bn ∨ A

• cél: ¬B1 ∨ ¬B2 ∨ . . . ∨ ¬Bn

Tehát a Horn-klózok olyan univerálisan kvantált zárt formulák, me-
lyek magja a szabályok esetén

B1 ∧ B2 ∧ . . . ∧ Bn ⊃ A,

cél esetén pedig
¬(B1 ∧ B2 ∧ . . . ∧ Bn)

alakban is írható.



4. fejezet

Termhelyettesítés

Egy olyan függvényt, amely az elsőrendű nyelv véges sok változóján
van értelmezve és minden változóhoz a változó fajtájával megegyező
fajtájú termet rendel, termhelyettesítésnek nevezünk. Üres a term-
helyettesítés, ha az értelmezési tartománya üres.
Legyen Dom(θ) = {x1, x2, . . . , xk} és θ(xi) = ti minden i =
1, 2, . . . , k-ra (k ≥ 1). θ-t megadhatjuk táblázattal:

θ =

(

x1 x2 . . . xk
t1 t2 . . . tk

)

vagy felsorolással:

θ = (x1, x2, . . . , xk ‖ t1, t2, . . . , tk)
45
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θ−x jelölje azt a termhelyettesítést, melyre Dom(θ−x) = Dom(θ) \
{x} és minden z ∈ Dom(θ−x) esetén θ−x(z) = θ(z).

Legyen θ tetszőleges termhelyettesítés.

1. Ha c ∈ Cnst , akkor (cθ) ⇋ c.

2. Ha x változó, akkor (xθ) ⇋

{

x, ha x /∈ Dom(θ)
θ(x), ha x ∈ Dom(θ)

3. (f (t1, t2, . . . , tk)θ) ⇋ f ((t1θ), (t2θ), . . . , (tkθ))

4. (P (t1, t2, . . . , tk)θ) ⇋ P ((t1θ), (t2θ), . . . , (tkθ))

5. (¬Aθ) ⇋ ¬(Aθ).

6. ((A ◦ B)θ) ⇋ ((Aθ) ◦ (Bθ)), ahol ◦ binér logikai összekötőjel.

7. (QxAθ) ⇋ Qx(Aθ−x), ahol Q kvantor.
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A θ termhelyettesítés megengedett a K kifejezés számára, ha minden
x ∈ Dom(θ) esetén x minden K-beli szabad előfordulása kívül esik
a θ(x) term valamennyi változóját megnevező kvantor hatáskörén.

1. Termek és atomi formulák számára minden termhelyettesítés me-
gengedett.

2. ¬A számára egy termhelyettesítés megengedett, ha megengedett
A számára.

3. (A ◦ B) számára egy termhelyettesítés megengedett, ha megen-
gedett A és B számára is.

4. QxA számára egy θ termhelyettesítés megengedett, ha

(a) egyetlen z ∈ Par(QxA) ∩ Dom(θ) változó esetén sem fordul
elő x a θ(z) termben,

(b) θ−x pedig megengedett A számára.
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Példa.
A ∀x̃R(x̃, f (x, x̃)) ⊃ ∃xQ(x, f (x, x̃)) formula számára az

(

x y x̃
y x f (y, ỹ)

)

termhelyettesítés megengedett, az
(

x y x̃
y x f (x, ỹ)

)

termhelyettesítés pedig nem megengedett, mert a helyettesítendő
szabad előfordulású x̃ az x-et kötő ∃ hatáskörében van, és a helyére
beírandó f (x, ỹ) termben is előfordul az x változó.
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Legyen K egy kifejezés és θ egy termhelyettesítés. Konstruáljunk
meg egy K-val kongruens olyan K ′ formulát, amely számára θ me-
gengedett. Ekkor a (K ′θ) kifejezés a θ termhelyettesítés K-ban való
szabályos végrehajtásának eredménye. Jelölése: [Kθ].

1. Ha K term vagy atomi formula, akkor [Kθ] ⇋ (Kθ).

2. [¬Aθ] ⇋ ¬[Aθ]

3. [(A ◦ B)θ] ⇋ ([Aθ] ◦ [Bθ])

4.(a) Ha egyetlen z ∈ Par(QxA)∩Dom(θ) változó esetén sem for-
dul elő a θ(z) termben x, akkor [QxAθ] ⇋ Qx[Aθ−x].

(b) Ha van olyan z ∈ Par(QxA) ∩ Dom(θ) változó, hogy x pa-
raméter θ(z)-ben, akkor válasszunk egy új változót – például
u-t –, mely nem fordul elő sem QxA-ban, sem Rng(θ) termjei-
ben, és

[QxAθ] ⇋ Qu[A(x ‖ u)θ−x].
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Példa.
A ∀x̃R(x̃, f (x, x̃)) ⊃ ∃xQ(x, f (x, x̃)) formulában az

(

x y x̃
y x f (x, ỹ)

)

termhelyettesítés szabályos végrehajtásának eredménye a

∀x̃R(x̃, f (y, x̃)) ⊃ ∃zQ(z, f(z, f(x, ỹ)))

formula.
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Legyenek

θ =

(

x1 x2 . . . xk
t1 t2 . . . tk

)

és η =

(

y1 y2 . . . yℓ
s1 s2 . . . sℓ

)

egy nyelv termhelyettesítései. θ és η kompozícióján a

(θη) =

(

x1 x2 . . . xk yi1 yi2 . . . yij
(t1η) (t2η) . . . (tkη) si1 si2 . . . sij

)

termhelyettesítést értjük, ahol

{yi1, yi2, . . . , yij} = Dom(η) \ Dom(θ).
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Példa.
Legyenek

θ =

(

x y x̃
y x f (x, ỹ)

)

és η =

(

x y x̃ ỹ z̃
c z ỹ x̃ f (x, x̃)

)

Lp1 termhelyettesítései. Ekkor

(θη) =

(

x y x̃ ỹ z̃
z c f (c, x̃) x̃ f (x, x̃)

)

és

(ηθ) =

(

x y x̃ ỹ z̃
c z ỹ f (x, ỹ) f (y, f (x, ỹ))

)

.

A példa mutatja, hogy a kompozíció művelete egy nyelv termhelyet-
tesítéseinek halmazán nem kommutatív.
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Lemma.
Legyenek θ és η egy nyelv termhelyettesítései. Ekkor tetszőleges t
term esetén

(t(θη)) = ((tθ)η).

Tétel.
Egy elsőrendű logikai nyelv tetszőleges θ, η és ζ termhelyettesítései
esetén

(1) ((θη)ζ) = (θ(ηζ)) (a kompozíció asszociatív)

(2) θε = εθ = θ (ε neurális elem)

Azaz a kompozíció műveletével a termhelyettesítések halmaza neut-
rális elemmel rendelkező félcsoport.
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Legyenek θ és η termhelyettesítések. Az η helyettesítés általánosabb
a θ helyettesítésnél, ha van olyan λ termhelyettesítés, hogy θ = ηλ.
Példa.
Az

θ =

(

x y z
f (g(a, h(z))) g(h(x), b) h(x)

)

és η =

(

x y
f (g(x, y)) g(z, b)

)

helyettesítések esetén η általánosabb a θ helyettesítésnél, mert
θ = ηλ, ahol

λ =

(

x y z
a h(z) h(x)

)

A reláció reflexív és tranzitív.
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4.1. Illesztő helyettesítés

Legyen W = {A1, A2, . . . , Ak} azonos predikátumszimbólumot tar-
talmazó atomi formulák legalább kételemű véges halmaza. Az olyan
θ termhelyettesítést, amelyre az A1θ, A2θ, . . . , Akθ atomi formulák
rendre azonosak, W illesztő helyettesítésének nevezzük. W illesztő
helyettesítése W legáltalánosabb illesztő helyettesítése, ha W minden
illesztő helyettesítésénél általánosabb.
Példa.
A P (x, f (a, y)) és a P (b, z) atomoknak egy illesztő helyettesítése:

(

x y z
b c f (a, c)

)

legáltalánosabb illesztő helyettesítése:
(

x z
b f (a, y)

)
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Vizsgáljuk a W elemeit párhuzamosan, szimbólumonként balról job-
bra haladva. Álljunk meg annál az első szimbólumnál, amelyik a W
nem minden atomi formulájában egyforma. Emeljük ki W minden
atomi formulájából azt a résztermet, amely az ezen a pozíción lévő
szimbólummal kezdődik. E résztermek D halmazát a W összeférhe-
tetlenségi halmazának nevezzük.
Példa.
Legyen

W = {P (x, f (y, z)), P (x, a), P (x, g(h(k(x))))}.

W összeférhetetlenségi halmaza

D = {f (y, z), a, g(h(k(x)))}
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4.1.1. Illesztő algoritmus

1. k := 0, Wk := W , σk := ε.

2. Ha Wk egyetlen atomot tartalmaz, akkor sikeresen vége: σk a
W legáltalánosabb illesztő helyettesítése. Egyébként határozzuk
meg Wk összeférhetetlenségi halmazát: Dk-t.

3. Ha van Dk-ban olyan xk individuumváltozó és tk term, hogy xk
nem fordul elő tk-ban, akkor a 4. lépéssel folytatjuk. Egyébként
sikertelenül vége: W nem illeszthető.

4. σk+1 := σk(xk ‖ tk), Wk+1 := {A(xk ‖ tk) |A ∈ Wk}. (Meg-
jegyezzük, hogy Wk+1 = {Aσk+1 |A ∈ W}.)

5. k := k + 1, és a 2. lépéssel folytatjuk.
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Tétel
Ha W egymáshoz illeszthető atomi formulák véges, nemüres hal-
maza, akkor az illesztő algoritmus mindig a 2. lépéssel fejeződik be,
és az utolsó σk legáltalánosabb illesztő helyettesítés lesz W -re.
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Példa.
Döntsük el az illesztő algoritmussal, hogy illeszthetők-e a

W =
{

P (a, x, f (g(y))), P (z, f(z), f (u))
}

halmaz atomi formulái egymáshoz.

