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1. Fejezet

ALAPOK

E jegyzet célja, hogy a grafelméletnek a kombinatorikus optimalizdlas szempontjabdl legfontosabb eredményeit
és modszereit bemutassa. Ebbdl adédéan nem érintjiik a Ramsey elméletet, az extremadlis, a véletlen, vagy a
végtelen grafok elméletét, melyek mindegyikével egy teljes kdnyvet meg lehet tolteni. Az itt attekintett anyag
megalapozza a Matroidelmélet, a Kombinatorikus Algoritmusok, a Poliéderes Kombinatorika, és a Kombina-
torikus Optimalizalasi Struktirak cimi el6adasok anyagat.

1.1 Fogalmak, jelolések

Legyen V egy alaphalmaz és u,v két eleme V-nek. Egy X C V halmazrél azt mondjuk, hogy v-halmaz, ha
v € X, hogy u-halmaz, ha u ¢ X, és végiil, hogy vu-halmaz, hav € X,u ¢ X.

Irdnyitatlan (irdnyftott) grafon egy (V, E, ¢) hdrmast értiink, ahol V| E véges halmazok, ¢ pedig E-nek egy
leképezése a V elemeibél 4ll6 rendezetlen (rendezett) parok halmazdra. V elemei a graf csicsai vagy pontjai
(node, vertex) E elemei a graf élei (edge). Ha e egy él és p(e) = {a, b} akkor irdnyitatlan esetben a és b az
e él két végpontja, mig irdnyitott grafban a az e kezdSpontja (vagy tove) és b a végpontja (vagy feje). Azt
mondjuk, hogy az e él 6sszekoti a végpontjait, vagy hogy a-bdl b-be vezet. Tovabba az e irdnyitott él az a
pontbdl kilép a b pontba belép.

A tovabbiakban a fenti pontos definicié helyett egy kissé pontatlanabb jelolést fogunk haszndlni, azonban
ez zavart nem okoz és kényelmesebb vele dolgozni. Azt mondjuk, hogy a (V, E) pdr irdnyitatlan graf, ha F
a V halmaz bizonyos parjaibdl all6 halmaz. Ez a definicié formédlisan azért nem jé, mert parhuzamos éleket
nem enged meg. Mi mégis dgy képzeljiik, hogy a (V, E) gréfban lehetnek parhuzamos élek. Egy élt, amelynek
végpontjai a és b egyszertien ab vagy ba-val jelolink. Iranyitatlan grafban tehat ab = ba, de irdnyitottban ab
és ba két kiilonbozé (egymadssal szemben irdnyitott) élt jelol.

Grafokat gy lehet szemléltetni, hogy a csicsokat egy-egy ponttal abrazoljuk, egy a,b végponti e = ab élt
pedig az a és b pontokat Osszekotd vonallal. (Természetesen a vonal alakja érdektelen). Irdnyitott grafndl az
élt dbrazolé vonalra nyilacskét tesziink, amely az él kezdépontjatdl a végpontjanak iranydba mutat.

Altaldban grafon irdnyitatlan grafot értiink. Iranyitott grafra hasznaljuk a digraf kifejezést is. Ritkan dolgo-
zni fogunk ,,vegyes” (mixed) grafokkal is, melyekben mind irdnyftott, mind irdnyitatlan élek eléfordulhatnak.

Hurok (loop): olyan él, amelynek két végpontja ugyanaz.

Pédrhuzamos (parallel) él: Két irdnyitatlan él parhuzamos, ha a végpontjaik megegyeznek. Két irdnyitott él
parhuzamos, ha kezdépontjaik megegyeznek és végpontjaik megegyeznek.

Izol4lt (isolated) pont: nem szomszédos éllel.

Két csiics szomszédos, ha van koztiik él.

Egy v csics és egy e él szomszédos, ha e egyik végpontja v.

Z C V ponthalmaz elhagyasa: a Z elemeinek valamint a Z-ben 1év6 pontok akarmelyikével szomszédos élek
torlésével keletkezé graf. Jelolése G — Z.

F élhalmaz elhagydsa: a (V, E — F) graf.

Egyszeri (simple) graf: nincsenek sem hurkok, sem parhuzamos élek.

Részgraf (subgraph): a graf bizonyos pontjainak és bizonyos éleinek torlésével keletkezé pontjainak graf. Feszit
(spanning) részgraf, ha a ponthalmaza ugyanaz, mint az eredeti grafé.

Feszitett (induced subgraph) részgréf: graf egy X ponthalmaza dltal meghatdrozott azon részgraf, amelyben az
Osszes olyan eredeti él szerepel, amelynek mindkét végpontja X-ben van. Masszéval, a graf bizonyos pontjainak
torlésével keletkezo graf.



El felosztés: Az élt helyettesitjiik egy végpontjait osszekotd dttal, melynek belsd pontjai 1ij pontok. (Szemléle-
tesen, az élre Uj pontokat tesziink.)

uv él Osszehizédsa: az u és v pontok helyett bevesziink egy 1j x pontot, minden uw él helyett vesziink egy xw
élt és minden vw él helyett vesziink egy zw élt. (Specidlisan egy uv é1bdl zz hurok lesz.)

