
FEJEZET 3

Euler-gráfok, Euler-utak, Hamilton-utak és Hamilton-körök

"Az út örök és tétlen

mégis mindent végbevisz észrevétlen..."

Lao-Ce, Tao Te King: Az Út és Erény könyve,
Weöres Sándor fordításában, Tericum Kiadó, 1994. (37 vers)

1. Euler-gráfok

1. ábra.

Leonard Euler (1707-1783) nevéhez kapcsolódik az első gráfelméleti munka, mely 1736-ban
jelent meg a Szentpétervári Tudományos Akadémia közleményeiben. Az értekezését Euler az
ún. Königsbergi hidak problémájával kezdte. A Pregel folyó A,B szigeteit hidak kötötték
össze egymással és a partokkal is. Az A szigetet két párhuzamos híd kötötte össze a jobb
parttal, egy híd a B szigettel, s ugyancsak két párhuzamos híd vezetett az A-ról a bal partra
is. B-t egy-egy híd kötötte össze a bal és a jobb parttal is és B-ről vezetett egy híd A-ra is,
melyet az előbb már említettünk. A kérdés az volt, be lehet-e járni a hidakat valamely fix C
pontból oly módon, hogy minden hídon átmegyünk pontosan egyszer. Euler lényegében teljes
általánosságban megoldotta a feladatot.

3.1. Definíció. A G = (E, ϕ, V ) gráf L = v0e1v1e2v2 . . . vn−1envn vonalát (ϕ(e1) = (v0, v1),
ϕ(e2) = (v1, v2),. . . ,ϕ(en) = (vn−1, vn)) Euler-vonalnak nevezzük, ha E minden élét pontosan
egyszer tartalmazza. S zárt Euler-vonalnak mondjuk, ha v0 = vn, egyébként pedig ha v0 6= vn,
akkor L-et nyílt Euler-vonalnak hívjuk.

Ha valamely gráfnak van zárt Euler-vonala, szokás azt Euler-gráf névvel illetni. Nyilván egy
Euler-gráf összefüggő és bármely csúcspontjának a foka páros, mivel ha az Euler-vonala betér
valamely csúcspontba, mind annyiszor ki is megy onnan. Megjegyezzük, hogy van, aki Euler-
gráfnak nevez olyan gráfot, amelynek bármely csúcsfoka páros. A következő tétel lényegében
Eulertől származik.

35



36 3. EULER-GRÁFOK, EULER-UTAK, HAMILTON-UTAK ÉS HAMILTON-KÖRÖK

A

Bal part

Jobb part

B

2. ábra.

1 1

2 23 3

4
4

5 5
6 6

7 7

G1 G2

1,3,4,7,3,2,5,6,1 1,3,2,5,6,1,4,7,3,4
Zárt illetve nyílt Euler-vonal.

3. ábra.

3.1. Tétel. A G gráf akkor és csak akkor Euler-gráf, ha összefüggő és bármely csúcsának
a foka páros.

A tételre két különböző bizonyítást adunk. Az első egy konstruktív bizonyítás, amely
lényegében algoritmust ad Euler-gráf Euler-vonalának a megkeresésére. A második bizonyítás
rövid, s tömör, de csak az Euler-vonal létezését igazolja, s nem ad ötletet arra, hogyan lehet
találni egy konkrét Euler-vonalat.

I. Bizonyítás: Az, hogy egy Euler-gráf szükségképpen összefüggő és minden csúcspontjá-
nak a foka páros, az remélhetően világos a tétel előtti sorokból. A feltétel elégséges voltához
tekintsük a G gráf valamely zárt vonalát. Zárt vonala van G-nek, mivel G valamely v0 pontjából
elindulva egy v0-ra illeszkedő e1 élen1 eljutunk v1-be, s v1-ből e2 mentén v2-be, és így tovább
v0e1v1e2v2 . . . vi−1eivi...vk−1ekvk. Végül ek elvisz vk = vj-be (j < k), ahol a vj olyan csúcsot
jelöl, amelyben már jártunk. Nem mehetünk mindig új csúcsba, mivel G-nek véges sok csúcsa
van csupán. Legyen ez a létező zárt útja G-nek L1-gyel jelölve. A csúcsok és élek esetleges
újraindexelése után feltehetjük, hogy L1 = v0e1v1e2v2 . . . vi−1eivi...vk−1ekv0. Ha az L1 élsorozat
tartalmazza a G gráf valamennyi élét, akkor kész vagyunk. Ha nem tartalmazza például az
e′ élt és u1, u2 ezen él végpontjai, akkor u1-ből indulva az előbbiekhez hasonlóan találunk egy

