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Grafok reprezentacidoja matrixokkal:

1. Szomszédsagi matrix:

Legyen G = (V,E) egy egyszeru graf, |V| = n. A csucsokat 6nkényesen sorba rendezziik:
V1, V2, ... Vo . A G graf A (vagy Ag) szomszédsdagi matrixa egy n x n tipusu, négyzetes matrix lesz
(n a csucsok szamat jeldli), amelynek elemei:

a: = 1, ha {v,v;} egy éle G-nek
’ 0, egyébként

A szomszédsagi matrix n! féle lehet, mivel a csucsokat n! féleképpen tudjuk sorba rendezni.
A szomszédsagi matrix szimmetrikus. ajj = aji
Egyszerd grafban nincs hurok, ezért a fé6atléban rendre nulldk szerepelnek: a; =0 Vi - re.

A szomszédsagi matrixok haszndlhatdk hurkokat és tébbszords éleket tartalmazé grafok
reprezentaciojara is.

Hurkot tartalmazé graf esetén a f6atloban nem csak nulldk allnak, azaz ha a v; cstcsra
illeszkedik hurokél, akkor a szomszédsagi matrixban a; = 1.

Feladatok:
Adjuk meg az alabbi grafok szomszédsagi matrixait. A megoldasok alapjan a matrixbdl
probaljuk meg felirni az eredeti grafot.
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Megoldas:
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2. llleszkedési matrix:

Legyen G = (V,E). Elei: ey,e,, ... em. CsUcsai: Vi, Vy, ... Vp. Az illeszkedési matrix az élek és
csucsok fenti 6nkényesen megvalasztott sorrendje mellett egy nxm tipusd matrix
lesz,melynek elemei:

o {1 , Vi illeszkedik az e; élre
v 0, egyébként

Feladatok:
Adjuk meg az alabbi grafok illeszkedési matrixait. A matrix alapjan irjuk fel az eredeti grafot.
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Minimalis sulyu feszitofa keresése

Fa: 0sszefligg6 kormentes graf.
Feszit6fa: a graf minden csucsat tartalmazé fa. (Minden grafnak van feszit6faja.)
Egy grafnak tobb feszit6faja is lehetséges.

Probléma: Adott egy élsulyozott graf. Feladat a minimalis sulyd feszit6fa megkeresése.

Prim algoritmus: A legkisebb sulyu élt valasztjuk ki elsének. Ehhez flizzlik hozza a kdvetkez6

legkisebb sulyu élt, amely ra illeszkedik, DE kort nem alkothatnak.

Feladat: minimalis sulyu feszit6fa keresése Prim algoritmussal
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Kruskal algoritmus: A legkisebb élt valasztjuk elsének, majd nem feltétleniil illeszked6en

valasztjuk a kovetkezd élt.

Feladat: minimalis sulyu feszit6fa keresése Kruskal algoritmussal




Dijkstra algoritmus

Probléma:

adott egy nem negativ élsulyokkal rendelkezd egyszerd, 6sszefligg6 graf. Egy adott csucsbdl
szeretnénk eljutni a lehetd legrovidebb Gton egy masik adott cstcsba. (A legrévidebb Ut azt
jelenti, hogy a legkisebb élsulydsszegu ut.)

Megoldas: Dijkstra algoritmus.

Roviden:

- Elsé Iépés (inicidcios l1épés) a kezd6 csucs cimkéjét 0-ra, a tobbi csucs cimkéjét
végtelenre allitjuk.

- Minden lépésben vegylik az ideiglenes cimkével rendelkez6 csucsok kozil a lehetd
legkisebb cimkéj(it (jeloljok ezt a csicsot most v-vel). Ez a v cstcs ekkor mar allandé
cimkéjd, ismerjlik a hozza vezet6 legrovidebb utat.

- vszomszédjaira kiszamitjuk a v-be vezetd és onnan meghosszabbitott Utnak a
hosszat. Ha ez kisebb lesz mint az eddigi cimkéje, akkor ezzel az értékkel
Ujracimkézzik.

Feladatok:
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Priifer kod

A fak tarolasara hasznaljuk. (Priifer koéd és a fak kozotti bijekcio)

A Prifer kod el6allitasa:

- afa csucsait sorszamozzuk meg 1-t6l n-ig

- keressiik meg a legkisebb sorszamu levelet

- ezt alevelet hagyjuk el a hozza illeszkedd éllel egyiitt, az él masik csucsat pedig a
Prifer kod végére irjuk

az el6z6 két lépést addig ismételjik, amig csak 2 csucsunk marad

Az igy kapott kdd n-2 hosszu lesz n db. csucs esetén, tovabba az eredeti fa leveleinek
sorszama nem lesz benne a kédban.

Feladatok
irjuk fej az aldbbi grafok Priifer kodjat, majd a kédok alapjan irjuk rajzoljuk fel a gréfot.
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