1. W0 := W , σ0 := ε.

2. D0 = {a, z}.

3. z egy individuumváltozó, a egy a z-t nem tartalmazó term.

4. σ1 := σ0(z ‖ a) = ε(z ‖ a) = (z ‖ a).

W1 :=
{

P (a, x, f (g(y)))(z ‖ a), P (z, f(z), f (u))(z ‖ a)
}

=

=
{

P (a, x, f (g(y))), P (a, f (a), f (u))
}

.

5. D1 =
{

x, f (a)
}

6. x egy individuumváltozó, f (a) egy az x-et nem tartalmazó term.
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7. σ2 := σ1(x ‖ f (a)) = (z ‖ a)(x ‖ f (a)) = (z, x ‖ a, f (a)).

W2 :=
{

P (a, x, f (g(y)))(x ‖ f (a)), P (a, f (a), f (u))(x ‖ f (a))
}

=

=
{

P (a, f (a), f (g(y))), P (a, f (a), f (u))
}

.

8. D2 = {g(y), u}.

9. u egy individuumváltozó, g(y) egy az u-t nem tartalmazó term.

10. σ3 := σ2(u ‖ g(y)) = (z, x ‖ a, f (a))(u ‖ g(y)) =
(z, x, u ‖ a, f (a), g(y)).

W3 :=
{

P (a, f (a), f (g(y)))(u ‖ g(y)), P (a, f (a), f (u))(u ‖ g(y))
}

=

=
{

P (a, f (a), f (g(y))), P (a, f (a), f (g(y)))
}

=

=
{

P (a, f (a), f (g(y)))
}

.

11. W3-ban egyetlen atom van, így σ3 a legáltalánosabb illesztő he-
lyettesítés W -re.
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Példa.
Vizsgáljuk meg, hogy illeszthetők-e egymáshoz a

W =
{

Q(f (a), g(x)), Q(y, y)
}

halmaz atomi formulái.

1. W0 := W , σ0 := ε.

2. D0 = {f (a), y}.

3. y egy individuumváltozó, f (a) egy az y-t nem tartalmazó term.

4. σ1 := σ0(y ‖ f (a)) = ε(y ‖ f (a)) = (y ‖ f (a)).

W1 :=
{

Q(f (a), g(x))(y ‖ f (a)), Q(y, y)(y ‖ f (a))
}

=

=
{

Q(f (a), g(x)), Q(f (a), f (a))
}

.

5. D1 = {g(x), f (a)}.

6. A D1-ben nincs individuumváltozó, ezért az algoritmus azzal az
eredménnyel fejeződik be, hogy W atomjai nem illeszthetők.



5. fejezet

A rezolúciós kalkulus

5.1. Rezolúció az ítéletlogikában

Legyenek C1 és C2 pontosan egy komplemens literálpárt tartalmazó
klózok. Ha C1 = C ′

1 ∨ L1 és C2 = C ′
2 ∨ L2, ahol L1 és L2 a komp-

lemens literálpár, a C ′
1 ∨ C ′

2 klózt a (C1, C2) klózpár rezolvensének
nevezzük. Ha C1 = L1 és C2 = L2, rezolvensük az üres klóz (�).

Az a tevékenység, amelynek eredménye a rezolvens, a rezolválás,
azon literálpár literáljai pedig, amely lehetővé teszi a rezolvenskép-
zést, a kirezolvált literálok.
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Példa.
Vizsgáljunk most meg néhány klózpárt, van-e rezolvensük.

klózpár rezolvens

(a) (X ∨ Y, ¬Y ∨ Z) X ∨ Z

(b) (X ∨ ¬Y, ¬Y ∨ Z) nincs: mindkét azonos alapú literál negált

(c) (X ∨ ¬Y, Z ∨ ¬V ) nincs: nincs azonos alapú literál

(d) (¬X ∨ ¬Y, X ∨ Y ∨ Z) nincs: két komplemens literálpár van

(e) (X, ¬X) �
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Egy S klózhalmazból a C klóz rezolúciós levezetése egy olyan véges
k1, k2, . . . , km (m ≥ 1) klózsorozat, ahol minden j = 1, 2, . . . , m-re

1. vagy kj ∈ S,

2. vagy van olyan 1 ≤ s, t < j, hogy kj a (ks, kt) klózpár rezolvense,

és klózsorozat utolsó tagja, km, éppen a C klóz.

A rezolúciós kalkulus eldöntésproblémája az, hogy levezethető-e S-
ből az üres klóz . A rezolúciós levezetés célja tehát az üres klóz le-
vezetése S-ből. Azt, hogy S-ből levezethető az üres klóz, úgy is ki
lehet fejezni, hogy S-nek van rezolúciós cáfolata.
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Példa.
Próbáljuk meg az üres klózt levezetni az

S =
{

¬X ∨ Y, ¬Y ∨ Z, X ∨ V, ¬V ∨ Y ∨ Z, ¬Z
}

klózhalmazból. A levezetés bármelyik S-beli klózzal indítható.

1. ¬V ∨ Y ∨ Z [ ∈ S ]

2. ¬Z [ ∈ S ]

3. ¬V ∨ Y [ 1, 2 rezolvense ]

4. ¬Y ∨ Z [ ∈ S ]

5. ¬Y [ 2, 4 rezolvense ]

6. ¬V [ 3, 5 rezolvense ]

7. X ∨ V [ ∈ S ]

8. X [ 6, 7 rezolvense ]
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9. ¬X ∨ Y [ ∈ S ]

10. Y [ 8, 9 rezolvense ]

11. � [ 5, 10 rezolvense ]

Tehát S-nek van rezolúciós cáfolata.
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Legyenek C1 = C ′
1∨L1 és C2 = C ′

2∨L2, ahol L1 és L2 az egyetlen
komplemens literálpár.
Tétel.
{C1, C2} |=0 C ′

1 ∨ C ′
2.

Bizonyítás. Ha C1 = L1 és C2 = L2, akkor nincs a {C1, C2}
klózhalmazt kielégítő interpretáció, tehát igaz az állítás. Egyébként
a {C1, C2} klózhalmazt kielégítő tetszőleges interpretáció

− vagy olyan, hogy az L1-hez rendel i értéket (IL1
),

− vagy olyan, hogy az L2-höz rendel i értéket (IL2
).

IL1
kielégíti a {C1, C2} klózhalmazt, azaz itt a C1 és a C2 klózok

igazak, de L2 hamis, ezért C ′
2 igaz, tehát igaz C ′

1 ∨ C ′
2 is. Hason-

lóképpen láthatjuk be, hogy a IL2
interpretációkban pedig C ′

1 igaz.
Tehát mind IL1

, mind IL2
kielégíti a C ′

1 ∨ C ′
2 klózt.
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Tétel.
Ha a C klóz a (C1, C2) klózpár rezolvense, akkor azon I interpretá-
ciók a {C1, C2} klózhalmazt nem elégítik ki, amelyekben C hamis.

Bizonyítás.

− Ha C1 = L1 és C2 = L2, rezolvensük az üres klóz. Az üres klóz
kielégíthetetlen, azaz minden interpretációban hamis. Tehát azt
kell belátni, hogy a {C1, C2} klózhalmaz kielégíthetetlen. De C1
és C2 egy komplemens literálpár, így egyetlen interpretáció sem
elégítheti ki egyszerre őket.

− Legyen C1 = C ′
1∨L1 és C2 = C ′

2∨L2, ahol L1 és L2 komplemens
literálpár. Legyen I egy olyan interpretáció, melyben C hamis.
Ez azt jelenti, hogy C ′

1 és C ′
2 minden literálja hamis I-ben, azaz

a C1 és C2 klózokban L1 és L2 kivételével minden literál hamis.
Az L1 és L2 literálok közül viszont csak az egyik lehet igaz, ezért
a {C1, C2} klózhalmazt az I interpretáció nem elégíti ki.
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Lemma.
Legyen S tetszőleges klózhalmaz és a k1, k2, . . . , km klózsorozat re-
zolúciós levezetés S-ből. Ekkor kj minden j = 1, 2, . . . , m-re tauto-
logikus következménye az S klózhalmaznak, azaz S |=0 kj.

Bizonyítás.

1. A levezetés első klóza, k1, biztosan eleme S-nek, tehát S |=0 k1.

2. Tegyük most fel, hogy minden j ≤ n-re igazoltuk már, hogy
S |=0 kj.

3. Belátjuk, hogy kn+1-re is igaz az állítás. Ha kn+1 ∈ S, akkor
S |=0 kn+1. Ha kn+1 valamely ks, kt klózok rezolvense, akkor az
első tétel miatt {ks, kt} |=0 kn+1. Az indukciós feltevés miatt
S |=0 ks és S |=0 kt. Ebből S |=0 kn+1.
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Tétel. [A rezolúciós kalkulus helyessége.]
Legyen S tetszőleges klózhalmaz. Ha S-ből levezethető az üres klóz,
akkor S kielégíthetetlen.

Bizonyítás. Tegyük fel, hogy van olyan I interpretáció, ami kielégíti
S-et. Az előbb bizonyított lemma szerint egy S-ből való rezolúciós
levezetésbeli bármely kj klózra S |=0 kj, tehát I kielégíti a re-
zolúciós levezetés minden klózát is. De az üres klóz kielégíthetetlen,
tehát nem lehet eleme a levezetésnek. Így tehát ha S-ből levezethető
az üres klóz, akkor S kielégíthetetlen.

Tétel. [A rezolúciós kalkulus teljessége.]
Ha az S véges klózhalmaz kielégíthetetlen, akkor S-ből levezethető
az üres klóz.
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Következtetés rezolúciós kalkulussal

Legyen {A1, A2, . . . , An} a feltételformulák halmaza és B a tétel-
formula. A feltételhalmazhoz hozzávesszük a tételformula negáltját
és a kapott {A1, A2, . . . , An} ∪ {¬B} formulahalmazból előállítjuk
az S klózhalmazt. Ha S-nek van rezolúciós cáfolata, akkor

{A1, A2, . . . , An} |=0 B.

