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Amit tudni kell, ami olvasmány 

III. Euler-gráfok,Euler-utak, Hamilton-utak és Hamilton-
körök 

 
Részlet: http://www.inf.unideb.hu/oktatas/mobidiak/Turjanyi_Sandor/Bev._a_komb._es_a_grafelmeletbe/3.pdf 
 

“ 

     Az út örök és tétlen  
mégis mindent végbevisz észrevétlen…” 

Lao-C 
e, Tao Te King, Az Út és Erény könyve, Weöres Sándor fordításában,Tericum Kiadó,1994,(37 vers) 

III.1. Euler gráfok: 
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1. ábra 

Leonard Euler (1707-1783) nevéhez kapcsolódik az első gráfelméleti munka, mely 
1736-ban jelent meg a Szentpétervári Tudományos Akadémia közleményeiben. Az 
értekezését Euler az ún. Königsbergi hidak problémájával kezdte. A Pregel folyó A, B 
szigeteit hidak kötötték össze egymással és a partokkal is. Az A szigetet két párhuzamos híd 
kötötte össze a jobb parttal, egy híd a B szigettel, s ugyancsak két párhuzamos híd vezetet az 
A-ról a bal partra is. B-t egy-egy híd kötötte össze a bal és a jobb parttal is és B-ről vezetet egy 
híd A-ra is , melyet az előbb már említettünk. A kérdés az volt, be lehet e járni a hidakat 
valamely fix C pontból oly módon, hogy minden hídon átmegyünk pontosan egyszer. Euler 
lényegében teljes általánosságban megoldotta a feladatot. 
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2. ábra 

III.1.Definíció: A  G E V , ,  gráf L élsorozatát 

(              e v v e v v e v vn n n1 0 1 2 1 2 1   , , , ,..., , )-t Euler-vonalnak nevezzük, ha E minden 
élét pontosan egyszer tartalmazza. S zárt Euler-vonalnak mondjuk, ha v vn0  , egyébként 
pedig ha v vn0   akkor L-t nyílt Euler-vonalnak hívjuk.  

http://www.inf.unideb.hu/oktatas/mobidiak/Turjanyi_Sandor/Bev._a_komb._es_a_grafelmeletbe/3.pdf
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Ha valamely gráfnak van zárt Euler-vonala szokás azt Euler-gráf névvel illetni. 
Nyilván egy Euler-gráf összefüggő és bármely csúcspontjának a foka páros, mivel ha az Euler-
vonala betér valamely csúcspontba mind annyiszor ki is megy onnan. Megjegyezzük, hogy 
van aki Euler-gráfnak nevez olyan gráfot, amelynek bármely csúcsfoka páros. A következő 
tétel lényegében Eulertől származik.  

1 1

2 23 3

4
4

5 5
6 67 7

G1 G2
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Zárt illetve nyílt Euler-vonal.  

3. ábra 

III.1. Tétel: A G gráf akkor és csak akkor Euler-gráf, ha összefüggő és bármely 
csúcsának a foka páros. 

A tételre két különböző bizonyítást adunk. Az első egy konstruktív bizonyítás, amely 
lényegében algoritmust ad Euler-gráf Euler-vonalának a megkeresésére. A második bizonyítás 
rövid, s tömör,de csak az Euler-vonal létezését igazolja, s nem ad ötletet arra, hogyan lehet 
találni egy konkrét Euler-vonalat.  

Bizonyítás I.:Az, hogy egy Euler-gráf szükségképpen összefüggő és minden 
csúcspontjának a foka páros, az remélhetően világos a tétel előtti sorokból. A feltétel 
elégséges voltához tekintsük a G gráf valamely zárt vonalát. Zárt vonala van G-nek, mivel G 
valamely v0 pontjából elindulva egy v0-ra illeszkedő e1 élen1 eljutunk v1-be, s v1-ből e2 
mentén v2-be, és így tovább kk1kii1i2110 vev...vev...evev  .Végül ek elvisz vk=vj-be  kj  , 