1A v0 csúcs foka δ(v0) ≥ 2, egyrészt G összefüggősége miatt δ(v0) > 0, másrészt a csúcsok fokszámainak
páros volta miatt δ(v0) ≥ 2, s ezért létezik legalább egy e1 él, mely illeszkedik v0-ra.
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ugyancsak u1-ben végződő L2 zárt vonalat. Természetesen ügyelnünk kell arra, hogy L1 éleit
ne válasszuk be L2 élei közé. Ha u1 az L1 zárt vonal valamely élére is illeszkedett (vagy L2

valamely másik csúcspontja illeszkedett L1-re), akkor az L1, L2 zárt vonalakat lehet egyetlen
zárt vonalnak tekinteni. Megtehetjük ugyanis azt, hogy az L1, L2 vonalakat valamely közös uj

pontjukból járjuk végig. Először L1-et, majd ugyancsak uj-ből L2-t járjuk be. Ha az L1 ill.
L2 vonalaknak nem volna közös csúcspontja, akkor L2-t cseréljük ki oly módon, hogy először
vezessünk u1-ből olyan utat2 L1 valamely csúcspontjába, amelynek nincs közös éle L1-gyel, s
ezt az utat egészítsük ki az L′

2 zárt vonallá az előbbi módon. Ha nem maradt ki él, akkor kész
vagyunk. Ha maradt ki él, akkor megismételjük az előbbi eljárást és mivel a gráfunk véges,
előbb vagy utóbb az eljárásunk véget ér és megadja a G gráf egy zárt Euler-vonalát. ¤

Reméljük, a Tisztelt Olvasó felfigyelt arra, hogy az elmondott bizonyításunk lényegében al-
goritmust ad a G gráf Euler-vonalának meghatározására. Le lehet rövidíteni a fenti bizonyítást,
de akkor elvész az algoritmikus jelleg. Nézzük most a látszólag elegánsabb, "rövidebb" bi-
zonyítást.

II. Bizonyítás: Legyen G-nek L = v0e1v1e2v2 . . . vi−1eivi...vk−1ekvk a leghosszabb vonala.
Ha L tartalmazza G minden élét, kész vagyunk. L Euler-vonala G-nek. Ha L nem tartalmazza
például G-nek az f élét (ez az indirekt feltevésünk), akkor G összefüggő volta miatt feltehető,
hogy f egyik végpontja mondjuk w egybeesik L valamely csúcspontjával. Az L vonal maximális
voltából és abból, hogy G-nek minden csúcs foka páros, következik, hogy L zárt, azaz vk = v0.
L zártsága miatt bejárhatjuk L éleit w-ból indulva, s mikor utoljára visszaérünk w-be, menjünk
tovább f másik végpontjába. Az így kapott L′ vonalnak eggyel több éle volna, mint L-nek, s
ez ellentmondana L maximális vonal voltának. Az ellentmondás oka, hogy feltettük, hogy L
maximális és van olyan éle G-nek, amely nincs L-ben. ¤

3.2. Tétel. A következő állítások a G=(E, ϕ, V ) összefüggő gráfra ekvivalensek:
1. G=(E, ϕ, V ) Euler-gráf, azaz van zárt Euler-vonala.
2. G=(E, ϕ, V ) minden csúcsának a foka páros.
3. G=(E, ϕ, V ) élidegen körök uniója.

Bizonyítás: A bizonyítást az 1 ⇒ 2 ⇒ 3 ⇒ 1 séma alapján érdemes elvégezni.
1 ⇒ 2. Ahhoz, hogy az első állításból következik a második, elegendő azt észrevenni, hogy

tetszőleges L zárt vonal, tetszőleges u csúcspontjára igaz, hogy ha L bejárása során λ esetben
kimentünk u-ból, akkor L végigjárása során λ esetben u-ba be is tértünk. S ezért u foka
d(u) = 2λ. Azaz G-nek valóban bármely csúcspontjának a fokszáma páros.