Példa.
Vegyük a következő formulahalmazt:

{

X ⊃ Y, Y ⊃ Z, X ∨ U, U ⊃ V ⊃ Z, ¬Z
}

.

A tételformula ¬X . A tétel negáltját hozzátesszük a feltételformulák
halmazához, és ha a kapott formulahalmaz kielégíthetetlen, akkor
igazoltuk, hogy ¬X tétel. A rezolúciós kalkulus előkészítéseként a
feltételformulákból klózokat állítunk elő:

{

¬X ∨ Y, ¬Y ∨ Z, X ∨ U, ¬U ∨ ¬V ∨ Z, ¬Z
}

.
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Ezt a klózhalmazt kibővítjük az X formulával (klózzal), és rezolúciós
levezetéssel megpróbáljuk levezetni az üres klózt.

1. ¬X ∨ Y [ ∈ S ]

2. ¬Y ∨ Z [ ∈ S ]

3. ¬X ∨ Z [ 1, 2 rezolvense ]

4. ¬Z [ ∈ S ]

5. ¬X [ 3, 4 rezolvense ]

6. X [ ∈ S ]

7. � [ 5, 6 rezolvense ]

Tehát a ¬X tétel.



5. A rezolúciós kalkulus 5.1. Rezolúció az ítéletlogikában

5.1.1. Rezolúciós stratégiák

Egy rezolúciós levezetés szerkezetét levezetési fa segítségével szem-
léltethetjük. A levezetési fa csúcsai klózok. Két csúcsból pedig pon-
tosan akkor vezet él egy harmadik, közös csúcsba, ha ott a két klóz
rezolvense található.

Egy S klózhalmazból való lineáris rezolúciós levezetés egy olyan
k1, ℓ1, k2, ℓ2, . . . , km−1, ℓm−1, km rezolúciós levezetés, amelyben min-
den j = 2, 3, . . . , m-re kj a (kj−1, ℓj−1) klózpár rezolvense. A kj
klózokat centrális klózoknak , az ℓj klózokat mellékklózoknak nevez-
zük.
A lineáris rezolúciós levezetés definíciójából világos, hogy tetszőleges
rezolúciós levezetés átírható lineárissá, azaz
Tétel.
A lineáris rezolúciós kalkulus teljes.
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A lineáris levezetés szerkezetét szemléltető levezetési fa a következő:
központi klózok mellékklózok

k1 ℓ1

k2 ℓ2

k3

ki−1 ℓi−1

ki
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Szokás a levezetési fát egyetlen ágként (lineáris gráffal) is ábrázolni.
Ekkor a centrális klózokat a csúcsokhoz, a mellékklózokat pedig az
élekhez rendeljük.

k1

k2

k3

km−1

km

lineáris
rezolúció

ℓ1

ℓ2

ℓm−1
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Amennyiben egy levezetést lineáris gráffal ábrázolunk, a gyökér-
ben lévő k1 klózzal kezdődő összes levezetést egyetlen fával ábrázol-
hatjuk. Ez a teljes levezetési fa. Egy csúcsból annyi él indul ki,
ahány klózhalmazbeli klózzal, illetve a levezetés során addig előállt
rezolvenssel képezhető rezolvense a csúcshoz rendelt klóznak. A li-
neáris rezolúciós kalkulus teljessége miatt ha van az üres klóznak le-
vezetése k1-ből, akkor azt meg is találjuk a levezetések teljes fájának
bejárásával.
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Példa.
(a) Legyen S = {X ∨ Z, ¬X ∨ Z, X ∨ ¬Z, ¬X ∨ ¬Z}. S-ből az
X ∨ Z klózzal kezdődő egy lehetséges lineáris levezetés:

1. X ∨ Z [ ∈ S ]

2. ¬X ∨ Z [ ∈ S ]

3. Z [ 1, 2 rezolvense ]

4. X ∨ ¬Z [ ∈ S ]

5. X [ 3, 4 rezolvense ]

6. ¬X ∨ ¬Z [ ∈ S ]

7. ¬Z [ 5, 6 rezolvense ]

8. Z [ centrális klóz ]

9. � [ 7, 8 rezolvense ]
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A levezetést szemléltető levezetési fa:
X ∨ Z ¬X ∨ Z

Z ¬X ∨ ¬Z

¬X X ∨ ¬Z

¬Z Z

�
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(b) Legyen S = {X ∨ Z, ¬X ∨ Z, ¬Y ∨ ¬Z, ¬X ∨ Y, ¬Z}.
Állítsunk elő egy részletet a teljes levezetési fából. Induljunk ki a
X ∨ Z klózból.

X ∨ Z

Y ∨ Z Z X ∨ ¬Y X

Y ¬Y � ¬Y ∨ Z Z Y

¬X ¬Y �

¬X ∨ Y

¬X ∨ Z ¬Y ∨ ¬Z

¬Z

¬Z ¬Y ∨ ¬Z ¬Z ¬X ∨ Z ¬X ∨ Z ¬X ∨ Y

¬X ∨ Y ¬Z ¬Z
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A gyakorlatban elterjedt két jól használható, de nem teljes rezolú-
ciós stratégia a lineáris input- és az egységrezolúciós stratégia. A
két eljárás ekvivalens egymással, azaz egy klózhalmaznak pontosan
akkor van lineáris inputrezolúciós cáfolata, ha van egységrezolúciós
cáfolata.

Egy S klózhalmazból való lineáris inputrezolúciós levezetés egy olyan
k1, ℓ1, k2, ℓ2, . . . , km−1, ℓm−1, km lineáris rezolúciós levezetés, mely-
ben minden j = 1, 2, . . . , m − 1-re ℓj ∈ S, azaz a lineáris input
rezolúciós levezetésben a mellékklózok S-nek elemei.

Egy S klózhalmazból való egységrezolúciós levezetés egy olyan
k1, k2, . . . , km rezolúciós levezetés, ahol minden j = 1, 2, . . . , m-
re ha kj /∈ S, akkor kj két olyan őt a levezetésben megelőző ks, kt
(1 ≤ s, t < j) klóznak a rezolvense, amelyek közül az egyik egység-
klóz.
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A lineáris inputrezolúciós stratégia nem teljes: Legyen a levezetésben
km az üres klóz, vagyis a (km− 1, ℓm− 1) klózpár rezolvense. ℓm−1
egységklóz és ℓm−1 ∈ S, tehát S-ben kell egységklóznak lenni. (Az
egységrezolúció esetén pedig a levezetést el sem lehet kezdeni, ha
nincs S-ben egységklóz.)
Példa.
Legyen a klózhalmaz

S =
{

Y ∨ ¬Z, X ∨ Z, ¬X ∨ ¬Y, ¬X ∨ Z, ¬Z
}

.

Egy lineáris inputcáfolat:

1. Y ∨ ¬Z [ ∈ S ]

2. ¬X ∨ Z [ ∈ S ]

3. ¬X ∨ Y [ 1, 2 rezolvense ]

4. ¬X ∨ ¬Y [ ∈ S ]
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5. ¬X [ 3, 4 rezolvense ]

6. X ∨ Z [ ∈ S ]

7. Z [ 5, 6 rezolvense ]

8. ¬Z [ ∈ S ]

9. � [ 7, 8 rezolvense ]

A lineáris inputrezolúcióhoz tartozó levezetési fa:
Y ∨ ¬Z ¬X ∨ Z

¬X ∨ Y ¬X ∨ ¬Y

¬X X ∨ Z

Z ¬Z

�
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Egy egységcáfolat:

1. ¬X ∨ Z [ ∈ S ]

2. ¬Z [ ∈ S ]

3. ¬X [ 1, 2 rezolvense ]

4. X ∨ Z [ ∈ S ]

5. Z [ 3, 4 rezolvense ]

6. � [ 2, 5 rezolvense ]

Az egységcáfolathoz tartozó levezetési fa:
¬X ∨ Z ¬Z

X ∨ Z ¬X

Z

�



5.1. Rezolúció az ítéletlogikában 5. A rezolúciós kalkulus

Bár a lineáris inputrezolúciós stratégia nem teljes, meg lehet adni
olyan formulaosztályt, amelyre az. Az olyan klózokat, amelyek leg-
feljebb egy pozitív literált tartalmaznak, Horn-klózoknak nevezzük.
A Horn-formulák pedig azok a formulák, melyek konjunktív normál-
formája Horn-klózok konjunkciója. Bebizonyították, hogy a lineáris
inputrezolúciós stratégia Horn-formulák esetére (szokás azt is mon-
dani, hogy a Horn-logikában) teljes.
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5.2. A Herbrand-univerzum és az elsőrendű

klózhalmazok

Jó lenne, ha létezne olyan speciális H univerzum, hogy egy S elsőrendű
klózhalmaz pontosan akkor lenne kielégíthetetlen, ha kielégíthetet-
len ezen H univerzum felett. Egy ilyen univerzum létezését mutatta
meg Herbrand.



5.2. A Herbrand-univerzum és az elsőrendű klózhalmazok 5. A rezolúciós kalkulus

5.2.1. A Herbrand-univerzum előállítása

Legyen S tetszőleges klózhalmaz, a leíró nyelve pedig 〈Pr, Fn, Cnst 〉.

1. H0 ⇋

{

Cnst, ha Cnst 6= ∅,
{a} egyébként,

továbbá i := 0.

2. Hi+1 ⇋ Hi ∪ Ti, ahol

Ti ⇋ {t | t = f (t1, t2, . . . , tn), ahol f ∈ Fn, tj ∈ Hi, j = 1, 2, . . . , n},

i := i + 1 és ismételjük meg a lépést.