ahol a vj olyan csúcsot jelöl, amelyben már jártunk.Nem mehetünk mindig új csúcsba, mivel 
G-nek véges sok csúcsa van csupán. Legyen ez a létező zárt útja G-nek L1-lel jelölve. A 
csúcsok és élek esetleges újraindexelése után feltehetjük, hogy kkkiii vevvevevevL 1121101  ...... . 
Ha azt L1 élsorozat tartalmazza a G gráf valamennyi élét, akkor kész vagyunk. Ha nem 
tartalmazza például az e' élt és u1,u2 ezen él két végpontja, akkor u1-ből indulva az 
előbbiekhez hasonlóan találunk egy ugyancsak u1-ben végződő L2 zárt vonalat. 
Természetesen ügyelnünk kell arra, hogy L1 éleit ne válasszuk be L2 élei közé. Ha u1 az L1 
zárt vonal valamely élére is illeszkedett (vagy L2 valamely másik csúcspontja illeszkedett L1-
re), akkor az L1,L2 zárt vonalakat lehet egyetlen zárt vonalnak tekinteni. Megtehetjük ugyanis 
azt, hogy az L1,L2 vonalakat valamely közös uj pontjukból járjuk végig. Elősször L1-t majd 
utána ugyancsak uj-ből L2-t járjuk be. Ha az L1 ill. L2 vonalaknak nem volna közös 
csúcspontja, akkor L2-t cseréljük ki oly módon , hogy először vezessünk u1-ből utat2 L1 
valamely csúcspontjába, olyan utat, amelynek nincs közös éle L1-el, s ezt az utat egészítsük ki 
az L2' zárt vonallá az előbbi módon. Ha nem maradt ki él kész vagyunk, ha igen akkor 

                                                           

1 A v0 csúcs foka   20 vd ,egyrészt G összefüggősége miatt   00 vd , másrészt a csúcsok 
fokszámainak páros volta miatt   20 vd , s ezért létezik legalább egy e1 él, mely illeszkedik v0-ra. 

2 A G összefüggősége miatt u1-ből L1 bármely pontjába vezet út. 
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megismételjük az előbbi eljárást és mivel a gráfunk véges előbb vagy utóbb az eljárásunk 
véget ér és megadja a G gráf egy zárt Euler-vonalát. 

Reméljük a Tisztelt Olvasó felfigyelt arra, hogy az elmondott bizonyításunk 
lényegében algoritmust ad a G gráf Euler-vonalának meghatározására. Le lehet rövidíteni a 
fenti bizonyítást, de akkor elvész az algoritmikus jelleg.Nézzük most a látszólag elegánsabb, 
"rövidebb" bizonyítást. 

Bizonyítás II.: Legyen G-nek kkkiii vevvevevevL 112110  ......  a leghosszabb vonala. 
Ha L tartalmazza G minden élét kész vagyunk. L Euler-vonala G-nek. Ha L nem tartalmazza 
például G-nek az f élét ( ez az indirekt feltevésünk), akkor G összefüggő volta miatt feltehető, 
hogy f egyik végpontja mondjuk w egybeesik L valamely csúcspontjával. Az L vonal 
maximális voltából és abból, hogy G-nek minden csúcs foka páros következik, hogy L zárt 
azaz vk=v0. L zártsága miatt bejárhatjuk L éleit w-ból indulva, s mikor utoljára visszaérünk 
w-ba menjünk tovább f másik végpontjába. Az így kapott L' vonalnak eggyel több éle volna, 
mint L-nek, s ez ellentmondana L maximális vonal voltának. Az ellentmondás oka, hogy 
feltettük, hogy L maximális és van olyan éle G-nek amely nincs L-ben.  

III.2.Tétel: A következő állítások a  VEG ,,  összefüggő gráfra ekvivalensek: 

1. A  VEG ,,  Euler gráf azaz van zárt Euler vonala. 

2.  VEG ,,  minden csúcsának a foka páros. 

3.  VEG ,,  élidegen körök uniója. 

Bizonyítás: A bizonyítást 1321   séma alapján érdemes elvégezni. 

21  Ahhoz, hogy az első állításból következik a második elegendő azt 
észrevenni, hogy tetszőleges L zárt vonal, tetszőleges u csúcspontjára igaz, hogy ha L bejárása 
során   esetben kimentünk u-ból, akkor L végig járása során   esetben u-ba be is tértünk. S 
ezért u foka   2ud . Azaz G-nek valóban bármely csúcspontjának a fokszáma páros. 