2 ⇒ 3. A G gráf összefüggőségéből és csúcsai fokszámának páros voltából az adódik, hogy
∀v ∈ V (G) : d(v) ≥ 2. Ha a G gráf tetszőleges v csúcspontjára teljesedik, hogy d(v) ≥ 2, akkor
v-ből elindulva kapunk G-nek egy L zárt vonalát. Zárt vonal mindig tartalmaz legalább egy
kört. Ugyanis a zárt vonal L = v0e1v1e2v2 . . . vi−1eiviei...ej−1vjej...vk−1ekvk valamely pontjából
elsétálva a séta során az elsőnek megtalált ismétlődő pont vi = vj közti rész C = viei+1...ej−1vj

kört ad. Tetszőleges kör bármely pontjának a fokszáma páros. Ha a G gráfunk valamely C
körének éleit töröljük, akkor G bármely csúcspontjának a foka továbbra is páros marad. S
mindaddig találunk újabb élidegen köröket, amíg az élek törlése után megmaradó gráfnak van

2A G összefüggősége miatt u1-ből L1 bármely pontjába vezet út.
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olyan v csúcspontja, melynek foka d(v) ≥ 0. S az eljárás miatt a körök éleinek a halmazai
diszjunktak.

3 ⇒ 1. Valóban, ha a G gráf összefüggő és élidegen körök uniója, akkor be lehet járni a
gráf éleit oly módon, hogy minden élen csak egyszer megyünk végig. Bizonyítsunk mondjuk a
körök száma szerinti teljes indukcióval. Ha csak egy élidegen körből áll a gráf, akkor az az egy
kör önmagában lesz egy zárt Euler-vonal. Ha már k − 1 kört bejártunk s a k-adik körrel a zárt
vonalunknak az u pontja közös3 , akkor járjuk be a k−1 kör alkotta zárt vonalat u-ból elindulva,
majd ha már visszatértünk u-ba, folytassuk a bejárást a k-adik kör éleinek a bejárásával. ¤

3.3. Tétel. Ha a G egyszerű összefüggő gráfnak, 2k darab páratlan fokú csúcspontja van,
akkor élei lefedhetők k darab nyílt vonallal.

Bizonyítás: Egészítsük ki a G gráfot k darab éllel G′-vé, oly módon, hogy G′ minden csú-
csának a foka páros legyen, ez nyilván megtehető, ha ügyelünk arra, hogy az új élekkel mindig
páratlan fokú csúcsokat kössünk össze. G′-re ekkor teljesedni fog a 3.1. tétel feltétele, s ezért
lesz egy zárt Euler-vonala is, mely triviálisan tartalmazza az "új" k darab élt is. Ha a k darab
új élt töröljük, k darab nyílt vonalat kapunk. (Miért nem kaphatunk kevesebbet k-nál?) S a
bizonyítás ezzel kész. ¤

2. Hamilton-körök, Hamilton utak

Sir Villiam Rovan Hamilton4 (1805-1865) 1859-ben egy olyan játékot hozott forgalomba,
melynek a lényege az volt, hogy egy előre megadott gráf csúcspontjait kellett bejárni, oly
módon, hogy bármely csúcsban pontosan egyszer kellett járni. Állítólag a játéknak nem volt
átütő sikere Hamilton kortársai között.

3.2. Definíció. A G = (E, ϕ, V ) gráf H = v0e1v1e2v2 . . . vn−1envn útját (ϕ(e1) = (v0, v1),
ϕ(e2) = (v1, v2),. . . ,ϕ(en) = (vn−1, vn)) Hamilton-útnak mondjuk, ha a v0, v1, v2, . . . , vn−1, vn

csúcsok mind különbözők és e csúcspontokon kívül más csúcspontja nincs G-nek.

3Vegye észre a Kedves Olvasó, s még jobb ha meg is indokolja, hogy ha a G összefüggő gráf éleit valamely
u pontból végig lehetett járni egy zárt vonal mentén, oly módon, hogy minden élen csupán egyszer ment végig,
s végül u-ba futott be, akkor a gráf bármely másik v pontjából elindulva is végig járhatja G éleit (s mindegyik
élen csak egyszer menve végig) oly módon, hogy a bejárást v-ben fejezi be.