Minor: Egy G graf bizonyos éleinek elhagydsaval illetve Osszehizéasaval keletkezd grafot G egy minorjanak
neveziink.

Két pont szomszédos (adjacent), ha van ket osszekotd él.

G = (V, E) egyszerli graf G = (V, E) komplementerében az u,v € V csticsokra uv pontosan akkor él, ha uv
nem éle G-nek.

Egy pont szomszédos vagy érintkezik a beléle indulé élekkel. Ezek szdma a pont foka (degree) (vagy fokszdma).
(Megéllapodds: hurokél a fokszamhoz kett&vel jarul). Altaldnosabban, pontok egy X részhalmazdnak d(X)
foka az X és V — X kozott vezetd élek szama.

Reguléris graf: minden pont foka ugyanaz.

Irdnyitott grafban egy v pontba 1ép6 élek p(v) szdma a v befoka (in-degree). A v-bél kilépé élek §(v) szdma
a v kifoka. Altalénosabban, egy X C V ponthalmaz o(X) befoka az X-be 16p6 élek szdma, azaz azon éleké,
melyek feje X-ban, téve pedig X-en kiviil van.

Iranyitatlan Euler graf: minden pont foka paros (nem tessziik fel, hogy Osszefliggd).

Iranyitott Euler graf, minden pontnak a kifoka egyenl6 a befokaval. Egy digraf kézel-Euler, ha minden pontnak
a befoka és a kifoka legfeljebb eggyel tér el.

Vonal: egy vo,e€1,v1,€1,...,Un_1,€n,Vn sorozat, amely felviltva (nem feltétleniil kiilénb6z6) pontokbdl és
élekbdl all dgy, hogy minden e; éle a v;—1 pontbdl vezet a v; pontba. A szerepld élek szdma a vonal hossza
(igy az egyetlen pontbdl 4llé6 vonal hossza 0).

Zart vonal: olyan vonal, ahol vi = vy,.

vo a vonal kezdGpontja, v, a végpontja. Azt mondjuk, hogy a vonal Gsszekoti a vg és v, pontokat, vagy hogy
a vonal vo-bdl megy v,-be.

Séta: Olyan vonal, amelyben minden él kiilénbo6zé.

Ut (path): Olyan vonal, amelyben minden pont (és fgy persze minden €l is) kiilonbézé.

Kor (circuit): Olyan vonal, amelyben a kezdépont megegyezik a végponttal, de ett8l eltekintve minden pont
kiilonb6z6. Digraf esetén irdnyitott korrdl beszéliink.

Hamilton kor: a graf minden pontjat tartalmazoé kor.

Hamilton t: a graf minden pontjat tartalmazé ut.

Ciklus (cycle): élidegen korok egyesitése (irdnyitott és irdnyitatlan esetben is).

Aciklikus vagy kormentes (acyclic) digraf: irdnyitott kor nélkiili digraf.

Forrdspont (source): Digrafban olyan pont, amelybe nem 1ép be él.

Nyel6pont (sink): Digréfban olyan pont, amelybél nem 1ép ki él.

Eszerint egy izoldlt pont egyszerre forras és nyeld.

Graf osszefliggd (connected), ha barmely két pontja kozott van t.

Komponens: grafnak maximalis Osszefiiggd része.

Digraf erésen osszefligg6 (strongly connected), ha barmely pontjabdl barmely mésik pontjdba vezet irdnyitott
at.

Digraf gyokeresen 6sszefiiggd (root-connected), ha van olyen s pontja, amelybdl barmely masik pontjaba vezet
irdnyitott ut. Azt is mondjuk, hogy a digraf s-bél gyokeresen Osszefiiggs.

Elvagé él: melynek elhagydsa megsziinteti a graf osszefiigg6ségét.

Elvagé pont: melynek elhagydsa megsziinteti a graf osszefiigg6ségét.

Graf k-élosszefiiggd, ha legfeljebb k — 1 élének elhagydsa utan is Osszefliggé marad.

Graf k-6sszefiiggd (k-szor pontosszefiiggd), ha legaldbb k41 pontja van és legfeljebb k— 1 pontjanak elhagydasa
utén is Osszefiiggd marad.

Osszefijgg('j grafban egy § C X C V ponthalmazra az X és V — X komplementere kozott vezetd élek
halmazat vagdsnak (cut) (néha: ko-ciklus) nevezziik. X és V — X a végds két partja. Egy vdgds elemi (bond),
ha nem tartalmaz valédi részhalmazként masik vagast.

Ha egy digrafban az X ponthalmazba nem lép be él, akkor az X-bdl kilépo élek halmazat egyiranyu vagy
irdnyitott vagasnak (one-way cut, directed cut) nevezziik.

Fa (tree): olyan Osszefiiggd graf, amelynek barmely élét elhagyva a keletkezd graf mar nem Osszefliggé.
Csillag: olyan fa, amelynek egy pontjabdl indul ki minden éle.