3. H ⇋
⋃∞

i=0Hi.

A H halmaz az S klózhalmaz Herbrand-univerzuma.
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Példa.
Legyen S = {P (a),¬P (x) ∨ P (f (x))}. Ekkor

H0 = {a},
H1 = {a, f (a)},
H2 = {a, f (a), f (f (a))},

...
H = {a, f (a), f (f (a)), f (f (f (a))), . . .}.

Példa.
Legyen S = {P (x) ∨ Q(x), R(z), T (y) ∨ ¬W (y)}.
Mivel S-ben nincs konstansszimbólum, ezért legyen H0 = {a}.
S-ben függvényszimbólum sincs, ezért

H0 = H1 = . . . = H = {a}.
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Példa.
Legyen S = {P (f (x), a, g(y), b)}. Ekkor

H0 = {a, b}

H1 = {a, b, f (a), f (b), g(a), g(b)}

H2 = {a, b, f (a), f (b), g(a), g(b),

f (f (a)), f (f (b)), f (g(a)), f (g(b)),

g(f (a)), g(f (b)), g(g(a)), g(g(b))}
...
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Legyen az S klózhalmaz leíró nyelve 〈Pr, Fn, Cnst 〉, Herbrand-univer-
zuma pedig H. S leíró nyelve Herbrand-interpretációinak nevezzük
és IH-vel jelöljük a nyelv azon interpretációit, melyek univerzuma
éppen H,

− minden c ∈ Cnst konstansszimbólumhoz IH a c ∈ H univerzum-
elemet (önmagát) rendeli, és

− minden k aritású f ∈ Fn függvényszimbólumhoz IH hozzáren-
deli azt az fIH : Hk → H műveletet, amelyikre minden
h1, h2, . . . , hk ∈ H esetén

fIH(h1, h2, . . . , hk) = f (h1, h2, . . . , hk).

Egy S elsőrendű klózhalmaz Herbrand-interpretációi tehát csak az
S-ben előforduló predikátumszimbólumok interpretálásában külön-
böznek.
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Legyen S egy elsőrendű klózhalmaz és H a klózhalmazhoz tartozó
Herbrand-univerzum. A H Herbrand-univerzum feletti zárt atomok
egy rögzített sorozatát Herbrand-bázisnak nevezzük.

Világos, hogy ha adva van az S elsőrendű klózhalmaz egy IH Herbrand-
interpretációja, azt a következő módon is leírhatjuk:
legyen {A1, A2, . . .} az S klózhalmaz Herbrand-bázisa és legyen

Li ⇋

{

Ai, ha Ai igaz IH-ban,
¬Ai, ha Ai hamis IH-ban.

Ekkor a IH Herbrand-interpretációt az {L1, L2, . . . } literál-halmaz
egyértelműen megadja.



5. A rezolúciós kalkulus 5.2. A Herbrand-univerzum és az elsőrendű klózhalmazok

Példa.
Legyen S = {P (x) ∨ Q(x), R(f (y))}. S Herbrand-univerzuma:

H = {a, f (a), f (f (a)), f (f (f (a))), . . .}.

S Herbrand-bázisa:

{P (a), Q(a), R(a), P (f (a)), Q(f (a)), R(f (a)), . . .}.

Néhány Herbrand-interpretáció:

I1 = {P (a), Q(a), R(a), P (f (a)), Q(f (a)), R(f (a)), . . . }

I2 = {¬P (a),¬Q(a),¬R(a),¬P (f (a)),¬Q(f (a)),¬R(f (a)), . . . }

I3 = {P (a), Q(a),¬R(a), P (f (a)), Q(f (a)),¬R(f (a)), . . . }
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Az alábbi ábrán látható szemantikus fán bejelöltük az I1, I2, I3
Herbrand-interpretációkat.

P (a) ¬P (a)

Q(a) ¬Q(a) Q(a) ¬Q(a)

R(a) ¬R(a) ¬R(a)

P (f(a)) ¬P (f(a)) ¬P (f(a))
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Legyen az S klózhalmaz leíró nyelve 〈Pr, Fn, Cnst 〉, és legyen ennek
I valamely U univerzum feletti interpretációja.
Az I-nek megfelelő Herbrand-interpretáció S-nek egy olyan
IH Herbrand-interpretációja, amelyre teljesül, hogy van olyan

ϕ : H → U

függvény, hogy
a P (h1, h2, . . . , hn) zárt atom pontosan akkor igaz IH-ban, ha
a („neki megfelelő”) P (x1, x2, . . . , xn) atom igaz I-ben az

x1 7→ ϕ(h1), x2 7→ ϕ(h2), . . . , xn 7→ ϕ(hn)

változókiértékelés mellett.
Most megmutatjuk, hogy valamely S elsőrendű klózhalmaz leíró

nyelvének tetszőleges I interpretációjához van megfelelő Herbrand-
interpretáció.
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Legyen I = 〈IPr, IFn, ICnst〉, ahol az interpretáció univerzuma U .
Legyen a ϕ : H → U a következőképpen definiálva:

− ha Cnst = ∅, akkor a H-ben szereplő extra konstanshoz ϕ ren-
deljen tetszőleges U -beli elemet,

− minden c ∈ Cnst (egyúttal c ∈ H) konstansszimbólum esetén
ϕ(c) legyen az ICnst(c) U -beli elem,

− ha pedig h ∈ H f (h1, h2, . . . , hk) alakú, akkor ϕ(f (h1, h2, . . . , hk))
legyen a fI(ϕ(h1), ϕ(h2), . . . , ϕ(hk)) U -beli elem.

Most megadjuk az I-nek megfelelő Herbrand-interpretációt:
Ha az S Herbrand bázisabeli A1-nek „megfelelő” I-beli atom igaz,
a Herbrand-interpretációt megadó literálhalmazba írjuk be A1-et,
egyébként pedig ¬A1-et. Mivel a bázis elemei különbözőek, a Her-
brand-bázis első k atomja igazságértékének rögzítése után Ak+1 is
„megkaphatja” a neki „megfelelő” I-beli atom igazságértékét.
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Példa.
Legyen S = {P (x), Q(y, f (y, a))}.
Legyen I a következő: U = {1,2}, az a interpretáltja 2, a predikátum-
és függvényszimbólumokhoz pedig az alábbi reláció- és művelettáblák-
kal definiált relációkat és műveleteket rendeli I.

PI
1 2

i h

QI
1 2

1 h h

2 i i

fI 1 2

1 1 2

2 2 1
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S Herbrand-univerzuma:

H = {a, f (a, a), f (a, f (a, a)), f (f (a, a), a), f (f (a, a), f (a, a)), . . . }.

S Herbrand-bázisa:

{P (a), Q(a, a), P (f (a, a)), Q(a, f (a, a)), Q(f (a, a), a), . . .}.

Ekkor a ϕ : H → U megfeleltetés:

a 7→ 2 (kötelező), f (a, a) 7→ 1, f (a, f (a, a)) 7→ 2, f (f (a, a), a) 7→ 2, . . . .

Az I-nek megfelelő Herbrand-interpretáció:

IH = {¬P (a), Q(a, a), P (f (a, a)),¬Q(a, f (a, a)), Q(f (a, a), a), . . .}.
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Példa.
Legyen S = {P (x), Q(y, f (y, z))}. Vegyük észre, hogy S leíró
nyelve az előző példabeli leíró nyelvtől csak abban különbözik, hogy
ebben nincs konstansszimbólum. Interpretáljuk a S nyelvét az I ′

interpretációval, ami csak annyiban különbözik I-től, hogy kons-
tansszimbólumot nyilván nem kell interpretálnia.

Most a ϕ : H → U megfeleltetés során a-hoz bármely univerzume-
lem hozzárendelhető. Tartsuk meg a többi Herbrand-univerzumbeli
elemre az előző példabeli megfeleltetést.

− Ha a 7→ 2, akkor az I ′-nek megfelelő Herbrand-interpretáció a
fenti IH.

− Ha a 7→ 1, az I ′-nek megfelelő Herbrand-interpretáció

I ′H = {P (a),¬Q(a, a), P (f (a, a)),¬Q(a, f (a, a)),¬Q(f (a, a), a), . . .}.
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Tétel.
Ha egy I interpretáció kielégít egy S elsőrendű klózhalmazt, akkor
az I-nek megfelelő Herbrand-interpretáció is kielégíti S-t.
Bizonyítás.

A definíció szerint ha IH az I-nek megfelelő Herbrand-interpretáció,
akkor van olyan ϕ : H → U függvény, hogy az I ugyanazt az igaz-
ságértéket rendeli a P (x1, x2, . . . , xn) atomhoz az

x1 7→ ϕ(h1), x2 7→ ϕ(h2), . . . , xn 7→ ϕ(hn)

változókiértékelés mellett, mint az IH a P (h1, h2, . . . , hn)-hez min-
den h1, h2, . . . , hn ∈ H esetén.
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Tétel.
Egy S elsőrendű klózhalmaz akkor és csak akkor kielégíthetetlen, ha
S-t nem elégíti ki a Herbrand-univerzuma feletti egyetlen Herbrand-
interpretáció sem.
Bizonyítás.

1. Tegyük fel, hogy S kielégíthetetlen. Ekkor S-t nem elégítheti
ki (semmilyen univerzum felett) egyetlen interpretáció sem, így
egyetlen Herbrand-interpretáció sem.

2. Tegyük fel, hogy S ugyan kielégíthetetlen az általa meghatározott
Herbrand-univerzumon, de S nem kielégíthetetlen, azaz van olyan
U univerzum és I interpretáció, amely S-t kielégíti. Legyen IH
a I-nek megfelelő Herbrand-interpretáció. Az előző tétel miatt
IH kielégíti S-t, pedig IH a Herbrand-univerzum feletti inter-
pretáció. Ellentmondásra jutottunk, tehát ha S kielégíthetetlen
a Herbrand-univerzumán, akkor S kielégíthetetlen.
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5.1. megjegyzés. Egyik tétel sem áll fenn, ha S nem elsőrendű
klózhalmaz. Vagyis, ha S tetszőleges zárt formulák halmaza, akkor
általában nem igaz, hogy S kielégíthetetlenségének vizsgálata esetén
elég lenne S-et csak a Herbrand-struktúrákkal interpretálni.