4Sir Villiam Rovan Hamilton (1805-1865) Dublinban született, családja

Skóciából származik. Nyelvi és matematikai tehetsége nagyon korán megmu-
tatkozott. 15 éves korában már Newton és Laplace írásait olvasta. Saját
maga a kvaterniók felfedezését tartotta legfontosabb eredményének. Ma e
véleményével kevesen értenek egyet.
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3.3. Definíció. A G=(E, ϕ, V ) gráf K körét Hamilton-körnek mondjuk, ha K tartalmazza
G minden csúcspontját.

Látszólag nagyon hasonló probléma, hogy valamely gráfnak az éleit járjuk be pontosan
egyszer, vagy a csúcspontjait. Az utóbbi azonban jóval nehezebb. S az általános esetben
Hamilton-utak illetve Hamilton-körök keresésére ma sem ismert igazán jó algoritmus. Operá-
ciókutatás területéhez tartozik az utazó ügynök problémája. Az utazó ügynök problémája azt
jelenti, hogy a kereskedelmi utazónak adott városokat kell bejárnia, oly módon, hogy min-
den városba csak egyszer megy el, és végül visszatér a cégének a székhelyére. Ez esetben a
gráf csúcspontjai az utazó által meglátogatandó városok, az élek pedig a városokat összekötő
útvonalak. Természetesen egy-egy útnak jól meghatározott útiköltsége is van, s több út ese-
tén célszerű azt az utat választani, melynek a költsége minimális. Ha valamely G gráf éleihez
valós számokat rendelünk, akkor hálózatokról, folyamokról beszélünk. S nagyon természetesen
vetődik fel minimális költségű ill. maximális nyereségű utak esetleg körök keresése. Az előbb
említett feladatok a kombinatorikus optimalizálás tárgykörébe tartoznak. A következő tétel
megfogalmazása előtt említjük meg, hogy egy kör ill. út hosszán a bennük szereplő élek számát
értjük.

3.4. Tétel. Ha a G egyszerű gráfban bármely csúcspont foka legalább k (k ≥ 2), akkor van
a gráfban egy legalább k + 1 hosszúságú kör.
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4. ábra.

Bizonyítás: Legyen a G gráfnak az L út a leghosszabb útja. S ezen út csúcspontjait a kezdő
ponttól indulva jelölje rendre v0, v1, v2, . . . , vk−1, vk, vk+1, ..., vn. Az, hogy v0 foka legalább k,
azt jelenti, hogy a v0-t v1-gyel összekötő e1 élen kívül még legalább k − 1 él indul ki v0-ból.
Ezen élek másik végpontjai szükségszerűen szerepelnek L csúcspontjai között, mert ellenkező
esetben összeütközésbe kerülnénk azzal, hogy az L út a leghosszabb. Legyen e′2 másik végpontja
mondjuk v2, e′3 végpontja v3 és végül e′k végpontja vk. Ekkor az L útnak a v0-tól vk-ig tartó
rész útjának két végpontját köti össze e′k, ezért egy kört kapunk, melyben legalább k +1 él van,
s ezzel a bizonyítás kész.

3.5. Tétel. Ha a G = (E, ϕ, V ) egyszerű gráf bármely v csúcsának fokára teljesül, hogy

δ(v) ≥
|V |

2
=

n

2
, akkor G összefüggő.

Bizonyítás: Legyen u és v két különböző csúcsa G-nek. A feltétel szerint u-val és v-vel is
legalább

n

2
,

n

2
pont van összekötve az u-ból illetve v-ből induló élek által, a fokszám feltétel

miatt. Az előbb említett u-val, illetve v-vel közvetlenül összekötött pontok között van olyan,
mely u-val is és v-vel is össze van kötve, (ha nem lenne ilyen, akkor G csúcsainak a száma
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nagyobb egyenlő volna, mint
n

2
+

n

2
+ 2) azaz u és v között vezet út. ¤

Ha adott a G=(E, ϕ, V ) gráf, a csúcsainak a számát |V | = n szokás G rendjének, s éleinek
számát |E| = q a G gráf méretének mondani. Ha az u-t az e él összeköti a v csúccsal, akkor u-t
ill. v-t az e él végpontjainak nevezzük és u-t ill. v-t szomszédosnak mondjuk. Az u csúcsponttal
szomszédos csúcsok halmazát N(u)-val jelöljük.