32 . A G gráf összefüggőségéből és csúcsai fokszámának páros voltából az 
adódik, hogy     2 vdGVv . Ha a G gráf tetszőleges v csúcspontjáras teljesedik, hogy   2vd , akkor v-ből elindulva kapunk G-nek egy L zárt vonalát. Zárt vonal mindig tartalmaz 
legalább egy kört. Ugyanis  a zárt vonal kkkjjjiiii veveveevevevevL 1112110  .........  valamely 

pontjából elsétálva a séta során az elsőnek megtalált ismétlődő pont ji vv   közti rész 

jjii veevC 11  ...  kört ad. Tetszőleges kör bármely pontjának a fokszáma páros. Ha a G 

gráfunk valamely C körének éleit töröljük akkor G bármely csúcspontzjának a foka továbbra 
is páros maradt. S mindaddig találunk újabb élidegen körököt, amíg az élek törlése után 
megmaradó gráfnak van olyan v csúcspontja melynek foka   0vd . S az eljárás miatt a körök 
éleinek a halmazai diszjunktak. 

13  Valóban ha a G gráf összefüggő és élidegen körök uniója, akkor be lehet 
járni a gráf éleit oly módon, hogy minden élen csak egyszer megyünk végig. bizonyítsunk 
mondjuk a körök száma szerinti teljes indukcióval. Ha csak egy élidegen körből áll a gráf, 
akkor azaz egy kör önmagában lesz egy zárt Euler-vonal. Ha már k-1 kört bejártunk s a "k" 
körrel a zárt vonalunknak az u pontja közös3,akkor járjuk be a "k-1" kört alkotta zárt vonalat 

                                                           

3 Vegye észre a Kedves Olvasó, s még jobb ha meg is indokolja,hogy ha a G összefüggő gráf éleit 
valamely u pontból végig lehetet járni egy zárt vonal mentén,oly módon hogy minden élen csupán egyszer ment 
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u-ból elindulva,majd ha már vissza tértünk u-ba folytassuk a bejárást a "k." kör éleinek a 
bejárásával. 

III.3. Tétel: Ha a G egyszerű összefüggő gráfnak, 2k darab páratlan fokú 
csúcspontja van, akkor élei lefedhetők k darab nyílt vonallal. 

Bizonyítás: Egészítsük ki a G gráfot k darab éllel G'-vé, oly módon, hogy G' minden 
csúcsának a foka páros legyen, ez nyilván megtehető, ha ügyelünk arra, hogy az új élekkel 
mindig páratlan fokú csúcsokat kössünk össze. G'-re ekkor teljesedni fog az III.I.E1 tétel 
feltétele, s ezért lesz egy zárt Euler-vonala is, mely triviálisan tartalmazza az "új" k darab élt 
is. Ha a k darab új élt töröljük k darab nyílt vonalat kapunk. (Miért nem kaphatunk kevesebbet 
k-nál?), s a bizonyítás ezzel kész. 

III.2. Hamilton-körök,Hamilton utak 

Sir Villiam Rovan Hamilton4 (1805-1865) 1859-ben egy olyan játékot hozott 
forgalomba, melynek a lényege az volt, hogy egy előre megadott gráf csúcspontjait kellett 
bejárni, oly módon, hogy bármely csúcsban pontosan egyszer kellett járni. Állítólag a játéknak 
nem volt átütő sikere Hamilton kortársai között. 

III.2. Definíció: A  G E V , ,  gráf H útját 

(              e v v e v v e v vn n n1 0 1 2 1 2 1   , , , ,..., , )-t Hamilton-útnak mondjuk, ha v v vn0 1, ,...,  

csúcsok mind különbözők és e csúcspontokon kívül más csúcspontja nincs G-nek. 

III.3. Definíció: A  G E V , ,  gráf K körét Hamilton-körnek mondjuk, ha K 

tartalmazza G minden csúcspontját is. 

Látszólag nagyon hasonló probléma, hogy valamely gráfnak az éleit járjuk be 
pontosan egyszer, vagy a csúcspontjait. Az utóbbi azonban jóval nehezebb. S az általános 
esetben Hamilton-utak illetve Hamilton-körök keresésére ma sem ismert igazán jó algoritmus. 
Operációkutatás területéhez tartozik az utazó ügynök problémája. Az utazó ügynök 
problémája azt jelenti, hogy a kereskedelmi utazónak adott városokat kell bejárnia, oly 
módon, hogy minden városba csak egyszer megy el, és végül visszatér a cégének a 
székhelyére. Ez esetben a gráf csúcspontjai az utazó által meglátogatandó városok, az élek 
pedig a városokat összekötő útvonalak. Természetesen egy-egy útnak jól meghatározott 
utiköltsége is van, s több út esetén célszerű azt az utat választani, melynek a költsége 
minimális. Ha valamely G gráf éleihez valós számokat rendelünk, akkor hálózatokról, 
folyamokról beszélünk. S nagyon természetesen vetődik fel minimális költségű ill. maximális 
                                                                                                                                                                                     