Például legyen S = {P (a),∃x¬P (x)}. Az S második formulája
nem elsőrendű klóz. S Herbrand-univerzuma: H = {a}, S Herbrand-
bázisa: {P (a)}. Az S formulahalmazt egyik Herbrand-interpretáció
sem elégíti ki. Azonban S kielégíthető, hiszen az az U = {0,1}
feletti I interpretáció, melyben P I(0) = i, P I(1) = h és a 7→ 0,
kielégíti S-et.
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Legyen S egy klózhalmaz, H a Herbrand-univerzuma, κ egy válto-
zókiértékelés. Ekkor

θ =

(

x1 x2 . . . xk
κ(x1) κ(x2) . . . κ(xk)

)

egy termhelyettesítése S leíró nyelvének. A C(t1, t2, . . . , tn)θ for-
mulát a ∀x1∀x2∀xnC(t1, t2, . . . , tn) klóz egy H feletti alappéldá-
nyának (alapklóz) nevezzük.
Példa.
Az S = {¬P (x)∨Q(f (x), x), P (g(b)),¬Q(y, z)} klózhalmaz klózai
Herbrand-univerzum feletti alappéldányai:
{¬P (b) ∨ Q(f (b), b),¬P (f (b)) ∨ Q(f (f (b)), f (b)),
¬P (g(b)) ∨ Q(f (g(b)), g(b)), . . . , P (g(b)),
¬Q(b, b),¬Q(f (b), b), . . . ,¬Q(f (g(b)), g(b)), . . .}
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Most ismertetjük az elsőrendű rezolúciós kalkulushoz is elvezető Herbrand-
tételt.
Tétel.
Egy S elsőrendű klózhalmaz akkor és csak akkor kielégíthetetlen, ha
az S klózai Herbrand-univerzum feletti alappéldányainak van véges
kielégíthetetlen S′ részhalmaza.
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Példa.

(a) Legyen S = {P (x),¬P (f (a))}. Az S elsőrendű klózhalmaz
kielégíthetetlen, mert S Herbrand-univerzum feletti alapklózainak

{P (f (a)),¬P (f (a))}

egy véges kielégíthetetlen részhalmaza.

(b) Az S = {¬P (x) ∨ Q(f (x), x), P (g(b)),¬Q(y, z)} kielégíthetet-
len, mert S Herbrand-univerzum feletti alapklózainak

{¬P (g(b)) ∨ Q(f (g(b)), g(b)), P (g(b)),¬Q(f (g(b)), g(b))}

egy véges kielégíthetetlen részhalmaza. Ezek az alapklózok az
x 7→ g(b), y 7→ f (g(b)), z 7→ g(b) változókiértékelés mellett
álltak elő.
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5.3. A rezolúciós kalkulus az elsőrendű logikában

Példa.

C1 = ∀x(P (f (x)) ∨ Q(x)) és C2 = ∀x∀y(¬P (f (x)) ∨ R(x, y))

Ha a magjaikat a nulladrendű esethez hasonlóan rezolválnánk, a

C = ∀x∀y(Q(x) ∨ R(x, y))

klózhoz jutnánk. Lássuk be, hogy
{

∀x(P (f (x))∨Q(x)), ∀x∀y(¬P (f (x))∨R(x, y))
}

|= ∀x∀y(Q(x)∨R(x, y)).

Ha I kielégíti a C1 és C2 klózokat, a P (f (x))∨Q(x) és ¬P (f (x))∨
R(x, y) formulák I-ben minden változókiértékelés mellett igazak.
Tehát ha |P (f (x))|I,κ = h, akkor |Q(x)|I,κ = i, és ha |¬P (f (x))|I,κ =
h, akkor |R(x, y)|I,κ = i. Mivel minden κ-ra |P (f (x))|I,κ = i
esetén |¬P (f (x))|I,κ = h és fordítva, vagy a |Q(x)|I,κ = i, vagy az
|R(x, y)|I,κ = i fennáll, és így |∀x∀y(Q(x) ∨ R(x, y))|I,κ = i.
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Ha ilyen módon képezve elsőrendű klózok rezolvensét szeretnénk ezt
rezolúciós levezetési szabályként alkalmazni, akkor igazolni kell ál-
talánosan is a példabeli állítást.
Tétel.
Legyenek most C1 és C2 olyan elsőrendű klózok, melyek pontosan
egy komplemens literálpárt tartalmaznak, azaz C1 és C2 magjai
CM

1 = CM
1

′ ∨ L1 és CM
2 = CM

2
′ ∨ L2 alakúak, ahol L1 és L2

komplemens literálpár. Ha CM = CM
1

′ ∨ CM
2

′ a C klóz magja,
akkor {C1, C2} |= C.

Bizonyítás. Tegyük fel hogy az I interpretáció kielégíti a {C1, C2}
elsőrendű klózhalmazt. Kövessük az előző gondolatmenetet. Az I
interpretációban tetszőleges κ változókiértékelés mellett vagy L1 és
CM

2
′, vagy L2 és CM

1
′ igaz. Azaz I-ben C igaz.
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Komplemens párt nem tartalmazó két elsőrendű klóz Herbrand-univerzum
feletti alappéldányaiban lehet komplemens pár.
Példa.
{

∀x∀y(P (x)∨¬Q(x, f (y))), ∀z∀v(¬P (g(z))∨¬P (v)), ∀uQ(g(u), u)
}

.

Egyik klózpárban sincs komplemens literálpár. A Herbrand-univerzum:
{

a, g(a), f (a), g(f (a)), g(g(a)), f (f (a)), f (g(a)), . . .
}

.

Egy alaprezolúciós levezetés:

1. Q(g(f (a)), f (a)) [ u 7→ f (a) ]

2. P (g(f (a))) ∨ ¬Q(g(f (a)), f (a)) [ x 7→ g(f (a)), y 7→ a ]

3. P (g(f (a)))

4. ¬P (g(f (a))) [ z 7→ f (a), v 7→ g(f (a)) ]

5. �



5. A rezolúciós kalkulus 5.3. A rezolúciós kalkulus az elsőrendű logikában

Tegyünk egy új változót a kiválasztott alapklózokban az a helyébe.

1. Q(g(f (w)), f (w)) [ (u ‖ f (w)) ]

2. P (g(f (w))) ∨ ¬Q(g(f (w)), f (w)) [ (x, y ‖ g(f (w)), w) ]

3. P (g(f (w)))

4. ¬P (g(f (w))) [ (z, v ‖ f (w), g(f (w))) ]

5. �

Ez a levezetés a
{

∀w(P (g(f (w))) ∨ ¬Q(g(f (w)), f (w))),

∀w¬P (g(f (w))), ∀wQ(g(f (w)), f (w))
}

klózhalmazból való egy elsőrendű rezolúciós levezetés. Ezt a klózhal-
mazt úgy kaptuk az eredetiből, hogy az elsőrendű klózok magjaiban
az atomi formulákban az individuumváltozók helyébe olyan termeket
helyettesítettünk, amelyek azonos alapú literálokat eredményeztek.
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Ezzel a – logikában egyébként nem megengedett – helyettesítéssel
(illesztő helyettesítés)

• a klózhalmaz kielégíthetősége megőrződik,

• a kapott elsőrendű klózhalmaz alappéldányaiban a lehetséges komp-
lemens párok megjelennek.

Tétel.
Legyen CM a C elsőrendű klóz magja. Tegyük fel, hogy

Par(CM ) = {x1, x2, . . . , xn}.

Legyen θ = (x1, x2, . . . , xn || t1, t2, . . . , tn) tetszőleges termhelyet-
tesítés C leíró nyelvében, és

Par(CMθ) = {y1, y2, . . . , yk}.

Ekkor tetszőleges olyan IH Herbrand-interpretációban, amelyben C
igaz, a ∀y1∀y2 . . . ∀yk(CMθ) klóz is igaz.
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Bizonyítás. Tegyük fel, hogy a IH Herbrand-interpretációban a
C klóz, azaz ∀x1∀x2 . . .∀xnCM igaz. Ekkor CM a Herbrand-
interpretációbeli minden változókiértékelés mellett igaz. Ez azt je-
lenti, hogy CM Herbrand-univerzum feletti alapklózai IH-ban igazak.
Nyilván CMθ-nak az IH-beli tetszőleges κ változókiértékelés mel-
letti H feletti alappéldányai mind CM H feletti alapklózai, hisz
a t1, t2, . . . , tn termek κ melletti H feletti alappéldányai jelennek
meg az x1, x2, . . . , xn változók helyett CM -ben. Ezek viszont mint
Herbrand-univerzumbeli elemek CM alappéldányaiban is előfordul-
nak.
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Legyen W egy C elsőrendű klózban előforduló legalább két azonos
alapú egyformán negált literál alapjainak halmaza. Ha W atomjai
illeszthetők egymáshoz és σ a W legáltalánosabb illesztő helyet-
tesítése, akkor a CMσ magú klózt a C klóz faktorának nevezzük.
Ha a faktor egységklóz, akkor C egységfaktorának hívjuk.
Példa.
Legyen C = ∀x∀y(P (x) ∨ P (f (y)) ∨ ¬Q(x)).
A két P -vel kezdődő atom legáltalánosabb illesztő helyettesítése a

σ = (x ‖ f (y)).