3.6. Tétel (O. Ore5 , 1960). Ha a G gráfra teljesül, hogy rendje n ≥ 3 és bármely két nem
szomszédos u, v csúcspont fokának az összege nagyobb egyenlő G rendjénél (δ(u) + δ(v) ≥ n),
akkor G-nek van Hamilton-köre.

Bizonyítás: Indirekt bizonyítunk. Azon gráfok közül, melyekre a tétel feltételei teljesednek,
de az állítás nem, tekintsük valamely G′ gráfot, mely éleinek a száma maximális. Maximális
abban az értelemben, hogy ha G′-höz hozzáveszünk egy olyan e élt, mely a nem szomszédos u
és v csúcsokat köti össze, akkor az így kapott G gráf már tartalmazni fog Hamilton-kört. G′

minden Hamilton-köre tartalmazza az e élt, ezért van olyan L Hamilton-útja G′-nek, mely u-t
és v-t köti össze, legyen ez az út megadva ϕ(e1)=(v0, v1), ϕ(e2)=(v1, v2),. . . ,ϕ(en)=(vn−1, vn)
(u = v0, v = vn) által. A v0, v1, v2, . . . , vk−1, vk, vk+1, ..., vn csúcspontokkal kapcsolatban ve-
gyük észre, hogy ha vk+1 szomszédos u-val, azaz vk+1 eleme N(u)-nak, akkor vk nem eleme
N(v)-nek. Ellenkező esetben a v0, vk+1, vk+2, ..., vn, vk, vk−1, ..., v0 Hamilton-köre volna G′-nek.
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5. ábra.

Tehát a V − {v} pontok közül az u-val szomszédos pontok nem szomszédosak v-vel, ezért
δ(u) ≤ (n − 1) − δ(v) s ez utóbbi egyenlőtlenség ellentmond a tétel feltételeinek. ¤

Ore tételének speciális esete Dirac tétele:

5O. Ore 1899.X.7. Kristiania-ban a (a mai Oslo-ban Norvégiában) született

és ott is halt meg 1968.VIII.13. Fiatal korában algebrai számelmélettel foglalko-
zott, később hálóelmélettel, gráfelmélettel. 1927-ben professzori kinevezést kapott
a Yale egyetemre, 1931-ben a Yale egyetem kitűnő professzora címet kapta, s 37
évvel később 1968-ban onnan is ment nyugdíjba. Több könyvet írt a matematika
különböző területeiről, számelméletről, négyszínsejtésről, gráfelméletről.
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2.1. Következmény (G. A. Dirac, 1952). Ha az n = 2k (2 < n) csúcsú egyszerű G gráf
bármely pontjának a foka legalább k, akkor van G-nek Hamilton-köre.

Valóban, G-ben létezik Hamilton-kör, mivel a következmény feltételei lényegében szigorúb-
bak, mint a 3.6. tétel feltételei.

Az időrendben való jobb tájékozódás végett egységes jelölés mellett felsoroljuk a Hamilton-
körökre vonatkozó érdekesebb eredményeket. Jelölje a G=(E, ϕ, V ) gráf csúcspontjainak fok-
számait rendre d1 ≤ d2 ≤ ... ≤ dn (|V | = n).

3.7. Tétel. Ha a G=(E, ϕ, V ) egyszerű gráfra (2 < n) a következő feltételek valamelyike
teljesedik, akkor van G-nek Hamilton-köre:

1. G. A. Dirac (1952): 1 ≤ k ≤ n ⇒ dk ≥
1

2
n

2. O. Ore (1961): u, v ∈ V, de (u, v) /∈ E ⇒ δ(u) + δ(v) ≥ n

3. Pósa Lajos (1962): 1 ≤ k ≤
1

2
n ⇒ dk > k

4. J. A. Bondy (1969): j < k, dj, dk ≤ k − 1 ⇒ dj + dk ≥ n

5. V. Chvátal (1972): dk ≤ k <
1

2
n ⇒ dn−k ≥ n − k

3.4. Definíció. A G gráf G′ részgráfját G k-adfokú faktorának mondjuk, ha
(i) G′ csúcsainak halmaza megegyezik G csúcsainak halmazával,
(ii) G′ bármely csúcsa azonos k fokszámú.