Erdé (forest): graf, melynek komponensei fak.

Feny6 (arborescence): irdnyitott fa, amelyben van egy specidlis, gyokérnek nevezett s pont, amelybdl minden
pontba vezet irdnyitott it. s a fenyd gyockere. Roviden azt is mondjuk, hogy a feny6 s-fenyo.

Fenyves (branching): Diszjunkt feny6kbél all6 digraf, mésszéval olyan irdnyitott erdd, amelyben minden pont
befoka legfeljebb 1.

Teljes (complete) graf: minden pontpdr ossze van egy éllel kotve.

Turnament (tournament): irdnyitott teljes graf.



Klikk (clique): olyan részgraf, amelyben minden pontpéar éllel 6ssze van kotve.

Stabil vagy fiiggetlen ponthalmaz (stable): él nélkili feszitett részgraf. a(G) vagy ag jeldli G fiiggetlen pont-
jainak maximalis szdmat, azaz a maximalis stabil halmaz elemszamat.

Pérositas: olyan részgraf, amelyben minden pont foka legfeljebb 1. M4sik neve: fliggetlen élhalmaz. v(G) vagy
va jeloli a G fliggetlen éleinek maximalis szamat, azaz a maximélis elemszamu péarositds elemszamat.

Teljes parositas: miden pont foka pontosan 1.

Elszinezés: Graf élhalmazat pérositasokra bontjuk, egy parositds egy szinosztély.

Gréaf kromatikus indexe, x'(G): élszinezésben a sziikséges szinek minim4lis szdma (mindig legaldbb a legnagy-
obb fokszdm). B

Pontszinezés: Graf pontjait stabil halmazokra bontjuk, egy rész egy szinosztaly.

Graf kromatikus szdma, x(G) : pontszinezésnél a sziikséges szinek minimalis szdma.

Péros (bipartite) graf: 2-kromatikus graf.

Sikbarajzolhaté graf: olyan graf, amelyet le lehet a sikba gy rajzolni, hogy az éleket reprezental6 gorbéknek a
végpontjaiktol eltekintve nem lehet kézos pontjuk. (Fary tétele: egyszeri sibarajzolhaté grafnak mindig létezik
olyan bedgyazasa, ahol a gorbék egyenes szakaszok).

Sikbarajzolt graf (roviden sikgraf): egy sikbarajzolhaté graf konkrét lerajzoldsa a sikba.

A G = (V,E) irdnyitott vagy irdnyitatlan grafra I(X), vagy specifikusabban I¢(X), jeloli az X C V
ponthalmaz éltal feszitett élek halmazat, mig E(X) (ill. Eq(X)) jelolje azon élek halmazdt, melyeknek legaldbb
egyik vége X-ben van. Altaléban, ha a szovegosszefliggésbdl vilagos, hogy melyik grafrdl van szé, nem irjuk
ki az indexet. Legyen i(X) := [I(X)| és e(X) := |E(X)|. Legyen tovédbbd d(X,Y) az X — Y és Y — X kozott
vezetd élek szdma (irdnyitott esetben mindegy, melyik irdnyban). Legyen d(X,Y) az X NY ésa V — (X UY)
kézott vezetd élek szdma, azaz d(X,Y) = d(X,Y) = d(X,Y). Irdnyitatlan esetben d(X) := d(X,V — X) jeldli
a G fokszam fliiggvényét. Irdnyitott esetben o(X) az X-be V — X-bél belépb élek szama és §(X) := o(V —X).
o a befok fiiggvény, 0 a kifok fiiggvény.

Jelolje p(G) vagy ¢ az izolalt pont nélkiili G graf pontjait fed6 élek minimadlis szdmat, 7(G) vagy 7 pedig
a G éleit lefogé pontok minimélis szamat.

1.2 Egyszeribb tulajdonsagok

Lemma 1.2.1 (Gallai) Ha egy n ponti G = (V, E) grdfban minden pont foka pozitiv, akkor v+ ¢ = n, és
a+T1T=n.

Biz. Az els@ részhez legyen M maximalis, v elemii parositds. Minden M &ltal fedetlen pontbdl egy szomszédos
élt kivdlasztva G pontjainak egy | M|+ (n—2|M|) = n—v elem fedését kapjuk, és igy ¢ < n—v. Megforditva,
legyen F' egy minimalis, azaz ¢ elemi fedés, amely k komponensbdl 4ll. Egy minimalis fedésben a komponensek
csillagok. Mivel egy csillag az élszdménal eggyel tobb pontot fed, az F 4ltal fedett pontok n szdma |F| + k.
Mindegyik csillaghdl kivdlasztva egy élt egy k élii pérositdst kapunk, tehdt v > k = n — |F| = n — ,, azaz
v+ >nésigy v+ p=n.