végig ,s végül u-ba futott be, akkor a gráf bármely másik v pontjából elindulva is végig járhatja G éleit (s 
mindegyik élen csak egyszer menve végig) oly módon, hogy a bejárást v-ben fejezi be. 

4 Sir Villiam Rovan Hamilton (1805-1865) Dublinban született, családja 
Skóciából származik. Nyelvi és matematika tehetsége nagyon korán megmutatkozott. 15 éves korában már 
Newton és Laplace írásait olvasta.Saját maga a kvaterniók felfedezését tartotta legfontosabb eredményének. Ma e 
véleményével kevesen értenek egyet.  
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nyereségű utak esetleg körök keresése. Az előbb említett feladatok a kombinatorikus 
optimalizálás tárgykörébe tartoznak. A következő tétel megfogalmazása előtt említjük meg, 
hogy egy kör ill. út hosszán a bennük szereplő élek számát értjük.  

III.4. Tétel: Ha a G egyszerű gráfban bármely csúcspont foka legalább k (k  2), 
akkor van a gráfban egy legalább k+1 hosszúságú kör.  

v0 V2
V3 Vk-1

ek-1

ek

Vkv1

e
2

e1

e
3

 

4. ábra 

Bizonyítás: Legyen a G gráfnak az L út a leghosszabb útja. S ezen út csúcspontjait a 
kezdő ponttól indulva jelölje rendre v v v v vk k n0 1 1, ,..., , ,..., . Az, hogy v0 foka legalább k azt 
jelenti, hogy a v0-t v1-el összekötő e1 élen kívül még legalább k-1 él indul ki v0-ból. Ezen 
élek másik végpontjai szükségszerűen szerepelnek L csúcspontjai között, mert ellenkező 
esetben összeütközésbe kerülnénk azzal, hogy az L út a leghosszabb. Legyen e2' másik 
végpontja mondjuk v2, e3' végpontja v3 és végül ek' végpontja vk. Ekkor az L útnak a v0-tól 
vk-ig tartó rész útjának két végpontját köti össze ek' , ezért egy kört kapunk, melyben legalább 
k+1 él van, s ezzel a bizonyítás kész.  

III.5. Tétel: Ha a  G E V , ,  egyszerű gráf bármely v csúcsának fokára teljesül, 

hogy   v
V n 
2 2

, akkor G összefüggő. 

Bizonyítás: Legyen u és v két különböző csúcsa G-nek. A feltétel szerint u-val és v-
vel is legalább n/2, n/2 pont van összekötve az u-ból illetve v-ből induló élek által, a fokszám 
feltétel miatt. Az előbb említett u-val, illetve v-vel közvetlenül összekötött pontok között van 
olyan, mely u-val is v-vel is össze van kötve, (ha nem lenne ilyen akkor G csúcsainak a száma 
nagyobb egyenlő volna, mint [n/2+n/2+2]) azaz u és v között vezet út. 

Ha adott a  G E V , ,  gráf, a csúcsainak a számát V n  szokás G rendjének 

mondani, s éleinek számát E q  a G gráf méretének mondani. Ha az u-t az e él összeköti a v 
csúcssal, akkor u-t ill. v-t az e él vég pontjainak nevezzük és u-t ill. v-t szomszédosnak 
mondjuk. Az u csúcsponttal szomszédos csúcsok halmazát N(u)-val jelöljük. 
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III.6.Tétel(O.Ore5 (1960.)): Ha a G gráfra teljesül, hogy rendje n3 és bármely két 
nem szomszédos u,v csúcspont fokának az összege nagyobb egyenlő G rendjénél 
(     u v n  ), akkor G-nek van Hamilton-köre. 