A definícióból látható, hogy valamely G gráfnak a K Hamilton-köre egyben másodfokú faktora
G-nek. A 6. ábrán látható gráfnak vastag, szaggatott, illetve pontozott vonallal jelöltük egy-egy

6. ábra.

elsőfokú faktorát. Ellenőrizze le a Kedves Olvasó, hogy a három elsőfokú faktor közül bármely
kettő "szorzata" az ábrán látható gráfnak egy-egy másodfokú faktorát adja, de a gráfnak nincs
Hamilton-köre, ugyanakkor a keletkező körök természetesen lefedik G csúcsait.

3.8. Tétel. Ha a G egyszerű összefüggő gráfnak van olyan k csúcsa, melyek törlése után
k + 1 komponensére esik szét, akkor G-nek nincs Hamilton-köre.

Bizonyítás: Indirekt bizonyítunk. Elegendő arra gondolni, hogy egy kör k darab pontjának
törlése után legfeljebb k részre eshet szét. ¤
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3.9. Tétel. Ha a G egyszerű összefüggő gráfnak van olyan k pontja, melyek törlése után
k + 2 komponensre esik szét, akkor G-nek nincs Hamilton-útja (s persze még kevésbé van
Hamilton-köre).

Bizonyítás: Indirekt bizonyítunk. Tegyük fel, hogy G-nek az L Hamilton-útja, azaz L-re
illeszkedik G minden csúcspontja. Bármely út, így persze L is, k darab pontjának a törlésével
legfeljebb k + 1 részre bomlik, s ez ellentmond a tétel feltevésének, mely szerint legalább k + 2
részre kellene bomolnia. ¤

3.5. Definíció. Legyenek G1, G2, ..., Gk rendre m1,m2, ...,mk-ad fokú faktorai a G gráfnak,
ha
(i) bármely i, j esetén Gi-nek illetve Gj-nek nincs közös éle,
(ii) a G1, G2, ..., Gk részgráfok együttvéve tartalmazzák G összes élét,
akkor G-t ezen k számú faktor szorzatának mondjuk.

3. Az utazó ügynök problémája

Nem negatív élsúlyozott (E(Kn)
w
−→ R+, ω(e) ≥ 0) Kn teljes gráfban keresünk minimális

súlyú CH Hamilton-kört, azaz min
CH

∑

e∈E(CH)

ω(e).

3.1. A "legközelebbi szomszéd" algoritmus.

1. Válasszuk ki Kn tetszőleges x csúcsát. S az x csúcsra illeszkedő élek közül válasszunk egy e
minimális súlyút.

2. A kiválasztott e él másik csúcspontja legyen y, jelöljük meg y-t is kiválasztott pontnak. Az
y-ra illeszkedő azon élek közül, amelyek nem illeszkednek korábban kiválasztott pontra (ill.
pontokra), válasszunk egy minimális súlyú e′ élt.

3. Ha már minden pontját megjelöltük Kn-nek, az algoritmus véget ér Kn egy súlyozott CH

Hamilton-körének megadásával.

Megjegyzés. A CH kör függ az x kezdőpont megválasztásától. Az S(CH) =
∑

e∈E(CH)

ω(e)

szám egy felső korlátot ad az utazó ügynök problémára.

3.2. A rendezett élek algoritmusa.

Feltesszük, hogy a Kn élsúlyozott teljes gráf élei súlyuk növekvő sorrendje szerint rendezve
vannak.

1. Válasszunk e ∈ E(Kn)-t minimális súlyúnak.
2. A ki nem választott élek közül válasszuk e ∈ E(Kn)-t minimális súlyúnak, ügyelve arra, hogy

egyik végpontja se illeszkedjen olyan pontra, amelyre már korábban kiválasztott élek közül
már kettő illeszkedik és ne alkossanak a kiválasztott élek n csúcspontnál kevesebb pontból
álló kört.