A maésik azonossdg rogton kovetkezik abbdl a megfigyelésbol, hogy egy X ponthalmaz akkor és csak akkor
stabil, ha komplementere lefogd. e

1.2.1 Fokszamok

Grafban a fokszamok Osszege az élszam kétszerese, igy péaros. Digrafban a befokok Osszege is és a kifokok
Osszege is az élek szadma, tehdt a befok Gsszeg egyenld a kifok Osszeggel.

Grafban a paratlan foku pontok szama paros.

Legalabb kétpontu egyszerii grafban létezik két azonos fokszamu pont.

Euler gréafban minden ponthalmaz foka péaros. Iranyitott Euler grafban minden ponthalmaz befoka egyenld
a kifokaval.

Egy graf (digraf) akkor és csak akkor Euler graf (digraf), ha ciklus, azaz felbomlik (irdnyitott) élidegen
korok egyesitésére.

Iranyitatlan Euler graf éleit lehet gy irdnyitani, hogy Euler digrafot kapjunk. Altalénosabban, irdnyitatlan
graf éleit lehet Ugy irdnyitani, hogy kozel-Euler digréfot kapjunk (Euler-graf kézel-Euler irdnyitdsa sziikkségképpen
Euler.)

d(X) ugyanolyan paritdsd, mint az X-ben levd pératlan fokd pontok széma.

Digrafban o(X) — §(X) = > [o(v) — d(v) : v € X].

di,...,d, nemnegativ egészek akkor és csak akkor alkotjak egy n pontu graf fokszam sorozatdt, ha Osszegiik
péros (mind hurok, mind parhuzamos élek megengedettek). Ha hurok nem megengedett, akkor még tovdbbi
feltétel, hogy a legnagyobb fokszdm ne legyen nagyobb a tobbiek Gsszegénél.



1.2.2 Korok, vagasok

Gréafban, ha minden pont foka legalabb 2, akkor van kér. Digrafban, ha minden pont kifoka legaldbb 1, akkor
van iranyitott kor.

Osszefijgg('j grafban egy vagas akkor és csak akkor elemi, ha mindkét oldala Gsszefiiggo.

Minden vagéas felbomlik elemi vagasok diszjunkt uniéjara

Vagasnak és kornek pédros sok kozos éle van.

Turnamentnek van Hamilton ttja. Erdsen 6sszefliggd turnamentnek van Hamilton kore.

Digraf akkor és csak akkor aciklikus, ha pontjait sorba lehet gy rakni, hogy minden él visszafelé mutasson.

1.2.3 Utak, fik, fenyok

Ha van z-bdl y-ba vonal, akkor van ut is.

Graf akkor és csak akkor paros, ha nincs benne paratlan hosszisagu kor.

Grafban, a ,,létezik it = és y kozott” reldcié ekvivalencia relacié. (Egy osztdly neve : komponens).

Digraf ponthalmazan a ,,1étezik irdnyitott Ut z-bdl y-ba és létezik iranyitott it y-bdl x-be” relacié ekviva-
lencia relacié. Egy osztaly neve: erés komponens.

Digrafban, ha mindegyik erds komponenst egy pontta hizzuk Gssze, aciklikus digrafot kapunk.

Digrafban van olyan erés komponens, amelybe nem 1ép be él: forraskomponens, és olyan is, amelybdl nem
1ép ki: nyelé komponens.

Graf akkor és csak akkor Osszefliggd, ha minden ) C X C V részhalmazra d(X) > 0.

G hurokmentes grafra a kovetkezd tulajdonsdgok ekvivalensek. (1) G fa. (2) G barmely két pontja kozott
pontosan egy Ut vezet. (3) G Osszefiiggd és kormentes. (4) G Osszefuggb és eggyel kevesebb pontja van mint
éle. (5) G felépithetd tetszdleges pontjabdl kiindulva élek egyenkénti hozzdvételével gy, hogy az aktudlisan
hozzavett 1j él egyik végpontja 1j pont, a masik végpontja pedig a mar megkonstrudlt fdhoz tartozik.

D hurokmentes digréfra, amelyben az s pont befoka 0, a kovetkezd tulajdonsdgok ekvivalensek. (1) D
s-fenyé. (2) D irdnyitott fa, amelyben s-b8l D minden pontjiba vezet irdnyitott ut. (3) D irdnyitott fa,
amelyben az s-t6l eltekintve minden pontba egy él 1ép be. (4) D az s pontbdl kiindulva felépithetd élek
egyenkénti hozzavételével igy, hogy az aktudlisan hozzavett 1j él téve a mar megkonstrualt feny6hoz tartozik,
a feje pedig 1j pont.

Ekvivalensek: (a) digraf gyokeresen Osszefliggs s-bol, (b) 1étezik s-gyokerti feszits feny6je, (¢) minden @ C
X CV — s részhalmazra o(X) > 0.

Digraf akkor és csak akkor erésen Osszefiiggd, ha minden ) C X C V részhalmazra o(X) > 0.

Digrafban akkor és csak akkor van s-bdl t-be vezetd tt, ha o(X) > 0 minden X t¢3-halmazra.