Ennek megfelelően a

∀y(P (f (y)) ∨ ¬Q(f (y)))

klóz a C klóz faktora.
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Legyenek C1 és C2 változóikban tiszta klózok. Legyenek C1 és C2
magjai rendre CM

1 = CM
1

′ ∨ L1 és CM
2 = CM

2
′ ∨ L2 alakúak,

ahol L1 és L2 ellentétesen negált literálok. Ha az L1 és az L2 li-
terálok alapjai illeszthetők egymáshoz, legyen σ a legáltalánosabb
illesztő helyettesítésük. Ekkor a C1 és C2 klózok bináris rezolvense
a CM

1
′σ ∨ CM

2
′σ magú klóz.

A C1 és a C2 klózok elsőrendű rezolvense a következő bináris rezol-
vensek valamelyike:

1. a C1 és a C2 klózok bináris rezolvense,

2. a C1 klóz és a C2 klóz egy faktorának a bináris rezolvense,

3. a C1 klóz egy faktorának és a C2 klóznak a bináris rezolvense,

4. a C1 klóz egy faktorának és a C2 klóz egy faktorának a bináris
rezolvense.
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Példa.
Legyen CM

1 = P (x)∨Q(x) és CM
2 = ¬P (a)∨R(x). Mivel x mind

CM
1 -ben, mind CM

2 -ben előfordul, a CM
2 -ben átnevezzük. Ezután

CM
2 = ¬P (a) ∨ R(y). A rezolváláshoz válasszuk az L1 = P (x) és

az L2 = ¬P (a) literálokat. Alapjaik legáltalánosabb illesztő helyet-
tesítése: (x ‖ a). Így tehát a C1 és a C2 klózok bináris rezolvense

Q(x)(x ‖ a) ∨ R(y)(x ‖ a) = Q(x) ∨ R(y),

ahol a P (x) és a ¬P (a) literálok szerint rezolváltunk.

Példa.
CM

1 = P (x)∨P (f (y))∨R(g(y)) és CM
2 = ¬P (f (g(a)))∨Q(b). A

C1 faktorának magja P (f (y)) ∨ R(g(y)). C1 faktorának és C2-nek
bináris rezolvense a R(g(g(a))) ∨ Q(b) klóz. Ennélfogva a C1 és a
C2 klózok egyik elsőrendű rezolvense R(g(g(a))) ∨ Q(b).
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Jelöljük C1 és C2 elsőrendű rezolvensét – utalva a rezolvensképzés
módjára – a következőképpen: ((C1λ1)σ−L1σ)∨ ((C2λ2)σ−L2σ).
Tétel.
Legyen a C elsőrendű klóz a C1 és C2 elsőrendű klózok elsőrendű
rezolvense. Ekkor {C1, C2} |= C.

Bizonyítás. C1 és C2 változóikban tiszta klózok. Rezolvensük ál-
talános esetben C = ((C1λ1)σ−L1σ)∨ ((C2λ2)σ−L2σ). Az előbb
bizonyított tétel miatt, ha az IH Herbrand-interpretáció kielégíti
{C1, C2}-t, akkor IH kielégíti a {C1λ1σ, C2λ2σ} klózhalmazt is.
Az a két literál, amely szerint rezolváltunk, a C1λ1σ és C2λ2σ kló-
zokban komplemens literálpár, így

{

C1λ1σ, C2λ2σ
}

|= C.

Ez viszont azt jelenti, hogy {C1, C2} |= C.
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Egy S elsőrendű klózhalmazból való elsőrendű rezolúciós levezetés
elsőrendű klózok egy olyan véges k1, k2, . . . , km (m ≥ 1) sorozata,
ahol minden j = 1, 2, . . . , m-re

1. vagy kj ∈ S,

2. vagy van olyan 1 ≤ s, t < j, hogy kj a ks és kt klózok elsőrendű
rezolvense.
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Tétel. [Elsőrendű rezolúciós kalkulus helyessége.]
Ha egy S elsőrendű klózhalmazból van az üres klóznak elsőrendű
rezolúciós levezetése, akkor S kielégíthetetlen.

Bizonyítás. Tegyük fel, hogy van az üres klóznak elsőrendű re-
zolúciós levezetése S-ből: k1, k2, . . . , km−1, km = � (m ≥ 1).
Tegyük fel ugyanakkor, hogy van olyan I interpretáció, mely kielégíti
S-t. Ezért ha a rezolúciós levezetésben kj ∈ S, I kielégíti kj-t. Ha
pedig a rezolúciós levezetésben kj a ks és kt (1 ≤ s, t < j) kló-
zok elsőrendű rezolvense és I kielégíti a ks és kt klózokat, akkor I
kielégíti a rezolvensüket, kj-t is. Ezért indukcióval könnyen látható,
hogy I-nek ki kellene elégítenie a {k1, k2, . . . , km−1, km} klózhal-
mazt is. De km = �, az üres klóz pedig kielégíthetetlen, tehát S-nek
is kielégíthetetlennek kell lennie.
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Példa.
A
{

∀x∀y(P (x)∨¬Q(x, f (y))), ∀z∀v(¬P (g(z))∨¬P (v)), ∀uQ(g(u), u)
}

klózhalmazból szerkesszünk meg egy elsőrendű rezolúciós levezetést:

1. Q(g(u), u)

2. P (x) ∨ ¬Q(x, f (y)) [ (x, u ‖ g(f (y)), f (y)) ]

3. P (g(f (y)))

4. ¬P (g(z)) ∨ ¬P (v) [ (v ‖ g(z)) faktorizáció, (z ‖ f (y)) ]

5. �
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A faktorizáció az elsőrendű rezolúciós elv lényeges eleme, alkalmazá-
sa nélkül az elsőrendű rezolúciós eljárás nem lenne teljes.
Példa.
Adott a következő formulahalmaz:
{

∀x∀y(P (x) ⊃ Q(y, y) ∨ Q(x, y)),
∀x∀y¬(P (x) ∧ Q(y, y) ∧ Q(x, y)),
∀xP (x)

}

.
A formulák alapján kapott klózhalmaz:

S =
{

¬P (x)∨Q(y, y)∨Q(x, y), ¬P (x)∨¬Q(y, y)∨¬Q(x, y), P (x)
}

.
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1. A Herbrand-univerzum: H = {a}. A Herbrand-bázis: {P (a), Q(a, a)}.
A H feletti alapklózhalmaz: {¬P (a)∨Q(a, a),¬P (a)∨¬Q(a, a), P (a)}.

Alaprezolúciós levezetés:

1. P (a)

2. ¬P (a) ∨ Q(a, a)

3. Q(a, a) [ 1, 2 rezolvense ]

4. ¬P (a) ∨ ¬Q(a, a)

5. ¬Q(a, a) [ 1, 4 rezolvense ]

6. � [ 3, 5 rezolvense ]
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2. Elsőrendű rezolúciós levezetés S-ből, faktorizáció nélkül:

1. P (x)

2. ¬P (x) ∨ Q(y, y) ∨ Q(x, y)

3. Q(y, y) ∨ Q(x, y) [ 1, 2 rezolvense ]

4. ¬P (x) ∨ ¬Q(y, y) ∨ ¬Q(x, y)

5. ¬Q(y, y) ∨ ¬Q(x, y) [ 1, 4 rezolvense ]

A levezetés nem folytatható, mivel nincs olyan klózpár, amely
egyetlen komplemens literálpárt tartalmazna. Így az üres klózt
nem kapjuk meg.
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3. Rezolúciós levezetés S-ből, faktorizációval:

(a) Alkalmazzuk S klózaira a σ = (x ‖ y) legáltalánosabb illesztő
helyettesítést.

Sσ =
{

¬P (y) ∨ Q(y, y), ¬P (y) ∨ ¬Q(y, y), P (y)
}

.

(b) A levezetés Sσ-ból:

1. P (y)

2. ¬P (y) ∨ Q(y, y)

3. Q(y, y) [ 1, 2 rezolvense ]

4. ¬P (y) ∨ ¬Q(y, y)

5. ¬Q(y, y) [ 1, 4 rezolvense ]

6. � [ 3, 5 rezolvense ]
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Tétel. [Elsőrendű rezolúciós kalkulus teljessége.] Ha egy S elsőrendű
klózhalmaz kielégíthetetlen, akkor S-ből van az üres klóznak rezolú-
ciós levezetése.
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5.3.1. Rezolúciós levezetési stratégiák

1. A teljes szintek módszere

Legyen S tetszőleges klózhalmaz. A teljes szintek módszere a követ-
kezőképpen állítja elő a levezetéshez a rezolvenseket:

1. R0 :=
{

C | C a (C1, C2) pár rezolvense, C1, C2 ∈ S
}

,

S1 := S ∪ R0, i := 1.

2. Ha � ∈ Si, sikeresen vége. Egyébként

Ri :=
{

C | C a (C1, C2) pár rezolvense, C1 ∈ Si, C2 ∈ Ri−1
}

,

Si+1 := Si ∪ Ri, i := i + 1 és folytassuk a 2. lépéssel.

Ezzel a módszerrel sok egyforma klóz jelenik meg a rezolvensek
között, sőt olyan rezolvens klózok is a klózhalmazba kerülhetnek,
amelyekre a továbblépésben biztosan nincs szükség. E problémák
megoldására született meg a törlési stratégia.
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2. A törlési stratégia

Minden i = 1, 2, . . . esetén az Ri klózhalmazból el kell hagyni a
fölösleges klózokat: a tautológiákat és azokat, amelyeket más klózok
„tartalmaznak”.
Jelölje Cl és Dl rendre a C és a D klózok literáljainak halmazát.
Egy C klóz befoglalja a D klózt, ha van olyan σ termhelyettesítés,
hogy Clσ ⊆ Dl. D a befoglalt klóz.
Példa.
Legyen C = P (x) D = P (a) ∨ Q(a).
Ekkor Cl = {P (x)} és Dl = {P (a), Q(a)}.
Ha σ = (x ‖ a), akkor Clσ = {P (a)}.
Clσ ⊆ Dl, tehát C befoglalja D-t.
A tautológiákat és a befoglalt klózokat meg kell találni. A tautoló-
giákat a faktorizáció segítségével fedhetjük fel.
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A befoglalási teszt azonban nem olyan egyszerű.
Legyenek C és D klózok. Legyen θ = (x1, x2, . . . , xn ‖ a1, a2, . . . , an),
ahol x1, x2, . . . , xn a D-ben előforduló változók és a1, a2, . . . , an sem
C-ben, sem D-ben elő nem forduló különböző konstansszimbólumok.
Tegyük fel, hogy D = L1 ∨ L2 ∨ . . . ∨ Lm.