3. Ha kiválasztott élek száma n, akkor megkaptuk Kn egy súlyozott CH Hamilton-körét.

Alsó korlátot oly módon nyerhetünk az utazó ügynök problémára, ha észrevesszük, hogy
Kn egy minimális súlyú CH Hamilton-körének tetszőleges x pontját törölve a Kn − x gráfnak
egy súlyozott feszítőfáját kapjuk.
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Keressünk a Kn − x gráfban egy minimális súlyú T feszítőfát (például a Kruskal-
algoritmussal). T élei súlyának az összegét jelölje S(T ), azaz S(T ) =

∑

e∈E(T )

ω(e). S az x-re

illeszkedő élek közül a két legkisebb súlyú legyen e1, e2, ekkor S(CH) ≥ S(T )+ω(e1)+ω(e2). Ez
azt jelenti, hogy az S(T )+ω(e1)+ω(e2) egy alsó korlát az utazó ügynök problémára. A 7. ábra

110

100
120

170
130

A

D

B

C
150

7. ábra.

élsúlyozott G gráfjának AB, BD, BC élei megadják egy minimális súlyú feszítőfáját, s az alsó
korlát ekkor k = 110 + 100 + 120 = 330. A gráf B csúcsából indulva a legközelebbi szomszéd
algoritmus rendre a BD,AD,AC,BC éleket adja, s nyerjük a K = 100+130+170+120 = 520
felső korlátot.

Feladatok

"Gyakorolj hát és törekedj, mint a régiek, hogy az újat megragadhasd; legfőbb szabályod ez legyen."

Kung Fu-ce: Lun-jü: II.könyv 11. fejezet.

1; Igazolja, hogy ha egy élt is tartalmazó G gráf minden pontjának foka páros, akkor kijelöl-
hetők a gráfban körök úgy, hogy a gráf minden éle e körök közül pontosan egyben szerepeljen.

2; Bizonyítsa be, hogy ha az e él az összefüggő G gráfnak hídja, akkor G nem tartalmaz
olyan kört, melyben az e él szerepel. (Definíció szerint a G összefüggő gráfnak az e élét hídnak
mondjuk, ha e törlésével a G-ből kapott gráf már nem összefüggő.)

3; Bizonyítsa be, hogy ha a G összefüggő gráfnak nincs olyan köre, amely az e élt tartal-
mazza, akkor e hídja G-nek.

4; Igazolja, hogy ha a G irányított gráf nem üres, és bármely v pontjára δbe(v) = δki(v),
akkor G lefedhető körökkel oly módon, hogy bármely él pontosan egy körben szerepel.

5; Bizonyítsa be, hogy a teljes gráf tetszőleges irányítása mellett létezik olyan v pontja,
melyből bármely másik ponthoz vezet legfeljebb kettő hosszúságú út.

6; Mutassa meg, hogy bármely G irányított gráfban a csúcsok kifokainak ill. befokainak
összege az élek számával egyezik meg.

7; Bizonyítsa be, hogy bármely hidat nem tartalmazó összefüggő G gráf irányítható oly
módon, hogy erősen összefüggő legyen. (A G irányított gráf erősen összefüggő, ha bármely
pontjából bármely másik pontjába vezet irányított út.)

8; Mutassa meg, hogy igazak az alábbi állítások:
(i) Ha G nem üres gráf, összefüggő és bármely v pontjára δbe(v) = δki(v), akkor G-nek van
irányított Euler-vonala.
(ii) Ha a G nem üres irányított gráfnak van irányított Euler-vonala, akkor G bármely v pontjára
δbe(v) = δki(v) és G összefüggő.
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9; Mutassa meg, hogy ha a G gráf nem üres és összefüggő, akkor élei bejárhatók oly módon,
hogy minden élen kétszer megyünk végig és vissza térünk a kiindulási pontba. Az élek bejárása
úgy is elvégezhető, hogy minden élt mindkét irányban pontosan egyszer járunk be.

10; Legyen a G1 gráf olyan részgráfja G-nek, mely tartalmazza a G v csúcspontját és G1

Euler-gráf, feltesszük még, hogy G v-ből tetszőlegesen bejárható. Töröljük G1 éleit és a visz-
szamaradt izolált pontjait G-nek, a megmaradt gráfot jelölje G2. Mutassa meg, hogy G1 és
G2 is v-ből tetszőlegesen bejárható. (A G gráfot v-ből tetszőlegesen bejárhatónak mondjuk, ha
v-ből indulva és mindig be nem járt élen haladva szükségképpen G-nek valamely Euler-vonalát
kapjuk.)