A jegyzetben néha nem tesziink kiilonbséget az egyelemi halmaz (singleton) és annak egyetlen eleme kb’zb’tt
Egy f : S — R fiiggvényt gyakran a természetes médon kiterjesztiink az S részhalmazaira az f(X) := > [f(v
v € X] definiciéval.

1.2.4 Hasznos azonossagok és egyenlotlenségek

Kozismertek az aldbbi azonossagok.

A(X)+d(Y) =d(XNY)+dXUY)+2d(X,Y) (1.1)
W(X)+i(Y)=4XNY)+i{(XUY)—-d(X,Y) (1.2)
e(X)+e¥)=e(XNY)+e(XUY)+d(X,Y). (1.3)
o(X)+o(Y)=0o(XNY)+o(XUY)+d(X,Y). (1.4)
0(X)+0Y)=06(XNY)+6(XUY)+d(X,Y). (1.5)

0(X) + oY) = o(X — ¥) + oY — X) +d(X,Y) + [o(X 1Y) = 6(X UY)] (1.6)

D = (V, A) digrafban az f : A - RU{—o0} g : A — RU{+o0} fiiggvényekre legyen b(X) := §4(X)—o0s(X).

Ekkor
(X)+bY)=bXNY)+bXUY)+d,—s(X,Y), (1.7)

amibél adédik, hogy f < g esetén b szubmodularis.
Gyakorlat 1.1 Igazoljuk, hogy ha minden v € X NY pontra, o(v) > 6(v), akkor o(X

)
oY = X)+d(X,Y). Ha mindenv € V — (X UY) pontra o(v) > §(v), akkor 6(X)+ (Y
X)4+d(X,Y). Ho §(XUY) = o(X UY), akkor o(X) + oY) =86(X —Y) +6(Y — X) +d(X,Y).

oY) 2 o(X =Y) +
>0(X—Y)+8(Y —

+
)

Legyen H := (V,.A) hipergrédf, (ahol A a V nemiires, nem feltétleniil kiillonbozd részhalmazainak egy
rendszere). Tetszéleges X C V részhalmazra jelolje pu(X) az X-t6l diszjunkt hiperélek szdmat.



Lemma 1.2.2 A py fiiggvény szupermoduldris, sét minden X, Y C V részhalmazra fenndll az aldbbi azonossdg
pu(X) +pu(Y)=pa(XUY)+pu(XNY) —du(X,Y), (1.8)

ahol du(X,Y) jeloli azon hiperélek szdmdt, amelyek tartalmaznak pontot mind X — Y -bdl, mind Y — X-bdl,
de diszjunktak X NY -tol. e

G = (S,T;E) péros grafban az S részhalmazain definidljuk a ~ halmazfiiggvényt: (X)) jeldlje az X
szomszédainak szdmat, azaz v(X) = |['(X)|. Ekkor

Y(X) +4(Y) = 4(X NY) + (X UY). (L9)

Hasznélni fogjuk a ¢(X) = cg(X) fiiggvényt, amely a G-bdl az X C V ponthalmaz eltorlésével keletkezd
graf komponenseinek szdmat jeloli, ha X # @ és ¢(0) := 0. Hasznosnak fog bizonyulni az aldbbi kis lemma.

Lemma 1.2.3 A c fiigguény metszé G-szupermoduldris, azaz X NY # () esetén
(X)+cY)<c(XNY)+e(XUY)+de(X,Y). (1.10)

Biz. Elszém szerinti indukeié. Ha a grafnak nincs éle, akkor ¢(X) = |V — X| miatt (1.10) egyenl8séggel teljesiil.
Legyen e = uv tetszbleges él. Amennyiben X és Y egyikébe sem 1ép be, dgy Osszehizdsa az (1.10)-ben szerepld
mennyiségeket nem véltoztatja meg, igy indukciéval készen vagyunk. Hasonléan, ha e egyik vége X N Y-ban
van, akkor elhagyasa nem valtoztatja meg a szébanforgé mennyiségeket.

Ha e mind X-be, mind Y-ba belép, akkor az elhagydsdval keletkezd G’ grafra dg/(X,Y) = da(X,Y) — 1.
Tovébba c(X) = /(X),c(Y) = (Y),e(XUY) = (XUY),d(XUY) <e(XNY)+ 1, amibél indukciéval
megint készen vagyunk.

Végiil e egyik vége V —(XUY )-ban van, a masik pedig X —Y-ban vagy Y — X-ben, mondjuk X —Y-ban. Most
da(X,Y) =da(X,Y), e(X) = (X),e(XUY) = (XUY) ésmivel XNY C Y, {gy car (XNY) —ca(XNY) <
ca'(Y) — ca(Y), amiket Osszetéve a lemma indukciéval kovetkezik. (Az utolsé egyenlStlenség azért érvényes,
mert egyrészt nyilvdn 0 < ¢’ — ¢, mésrészt, ha cq/ (X NY) —cq(X NY) pozitiv, akkor 1 ésaz e éla G' — (X NY)
graf két komponensét koti ossze. De ekkor persze a G’ — Y grafnak is két komponensét koti ossze, és igy
ca(Y)—ca(Y)=1). e

1.3 NP-teljes problémak

Felsorolunk néhany alapvetd grafelméleti feladatot, melyekrdl igazoltak, hogy NP-teljesek.