Bizonyítás: Indirekt bizonyítunk. Azon gráfok közül, melyekre a tétel feltételei 
teljesednek, de az állítás nem, tekintsük valamelyiket azon G' gráfok közül, melynek az 
éleinek a száma maximális. Maximális abban az értelemben, hogy ha G'-hez hozzá vesszünk 
egy olyan e élt, mely a nem szomszédos u és v éleket köti össze, akkor az így kapott G gráf 
már tartalmazni fog Hamilton-kört. G' minden Hamilton köre tartalmazza az e élt, ezért van 
olyan L Hamilton-útja G'-nek, mely u-t és v-t köti össze, legyen ez az út  megadva              e v v e v v e v vn n n1 0 1 2 1 2 1   , , , ,..., ,  (u v v vn 0 , ) által. A 

v v v v vk k n0 1 1, ,..., , ,...,  csúcspontokkal kapcsolatban vegyük észre, hogy ha vk+1 szomszédos 
u-val azaz vk+1 eleme N(u)-nak, akkor vk  nem eleme N(v)-nek. 

 

5. ábra 

Ellenkező esetben a v v v v v v vk k n k k0 1 2 1 0, , ,..., , , ,..,    Hamilton-köre volna G'-nek. 
Tehát a V-{v} pontok közül az u-val szomszédos pontok nem  szomszédosak v-vel, ezért   ( ) ( )u n v  1   s ez utóbbi egyenlőtlenség ellentmond a tétel feltételeinek. Ore 
tételének speciális esete Dirac tétele. 

Következmény(G.A. Dirac (1952)): Ha az n=2k csúcspontú egyszerű G gráf bármely 
pontjának a foka legalább k, akkor van G-nek Hamilton-köre.  

 Az időrendben való jobb tájékozódás végett egységes jelölés mellett felsoroljuk a 
Hamilton-körökre vonatkozó érdekesebb eredményeket. Jelölje a G(E,,V) gráf 
csúcspontjainak fokszámait rendre d d dn1 2  ...  ( V=n). 

III.7. Tétel: Ha a G(E,,V) egyszerű gráfra (2<n) a következő feltételek valamelyike 
teljesedik, akkor van G.-nek Hamilton-köre: 

1; G.A. Dirac (1952) ndnk k 2

11  , 

                                                           

5 1899.X.7. Kristiania-ban a ( a mai Oslo-ban Norvégiában ) született és ott is halt meg 
1968.VIII:13. Fiatal korában algebrai számelmélettel foglalkozott, később hálóelmélettel,gráfelmélettel.1927.-
ben professori kinevezést kapott a Yale egyetemre, 1931.-ben a Yale egyetem kítűnő professzora címet kapta, s 
37 évvel később 1968.-ban onnan is ment nyugdíjba. Több könyvet írt különböző a matematika különböző 
területeiről, számelméletről, négyszínsejtésről, gráfelméletről. 

u=u0 v1 v2 vk 

vk+1 vk+2 vn=v 

http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Ore.html
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2; O.Ore (1961)      u v V de u v E u v n, , ,      , 

3; Pósa Lajos(1962) kdnk k 
2

1
1 , 

4; J.A.Bondy (1969) j<k, nddkdd kjkj  1,  

5;V. Chvátal (1972) d kk  < 1
2 n d n kn k   . 

Valóban G-ben létezik Hamilton-kör, mivel a következmény feltételei lényegében 
szigorúbbak, mint a (H3) tétel feltételei. 

 

Csak olvasmány: 
III.4.Definició: A G gráf G' részgráfját G k-adfokú faktorának mondjuk, ha  

(i) G' csúcsainak halmaza megegyezik G csúcsainak halmazával, 

(ii) G' bármely csúcsa azonos k fokszámú. 

A definícióból látható, hogy valamely G gráfnak a K Hamilton-köre egyben 
másodfokú faktora G-nek. 

 

6. ábra 

 A 6. ábrán látható gráfnak vastag, szaggatott, illetve vékony vonallal jelöltük egy-
egy elsőfokú faktorát. Ellenőrizze le a Kedves Olvasó, hogy a három elsőfokú faktor közül 
bármely kettő "szorzata" az ábrán látható gráfnak egy-egy másodfokú faktorát adja, de a 
gráfnak nincs Hamilton-köre, de  a keletkező körök természetesen lefedik G csúcsait.  

III.8. Tétel: Ha a G egyszerű összefüggő gráfnak van olyan k csúcsa, melyek törlése 
után k+1 komponensére esik szét, akkor G-nek nincs Hamilton-köre. 