11; Mutassa meg, hogy ha páros számú utat úgy kapcsolunk össze, hogy kezdőpontjuk u-ra,
végpontjuk v-re illeszkedik és u-n ill. v-n kívül más közös pontjuk nincs, akkor mind u-ból
mind v-ből tetszőlegesen bejárható gráfot kapunk. Mutassa meg, hogy bármely u-ból ill. v-ből
tetszőlegesen bejárható G gráf előállítható az előbbi módon.

12; Igazolja, hogy a kettőnél több pontjukból tetszőlegesen bejárható G gráfok körök.
13; Jelölje a G irányított gráf csúcsait rendre v0, v1, v2, . . . , vk−1, vk, vk+1, ..., vn, mutassa meg,

hogy a
i=n∑

i=0

|δki(vi) − δbe(vi)| szám páros.

14; Vizsgálja meg, hogy a 4 x 4-es sakktáblát be lehet-e járni egyetlen lóval lóugrásokkal oly
módon, hogy mindig olyan mezőre lépünk, melyen korábban még nem jártunk! (Tetszőlegesen
választott mezőről indulhatunk.)

15; Végig lehet-e járni az 5 x 5-ös sakktáblát az előbb említett módon?
16; Bizonyítsuk be, hogy ha egy társaságnak bármely tagja ismer a társaságból legalább k

embert, akkor közülük leültethető egy kerek asztal mellé legalább k + 1 személy oly módon,
hogy mindenkinek a két szomszédja ismerőse is egyben. (Feltételezzük, hogy k ≥ 2 és az
ismeretségek kölcsönösek.)

17; Bizonyítsa be, hogy ha az előbbi feladatban említett társaság 6 főből áll és k = 3, akkor
mind a hatan leültethetők egy asztal mellé az előző feladat feltételeinek megfelelően.

18; Legyen a G gráf csúcspontjainak a száma n ≥ 4. Mutassa meg, hogy ha az n pontú

egyszerű gráfban bármely
n − 1

2
> k pozitív egész k-ra a k-nál nem nagyobb fokú pontok száma

kevesebb mint k, akkor a G gráf összefüggő.
19; Mutassa meg, hogy ha az egyszerű összefüggő G gráf K körének bármely e élének törlése

után a G leghosszabb útját kapjuk, akkor K Hamilton-köre G-nek.
20; Igazolja, hogy ha egy n csúcspontú egyszerű gráf bármely leghosszabb útjának végpontjai

fokszámainak összege n, akkor a leghosszabb utak között van olyan, melynek a végpontjai
szomszédosak.

21; Mutassa meg, hogy ha valamely sakk versenyen mindenki mindenkivel egyszer
mérkőzött, és döntetlen nem volt, akkor a versenyzők sorba rendezhetők oly módon, hogy
mindenki győzött az utána következő ellen.

22; Bizonyítsa be, hogy a legalább 2 pontú teljes gráfnak bármely irányítása mellett van
irányított Hamilton-útja.

23; Irányítsa az 5 szögpontú teljes gráfot oly módon, hogy ne legyen a kapott gráfnak
irányított Hamilton-köre!

24; Rajzoljon olyan 6 pontú 11 élű egyszerű gráfot melynek nincs Hamilton-köre.
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25; Helyezzen el, az oktaéder minden lapjára egy-egy a lapot pontosan fedő tetraédert.
Mutassa meg, hogy az így létre jött test élhálózatából álló gráfnak nincsen sem Hamilton-köre,
sem Hamilton-útja.

26; Hány Hamilton-köre van a tetraéder ill. hexaéder (kocka) gráfjának.
27; Ha egy összefüggő gráf nem egyrétűen járható be (tehát legalább négy páratlan fokú

csúcsot tartalmaz), akkor legalább két különböző minimális lefedése van. (A lehető legkevesebb
vonalból álló lefedéseit egy gráfnak minimális lefedésnek mondjuk, és egy vonalhalmaz lefedő,
ha a gráf minden élét legalább egyszer tartalmazza.)

28; A Kn (n > 2) teljes gráf éleit két színnel, pirossal és zölddel színeztük ki. Bizonyítsa
be, hogy Kn-nek lesz olyan k Hamilton-köre, mely egyszínű, vagy legfeljebb két egyszínű ívből
áll. (Szorgalmi)