Maximalis stabil: grafban keressiink maximélis méretii stabil halmazt.

Maximalis klikk: grafban keresslink maximélis méretii klikket. A feladat ekvivalens a komplementer graf
maximalis stiljanak megkeresésével. Paros grafban mindkét feladat silyozott valtozata is polinomialisan megold-
haté.

Halmaz lefogas vagy fedés: adott H halmazrendszerrol dontsiik el, hogy tagjai k£ ponttal lefoghatdk-e.
Ekvivalens alakban: k halmazzal lefedheté-e az alaphalmaz. NP-teljes mar k = 2-re is. NP-teljes azt eldonteni,
hogy egy graf élhalmaza lefedhet6-e 2 Euler-gréffal. (A négyszin tétel azzal ekvivalens, hogy 2-élosszefliggd
stkgrédfban ez mindig megtehed.)

Pontszinezés: hatdrozzuk meg egy graf kromatikus szamét. Dontsiik el, hogy a graf pontjai k szinnel
megszinezheték-e gy, hogy minden szinosztdly stabil. Mar k = 3-ra is NP-teljes. A k& = 2 esetben van
egyszerl algoritmus és karakterizacié. Hipergraf esetén mar k = 2-re is NP-teljes azt eldonteni, hogy 1étezik a
pontoknak olyan k-szinezése, amelyre nincsen egyszinti hiperél.

Elszinezés: hatdrozzuk meg egy graf kromatikus indexét, vagyis azt, hogy hany parositdssal lehet az
élhalmazt lefedni. Mar 3-reguléris egyszerii grafban is NP-teljes azt eldonteni, hogy a kromatikus index harom-
e, azaz, hogy az élhalmaz felbonthaté-e 3 teljes parositasra. (A négyszin tétel azzal ekvivalens, hogy 3-reguldris
egyszertl sikgrafban ez mindig megteheté.)

Leghosszabb 1t, Hamilton ut, Hamilton kor: mind irdnyitott, mind irdnyitatlan grafban NP-teljes, mér
3-regularis sikgrafban is.

Diszjunkt ut probléma: dontsiik el, hogy irdnyitott vagy irdnyitatlan gréfban adott (si,%1),...,(Sk,tk)
pontparokra léteznek-e Py, ..., Py utak ugy, hogy P; az s;-b0l vezet t;-be és az utak paronként él- vagy pont-
idegenek. Mindkét valtozat NP-teljes. Rogzitett k-ra irdnyitatlan grafban vagy aciklikus irdnyitott grafban
van polinomidlis algoritmus. Az altaldnos irdnyitott esetben mindkét valtozat mar k = 2-re is NP-teljes!

alapl, 2014. méjus 12.



1.4 Halmazrendszerek, grafok, hipergrafok

Altaldban egy halmazrendszeren egy adott halmaz bizonyos részhalmazainak halmazat értik. Gyakran sziikség
van arra, hogy ugyanaz a részhalmaz tobb példanyban is szerepelhessen. Ennek lefrasara valé a hipergraf
fogalma. A H (véges) hipergraf egy (V, £, ¢) hdrmasbdl 4ll, ahol V' a pontok vagy csticsok halmaza, € a hiperélek
vagy roviden élek halmaza, ¢ : £ — V pedig egy leképezés, amely azt mondja meg, hogy egy hiperél mely
pontokbdl 4ll. Révidség kedvéért, kis pontatlansaggal, a hipergrafot H = (V, £)-vel jeldljiikk. Ekkor a hiperéleket
részhalmazoknak képzeljik, de egy részhalmaz szerepelhet tobb példanyban, mely példanyokat parhuzamos
hiperéleknek neveziink. Amennyiben minden hiperél legfeljebb két elemii, grafrél beszéliink. Ilyenkor egy
hiperél neve mindig él. Egy graf egyszerli, ha minden éle kételemii és nincsenek parhuzamos élek.
Uniform a hipergraf, ha minden hiperélének ugyanannyi az elemszdma, és regularis, ha minden pont
ugyanannyi hiperélben van. Egy pont foka azt mondja meg, hogy a pontot hany hiperél tartalmazza.
Tetsz6leges H hipergraf incidencia métrixa egy olyan 0 — 1-es matrix, amelynek sora a csiucsoknak felelnek
meg, mig oszlopai a hiperéleknek, és az u csicsnak és F' hiperélnek megfelel6 matrixelem akkor 1, ha u € F.
Tetsz6leges H = (V, ) hipergrafnak megfeleltethetiink egy egyszerti G = (V,U; F) péros gréafot, ahol U és
& kozott egy-egy értelmi kapcesolat van, és a v € V és u € U pontok pontosan akkor vannak Gsszekotve, ha v
benne van az u-nak megfelelé hiperélben. Azt fogjuk mondani, hogy G a hipergrafhoz tartozé paros graf.
Hasonléképp egy egyszerli G = (V,U; F) pdros grafhoz hozzdrendelhetiink egy hipergrafot. Ha most
felcseréljiik V' és U szerepét, akkor a H = (V, &) hipergrathoz egy masikat rendelhetiink, amelynek csicsai
H hiperéleinek felelnek meg, hiperélei pedig H csicsainak. Az igy nyert hipergriafot a H transzponalt
hipergrafjanak nevezziikk. Az elnevezés Gsszhangban &ll azzal, hogy egy hipergraf incidencia méatrixdnak
transzponaltja a hipergraf transzpontaltjanak incidencia méatrixa. Nyilvan egy hipergraf pontosan akkor uni-
form, ha a transzponéltja reguléris.