1. W :=
{

¬L1θ, ¬L2θ, . . . , ¬Lmθ
}

, U0 :=
{

C
}

, i := 0,

2. Ha � ∈ Ui, akkor vége: C befoglalja D-t. Egyébként

Ui+1 =
{

C | C a C1, C2 rezolvense, C1 ∈ Ui, C2 ∈ W
}

,

3. Ha Ui+1 üres, akkor vége: C nem foglalja be D-t. Egyébként
i := i + 1, és folytatás a 2. lépéssel.
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Példa.
D = ¬P (h(y))∨Q(f (h(y)), a)∨¬P (z) és C = ¬P (x)∨Q(f (x), a).
Befoglalja-e C a D-t?
D változói az y és a z. Legyen θ = (y, z ‖ b, c).
Ekkor Dθ = ¬P (h(b)) ∨ Q(f (h(b)), a) ∨ ¬P (c).

1. W =
{

P (h(b)), ¬Q(f (h(b)), a), P (c)
}

,
U0 =

{

¬P (x) ∨ Q(f (x), a)
}

.

2. Mivel � 6∈ U0, azt kapjuk, hogy

U1 =
{

Q(f (h(b)), a), ¬P (h(b)), Q(f (c), a)
}

.

3. Mivel U1 6= ∅ és az � 6∈ U1, az eljárást folytatva kapjuk, hogy
U2 = {�}.

4. Mivel � ∈ U2, az eljárásnak vége: C befoglalja D-t.



6. fejezet

A tablók módszere – tablókalkulus

6.1. Jelölt tabló az ítéletlogikában

Vezessünk be a logika nyelvébe két új szimbólumot: a T -t és az F -et.
Ha A formula, TA és FA jelölt formulák.

Egy interpretációban TA igaz, ha A igaz és TA hamis, ha A hamis.
Továbbá FA igaz, ha A hamis és FA hamis, ha A igaz.
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Legyen S jelölt formulák tetszőleges halmaza. S lefele zárt, ha min-
den olyan esetben, amikor

1. TA ∧ B ∈ S, akkor TA ∈ S és TB ∈ S,

2. TA ∨ B ∈ S, akkor TA ∈ S vagy TB ∈ S,

3. TA ⊃ B ∈ S, akkor FA ∈ S vagy TB ∈ S,

4. T¬A, akkor FA ∈ S,

5. FA ∧ B ∈ S, akkor FA ∈ S vagy FB ∈ S,

6. FA ∨ B ∈ S, akkor FA ∈ S és FB ∈ S,

7. FA ⊃ B ∈ S, akkor TA ∈ S és FB ∈ S és

8. F¬A, akkor TA ∈ S.

Jelölt formulák egy S halmaza Hintikka-halmaz, ha S lefele zárt és
nem tartalmaz ellentétesen jelölt formulapárt.
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Tétel.
Ha S Hintikka-halmaz, akkor kielégíthető.

Bizonyítás. Az S Hintikka-halmaz lefele zárt, tehát tartalmaz je-
lölt atomokat, de nem tartalmaz ellentétesen jelölteket. Legyen e
tetszőlegesen rögzített igazságérték. Legyen az I interpretáció a
következő:

I(X) ⇋







i ha TX ∈ S,
h ha FX ∈ S,
e egyébként.

A szerkezeti indukció elvének segítségével megmutatjuk, hogy tet-
szőleges C ∈ S jelölt formula igaz I-ben.
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(alaplépés:) Jelölt ítéletváltozókra I definíciója miatt nyilvánvaló,
hogy igaz az állítás.

(indukciós lépések:) − Legyen C TA ∧ B alakú jelölt formula.
Mivel C ∈ S, így TA ∈ S és TB ∈ S. Indukciós feltevésünk,
hogy TA és TB igazak. De mivel C = TA ∧ B, ezért C is
igaz. Hasonló az FA ∨ B és az FA ⊃ B formulák esete.

− Legyen C FA ∧ B alakú jelölt formula. Mivel C ∈ S, így
FA ∈ S vagy FB ∈ S. Indukciós feltevésünk, hogy FA vagy
FB igazak. De így a C = FA∧B is igaz. Hasonló a TA∨B
és a TA ⊃ B formulák esete.

− Legyen C T¬A alakú. Mivel C ∈ S, így FA ∈ S. Indukciós
feltevésünk, hogy FA igaz, így C igaz. Hasonlóan az F¬A
esetben.
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A tablók módszerében (mint kalkulusban) minden „formulafajtára”
van egy-egy levezetési szabály. A levezetési szabályt a formula köz-
vetlen tablójának is nevezik:

T¬A

FA

F¬A

TA

TA ∧ B

TA

TB

FA ∧ B

FA FB

TA ∨ B

TA TB

FA ∨ B

FA

FB

TA ⊃ B

FA TB

FA ⊃ B

TA

FB
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Egy C jelölt formula jelölt tablója egy olyan bináris fa, melynek
csúcsai jelölt formulák. A gyökérbe elhelyezzük a C jelölt formulát.
Előállítjuk C közvetlen tablóját. Feltesszük, hogy a C-nek egy T
tablója adott. Legyen T -ben D egy levélcsúcs. Ekkor a T tabló
közvetlen kiterjesztése a következő:

(A) Ha van még nem „feldolgozott” TA ∧ B, FA ∨ B, FA ⊃ B
alakú jelölt formula a gyökérből a D csúcsba vezető úton, akkor
kapcsoljuk D-hez ezen út folytatásaként a megfelelő formula köz-
vetlen tablójából nyert jelölt formulákat mint új csúcsokat. Azaz
két egymást követő csúcsot illesztünk a tablóhoz.

(B) Ha van még nem „feldolgozott” FA ∧ B, TA ∨ B, TA ⊃ B
alakú jelölt formula a gyökérből a D csúcsba vezető úton, akkor
D-hez kapcsoljunk két csúcsot: a bal oldali a megfelelő formula
közvetlen tablójából nyert egyik, a jobb oldali pedig a másik jelölt
formula.
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(E) Ha van még nem „feldolgozott” T¬A, F¬A alakú jelölt formula a
gyökérből a D csúcsba vezető úton, akkor kapcsoljuk D-hez ezen
út folytatásaként a megfelelő formula közvetlen tablójából nyert
jelölt formulát mint új csúcsot.



6. A tablók módszere – tablókalkulus 6.1. Jelölt tabló az ítéletlogikában

Példa.
Adjuk meg most az

F (X ∨ (Y ∧ Z)) ⊃ (X ∨ Y ) ∧ (X ∨ Z)

formula jelölt tablóját.
F X ∨ (Y ∧ Z) ⊃ (X ∨ Y ) ∧ (X ∨ Z)

T X ∨ (Y ∧ Z)

F (X ∨ Y ) ∧ (X ∨ Z)

T X T Y ∧ Z

F X ∨ Y F X ∨ Z T Y

F X F X
T Z

F Y F Z F X ∨ Y F X ∨ Z

F X F X

F Y F Z

× ×

× ×
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A tabló egy ága teljes, ha az ágon lévő fel nem dolgozott formulák
jelölt atomok. A tabló teljes, ha minden ága teljes.

A tabló egy ága zárt, ha az ágon egy formula T -vel és F -fel jelölve
is előfordul. A tabló zárt, ha minden ága zárt, egyébként a tabló
nyitott.

Azt mondjuk, hogy az A formulának létezik tablócáfolata, ha a TA
tablója zárt, vagy hogy a B formula bizonyítható tablóval, ha FB
tablója zárt.
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Tétel. [A tablókalkulus helyessége.]
Ha a TA jelölt formula tablója zárt, akkor A kielégíthetetlen.

Bizonyítás. Tegyük fel, hogy TA tablója zárt, ekkor a tabló min-
den ága zárt. Mivel a tabló gyökerében lévő TA formula minden
ágon szerepel, ezért ha A kielégíthető lenne, lenne olyan interpretá-
ció, melyben TA igaz, de ekkor van olyan ág, melyen haladva ebben
az interpretációban igaz jelölt formulákat kapunk. De akkor az ág
nem lehet zárt.
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Tétel.
Egy tabló bármely teljes, nyitott ága kielégíthető.
Bizonyítás. Legyen S az T tabló egy teljes, nyitott ágán az összes
jelölt formula halmaza. S Hintikka-halmaz, mert nincs olyan X
ítéletváltozó, hogy TX, FX ∈ S, továbbá ha
1. TA ∧ B ∈ S, akkor TA ∈ S és TB ∈ S,

2. TA ∨ B ∈ S, akkor TA ∈ S vagy TB ∈ S,

3. TA ⊃ B ∈ S, akkor FA ∈ S vagy TB ∈ S,

4. T¬A, akkor FA ∈ S,

5. FA ∧ B ∈ S, akkor FA ∈ S vagy FB ∈ S,

6. FA ∨ B ∈ S, akkor FA ∈ S és FB ∈ S,

7. FA ⊃ B ∈ S, akkor TA ∈ S és FB ∈ S és

8. ha F¬A, akkor TA ∈ S.

A Hintikka-halmazok kielégíthetők, tehát S kielégíthető.
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Tétel. [A tablókalkulus teljessége.]
Ha egy A formula kielégíthetetlen, akkor TA bármely teljes tablója
zárt.