Bizonyitás: Indirekt bizonyitunk. Elegendő arra gondolni, hogy egy kör k darab 
pontjának törlése után legfeljebb k részre eshet szét 

III.9.Tétel: Ha a G egyszerű osszefüggő gráfnak van olyan k pontja melyek törlése 
után k+2 komponensre esik szét, akkor G-nek nincs Hamilton-útja ( s persze még kevésbé van 
Hamilton köre). 

Bizonyitás: Indirekt bizonyitunk tegyük fel hogy G-nek az L Hamilton-útja, azaz L-
re illeszkedik G minden csúcs pontja. Bármely út, igy persze L is k darab pontjának a 
törlésével legfeljebb k+1 részre bomlik, s ez ellentmond  a tétel feltevésének , mely szerint 
legalább  k+2 részre kellene bomolnia.  
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III.5.Definició: Legyen a G gráfnak G G Gk1 2, ,...,   rendre m m mk1 2, ,..., -ad fokú 
faktorai, ha  

(i) ha bármely i,j esetén Gi-nek ill, Gj-nek nincs közös éle, 

(ii) a G G Gk1 2, ,...,  részgráfok együttvéve tartalmazzák G összes élét, akkor G ezen k 
számú faktor szorzatának mondjuk. 

III. 3. Az utazó ügynök problémája. 

Nem negatív élsúlyozott     0,   wRKE n   Kn teljes gráfban keresünk 
minimális súlyú CH Hamilton kört, azaz    HCEeHC

emin . 

A „legközelebbi szomszéd” algoritmus: 
1; válasszuk ki Kn tetszőleges x csúcsát. S az x csúcsra illeszkedő élek közül 

válasszuk egy "e" minimális súlyút.  
2; A kiválasztott "e" él másik csúcspontja legyen y jelöljük meg y-t is kiválasztott 

pontnak. Az y-ra illeszkedő azon élek közül amelyek nem illeszkednek korábban kiválasztott 
pontra (ill.pontokra) válasszuk egy minimális súlyú e' élt.  

3;Ha már minden pontját megjelöltük Kn -nek az algoritmus véget ér Kn – egy 
súlyozott CH Hamilton körének megadásával. 

 A CH kör függ az x kezdőpont megválasztásától. Az       HCEe
H eCS   szám egy felső 

korlátot ad az utazó ügynök problémára. 
A rendezett élek algoritmusa: 

Feltesszük, hogy a Kn élsúlyozott teljes gráf élei súlyúk növekvő sorendje szerint 
rendezve vannak. 

1; Válasszunk  nKEe -t minimális súlyúnak. 

2; A ki nem választott élek közül válasszuk   nKEe -t minimális súlyúnak ügyelve 
arra, hogy egyik végpontja se illeszkedjen olyan pontra,aamelyre már korábban kiválasztott 
élek közül már kettő illeszkedik és ne alkossanak a kiválasztott élek n csúcspontnál kevesebb 
pontból álló kört. 

3; Ha kiválasztott élek száma n , akkor megkaptuk Kn egy súlyozott CH Hamilton 
körét. 

Alsó korlátot oly módon nyerhetünk az utazó ügynök problémára, ha észrevesszük, 
hogy Kn egy minimális súlyú CH Hamilton körének tetszőleges x pontját törölve a Kn-x 
gráfnak egy súlyozott feszítőfáját kapjuk.  

Keressünk a Kn-x gráfban egy minimális súlyú T feszítőfát (például a Kruskal 
algoritmussal). T élei súlyának az összegét jelölje S(T), azaz       TEe

eTS  . S az x-re 

illeszkedő élek közül a két legkisebb súlyú legyen e1,e2, ekkor        21 eeTSCS H   . Ez azt 
jelenti, hogy az      21 eeTS    egy alsó korlát az utazó ügynök problémára.  
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7. ábra 

A 7.ábra él-súlyozott G gráfjának AB,BD,BC élei megadják egy minimális súlyú 
feszítőfáját, s az alsó korlát ekkor k=110+100+120=330. A gráf B csúcsából indulva a 
legközelebbi szomszéd algoritmus rendre a BD,AD,AC,BC éleket adja, s nyerjük a 
K=100+130+170+120=520 felső korlátot 

 

Részlet: Tarjányi: 

AB 
110 

AC 
170 AD 

130 
BC 
120 

BD 
100 

CD 
150 

A B 

C D 