Gyakorlat 1.2 Ha egy hipergraf két particic unidja, akkor transzpontdltja eqy pdros grdf. Két halmazlanc
unidjanak transzpontdltja egy ut részut-rendszere.

A V nem feltétlentl kiilonb6z8 nemiires halmazokbdl all6 A1 C Ay C ... C Ap C V halmazldnchoz
hozzéarendelhetjiik azt a 7 : V — Z, fiiggvényt, ahol a v € V elemre m(v) a v foka. Tetszbleges 7w : V — Z
nemnegativ egészértékil fliggvény elball ilyen alakban. Legyenek ugyanis 7 kiilonb6z6 értékei p1 < p2 < ... <
pr és tekintsiik azt a hipergrafot, amelyben az X; := {v : m(v) > p1} halmaz p; példdnyban szerepel (tehdt
nem szerepel, ha p1 =0, mig ¢ = 2,...,h-ra az X; := {v: 7(v) > p;} halmaz p; — p;—1 példényban szerepel.
Konnyti ellenérizni, hogy igy halmazlancot kapunk, amelynek fokszamfiiggvénye éppen .

A V alaphalmaz részhalmazainak egy R rendszerérdl azt mondjuk, hogy gytirii-csaldd, ha zart a metszetre
és uniéra. Ha egy gytiri-csaladhoz hozzavessziik az alaphalmazt és az iires halmazt, tovdbbra is gytiri-csaladot
kapunk.

Feladat 1.3 Igazoljuk a kovetkezd tételt.

TETEL 1.4.1 Legyen R olyan halmaz-rendszer, amely tartalmazza O-t és V-t. A kévetkez6k ekvivalensek :
(a) R gylri-csaldd,
(b) Létezik eqy D = (V, A) digrdf, amelynek a 0 befoki részhalmazai alkotjik R-t,

(c) Létezik egy egyértelmi D = (V, A) tranzitivan zdrt digrdf, amelynek a 0 befoki rézhalmazai R-t.

Egy részbenrendezett halmaz idedljai gytrit alkotnak. Ezek pontosan azok a gytiriik, melyekben barmely
két elem elvalaszthatd, azaz van olyan halmaz a gytiriiben, amely a két elem koziil pontosan egyet tartalmasz.
ez ugyanaz, minthogy aciklikus tranzitiv digraffal reprezentalhaté.

1.4.1 Laminaris és keresztezés-mentes hipergrafok reprezentalasa

Egy H hipergrafot akkor neveziink teljesen unimoduldrisnak, ha H incidencia métrixa teljesen uni-
modularis. Ez egy olyan 0 — 1 értékd matrix, amelyben a soroknak a V elemei felelnek meg, az oszlopoknak
az F elemei, és a méatrix egy eleme pontosan akkor egy, ha az oszlopdnak megfelel§ hiperél tartalmazza a
matrix-elem soranak megfelelé V-beli elemet. A grafok specislis hipergrafok, ahol minden hiperél kételemi.
Ezek kozil mar 1lattuk, hogy a péaros grafok teljesen unimodularisak. Més grafok viszont sohasem azok, hiszen
egy paratlan kor incidencia matrixanak determindnsa +2.

Korabban tanultuk, hogy hdl6zati métrix mindig teljesen unimoduléris. Ebbél kapjuk:

Kovetkezmény 1.4.2 Legyen H egy olyan hipergrdf, amely egy irdnyitott fa élhalmazdn van definidlva és
a hiperélek bizonyos irdnyitott utak. Ekkor H incidencia mdtrizdnak transzpondltja hdlézati mdtriz (és igy
teljesen unimoduldris). e



A TU-métrixokrdl tanult egyenletes szinezési tétel specidlis esete az aldbbi eredmény, amire most direkt
bizonyitast is adunk.

Lemma 1.4.3 Egy irdnyitott fa éleit meg lehet gy k szinnel szinezni, hogy a fa minden legfeljebb k €l
irdnyitott utjdban a szinek kilonbozdk.