Bizonyítás. Tegyük fel, hogy T az TA formula egy teljes tablója.
Ha T nyitott, akkor A kielégíthető. Ezért ha A kielégíthetetlen,
akkor T biztosan zárt.
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A tabló fogalmát most kiterjesztjük formulahalmazokra is.

Egy {C1, C2, . . . , Cn} véges formulahalmaz tablója gyökerében a for-
mulahalmaz minden formulája szerepel. Ezután a C1 teljes tablóját
a gyökérhez kapcsoljuk. A nyitott ágakat a C2 teljes tablójával foly-
tatjuk és így tovább.

Egy {C1, C2, . . .} megszámlálhatóan végtelen formulahalmaz tablója
gyökerében a formulahalmaz minden formulája szerepel. Ezután az
előbbi módszerrel definiáljuk a formulahalmaz tablóját.
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6.2. Az elsőrendű tabló

Hogy a tárgyalás egyszerűbb legyen, az (egyfajtájú) elsőrendű logika
nyelv ábécéjét – a nyelv kifejezőerejét megőrizve – újradefiniáljuk. A
nyelv ábécéjének logikán kívüli szimbólumai legyenek a következők:

1. minden k = 1, 2, . . . esetén k aritású predikátumszimbólumok
megszámlálható sorozata,

2. individuumváltozók megszámlálható sorozata,

3. az individuumváltozóktól különböző ún. (individuum-)paraméter-
szimbólumok megszámlálható sorozata.

A nyelv szintaxisa csak a termek definiálásában változik: az indivi-
duumváltozók és a paraméterszimbólumok lesznek a nyelv termjei.
Tiszta formulák azok az elsőrendű formulák, amelyekben nem fordul
elő paraméterszimbólum.
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A nyelv szemantikájának megadása során rögzítünk egy tetszőleges,
nemüres halmazt, az univerzumot, jelöljük ezt most is U -val.

A nyelv tiszta formuláinak igazságértékét a különböző U feletti in-
terpretációk és változókiértékelések mellett a szokásos módon defi-
niálhatjuk.

Ha egy formulában minden paraméterszimbólum helyére U -nak egy-
egy elemét írjuk be, ún. U -formulát nyerünk. Nyilván a tiszta for-
mulák is U -formulák. Az összes – szabad individuumváltozót nem
tartalmazó – zárt U -formulának a halmazát jelöljük EU -val.

Legyen A egy az u1, u2, . . . , un univerzumelemeket tartalmazó zárt
U -formula. A az U feletti valamely I interpretációban pontosan
akkor igaz, ha A-ba az u1, u2, . . . , un helyére az A-ban nem szere-
plő x1, x2, . . . , xn egymástól különböző individuumváltozókat írva,
a nyert tiszta formula κ(xi) = ui (i = 1, . . . , n) mellett igaz I-ben.
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Határozzuk meg végül a paraméterszimbólumokat is tartalmazó zárt
– szabad individuumváltozót nem tartalmazó – formulák szemanti-
káját. Egy az a1, a2, . . . , an paraméterszimbólumokat tartalmazó
zárt formulát az U feletti valamely I interpretáció kielégíti, ha van
a paraméterszimbólumoknak U -ba való olyan κ leképezése, hogy az
κ(ai) ∈ U individuumokat rendre ai helyére írva, az így nyert zárt
U -formula igaz I-ben.
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Legyen S ⊆ EU jelölt formulák tetszőleges halmaza. S az U uni-
verzum felett S lefele zárt, ha minden olyan esetben, amikor

1. TA ∧ B ∈ S, akkor TA ∈ S és TB ∈ S,

2. TA ∨ B ∈ S, akkor TA ∈ S vagy TB ∈ S,

3. TA ⊃ B ∈ S, akkor FA ∈ S vagy TB ∈ S,

4. T¬A, akkor FA ∈ S,

5. T∀xA ∈ S, akkor minden u ∈ U -ra TAx
u ∈ S,

6. T∃xA ∈ S, akkor legalább egy u ∈ U -ra TAx
u ∈ S,
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7. FA ∧ B ∈ S, akkor FA ∈ S vagy FB ∈ S,

8. FA ∨ B ∈ S, akkor FA ∈ S és FB ∈ S,

9. FA ⊃ B ∈ S, akkor TA ∈ S és FB ∈ S és

10. F¬A, akkor TA ∈ S,

11. F∀xA ∈ S, akkor legalább egy u ∈ U -ra FAx
u ∈ S,

12. F∃xA ∈ S, akkor minden u ∈ U -ra FAx
u ∈ S.

S ⊆ EU elsőrendű Hintikka-halmaz, ha az U univerzum felett lefele
zárt és U -atom T -vel is és F -fel is egyszerre nem fordul elő benne.
Tétel. [Hintikka-lemma az elsőrendű logikában.]
Ha S az U univerzum feletti elsőrendű Hintikka-halmaz, akkor S
kielégíthető (U felett).
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Az elsőrendű tablók módszerében – az ítéletlogikai tablókhoz hason-
lóan – minden formulafajtára van egy-egy levezetési szabály, azaz
közvetlen tabló.

T∀xA

TA(x ‖ a)

F∃xA

FA(x ‖ a)

T∃xA

TA(x ‖ a)

F∀xA

FA(x ‖ a)

(C)

(D)

(megkötéssel)

A „megkötéssel” azt jelenti, hogy ha az a paraméterszimbólumot
korábban már bevezettük valamely (C) vagy (D) közvetlen tablóval
az ágon, akkor nem használhatjuk fel újra (mert az interpretációban
szabadon választható értéket szeretnénk majd biztosítani e paraméter-
szimbólum számára). Ha viszont a (C) közvetlen tablót alkalmazzuk
egy ilyen a ún. kritikus paraméterszimbólum bevezetése után, a fel-
használható C-ben.
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Egy tiszta formula jelölt tablóját a közvetlen tablók segítségével az
ítéletlogikai definíció kiterjesztésével adhatjuk meg:

(C) Ha van T∀xA, illetve F∃xA alakú jelölt formula a gyökérből
a D csúcsba vezető úton, akkor D-hez kapcsoljuk ezen út foly-
tatásaként TAx

a, illetve FAx
a formulát mint új csúcsot, ahol a

tetszőleges paraméterszimbólum.

(D) Ha van F∀xA, illetve T∃xA alakú nem „feldolgozott” jelölt for-
mula a gyökérből a D csúcsba vezető úton, akkor D-hez kap-
csoljuk ezen út folytatásaként TAx

a, illetve FAx
a formulát mint

új csúcsot, ahol a kritikus paraméterszimbólum.
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A (D) közvetlen tablót liberalizálhatjuk a következők szerint:
Ha az a paraméterszimbólumot új paraméterszimbólumként vezet-
tük be egy (C) közvetlen tablóval a tabló aktuális ágán, akkor később
egy (D) közvetlen tablóval újra felhasználhatjuk (mivel a (C)-vel
bevezetett paraméterszimbólum interpretációbeli értéke tetszőleges,
tehát a (D)-vel bevezetett érték is megfelel számára.) Ezzel a libe-
ralizálással a tabló sok esetben rövidíthető.
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Példa.
A ∃y(∃xP (x) ⊃ P (y)) formula jelölt tablója

1. nem liberalizált paramétertechnikával:
F ∃y(∃xP (x) ⊃ P (y))

F ∃xP (x) ⊃ P (a)

T ∃xP (x)

F P (a)

T P (b)

F ∃xP (x) ⊃ P (b)

F P (b)

×
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2. liberalizált paramétertechnikával:
F ∃y(∃xP (x) ⊃ P (y))

F ∃xP (x) ⊃ P (a)

T ∃xP (x)

F P (a)

T P (a)

×
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A tabló egy ága zárt, ha az ágon (elsőrendű) komplemens literálpár
fordul elő, és a tabló akkor zárt, ha minden ága zárt, egyébként a
tabló nyitott.

Tétel. [Az elsőrendű tabló helyessége.]
Ha az elsőrendű TA formula tablója zárt, akkor A kielégíthetetlen.

Bizonyítás. Ha egy tabló zárt, akkor TA nem lehet igaz egyetlen
interpretációban sem, hisz egyetlen ága sem lehet igaz egyetlen inter-
pretációban sem. Tehát a gyökérben lévő formula kielégíthetetlen.
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A tabló egy ága befejezett, ha az ágon lévő fel nem dolgozott for-
mulák literálok, és ha egy T∀xA, illetve F∃xA formula és egy a
paraméterszimbólum előfordul az ágon, akkor TAx

a, illetve FAx
a is

szerepel ezen az ágon. A tabló befejezett, ha minden ága befejezett.

Ezután olyan szisztematikus tablóépítési stratégiát vezetünk be, amely
biztosítja, hogy befejezett ágak állhassanak elő:

• Először az (A), a (B) és a (D) tablóépítési szabályokat hajtjuk
végre, amíg lehet.

• Ezután a (C) közvetlen tablók alkalmazása következik az ágon
előforduló paraméterszimbólumok segítségével.

A tablóépítést addig folytatjuk, amíg az ág vagy befejezett, vagy
zárt nem lesz.
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Tétel.
Egy befejezett szisztematikus tabló nyitott ágai kielégíthetők.

Bizonyítás. Egy befejezett szisztematikus tabló nyitott ágán egy
elsőrendű Hintikka-halmaz áll elő, ahol U az ágon szereplő paraméters-
zimbólumok halmaza. Egy elsőrendű Hintikka-halmaz pedig kielégí-
thető.
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Tétel. [Az elsőrendű tabló teljessége.]
Ha az A elsőrendű formula logikai törvény, akkor van az FA jelölt
formulának zárt, befejezett tablója.

Bizonyítás. Legyen A elsőrendű logikai törvény. Legyen T az FA
jelölt formula befejezett szisztematikus tablója. Ha T -nek lenne nyi-
tott ága, akkor (és így ¬A is) kielégíthető lenne, ellentétben azzal,
hogy A törvény.