Biz. Rendezziik el a fa pontjait Vi, Va, ..., V; szintekbe gy, hogy minden él feje egy szinttel magasabban van
mint a téve. Egy él szine legyen ¢ (mod k) ha az él feje Vi-ben van. Ez a szinezés jé lesz, mert egy legfeljebb
k éll iranyitott utba nem keriilhet két azonos szini él. e

Adott V' alaphalmaz részhalmazainak egy F rendszerét lamindarisnak mondjuk, ha barmely két tagja
vagy diszjunkt vagy az egyik tartalmazza a mdsikat. Példdul, ha H = (V, F) egy s gyoker(i feny6 és minden
e = uv éléhez tekintjiik a v-bol a fenyOben elérhet6é pontok halmazat, akkor ezen halmazok lamindris rendszert
alkotnak. Valéjaban, érvényes ezen allitas egyfajta megforditdsa is, hogy minden laminéris halmazrendszer
lényegében ilyen alakban &ll elo.

TETEL 1.4.4 A V részhalmazaibdl dllé tetszdleges F lamindris rendszerhez létezik eqy H = (U, F) fenyd
valamint eqy ¢ : V. — U leképezés gy, hogy F tagjai és a fenyd élei 1-1 értelmiien megfelelnek egymdsnak,
éspedig olymddon, hogy tetszbleges e € F élre ¢~ (V.) az e-nek megfeleld halmaz, ahol Ve jeloli a H fenydbdl
az e kihagyasaval keletkezd két komponens kézil azt, amelybe e belép.

Biz. Feltehetjiik, hogy F tagjai kiilonb6z6ek, ugyanis, ha egy ilyen lamindris rendszernek mar 1étezik a kivant
feny6-abrazolasa és F egy X tagjanak még egy példanyat bevessziik, akkor a keletkezd lamindris rendszernek
ugy kaphatjuk meg a kivant reprezentdlasat, hogy X-nek megfeleltetett fenyd élt egy 1j ponttal felosztjuk.

Azt is feltehetjiik, hogy V minden v eleme benne van F valamelyik tagjaban. Ezek koziil a legszlikebbet
jelolje o(v). Minden X € F halmaznak feleltessiink meg egy dj f(X) pontot és legyen s még egy extra pont.
A keletkezd pontok U halmaza lesz a fenyd ponthalmaza (U-nak tehdt eggyel tobb eleme van, mint F-nek).

Készitsiik el az F' feny6t az U halmazon a kovetkezéképpen. Az F minden maximalis X tagjara vezessiink
egy élt s-bél f(X)-be. Amennyiben X az F-nek nem maximdlis tagja, Uigy létezik egy egyértelmii legsziikebb
Y € F halmaz, amely tartalmazza X-et. Ebben az esetben vezessiink f(Y)-bél f(X)-be élt. Igy egy H feny6t
kapunk, melynek gyokere a specidlis s pont. Végiil minden v € V pontra legyen ¢(v) := f(o(v)). Kénnyen
ellendrizhetd, hogy az igy definidlt H fenyd és ¢ leképezés kielégiti a tételbeli kivansagokat. e

Legyen Fi és Fa két lamindris hipergraf az S alaphalmazon. Jelolje A; (i = 1,2) az incidencia métrixukat,

amelyben az oszlopok S elemeinek felelnek meg, mig a sorok F; elemeinek, és legyen M := (ﬁl )
2

TETEL 1.4.5 M hdlézati métriz (is igy teljesen unimoduldris).

Biz. Legyen F; = (V;, E;) illetve p; az F; lamindris rendszert dbrdzol6 fenyé illetve leképezés (i = 1, 2), melyek
létezését a 1.4.4 tételben igazoltuk és legyen s; az F; fenyd gyokere. Tegyiik fel, hogy a feny6k diszjunktak.
Egyesitsiik az s1 és az s2 gyOkeret egyetlen s pontta és forditsuk meg az F» fenyd éleinek iranyitasat. Ekkor
egy F irdnyitott fat kapunk, amelyben az S alaphalmaz egy v € S eleméhez rendelt ¢2(v) és ¢1(v) pontok
kozott vezeté P(v) dt irdnyftott. A konstrukciébdl konnyen 1ldthatd, hogy a v elemet az F1 U F» hipergrafnak
pontosan azon hiperélei tartalmazzdk, melyek a P 1t éleinek felelnek meg. A 1.4.2 kévetkezmény maga utan
vonja a tételt. o

Gyakorlat 1.4 Igazoljuk, hogy ha F az S két particicjinak egyesitése, akkor az F incidencia mdtriza éppen
egy pdros grdf incidencia mdtrizdnak transzpondltja.

Egy alaphalmaz két részhalmazit keresztezés-mentesnek (vagy nemkeresztez6nek) mondjuk, ha vagy
diszjunktak, vagy az egyik tartalmazza a masikat, vagy az unidjuk az alaphalmaz. Egy F halmazcsaladot
keresztezés-mentes (cross-free) mondunk, ha nincs két keresztezd tagja.

Példdul, ha adott egy F irdnyitott fa (nem feltétleniil feny8), és minden e élhez tekintjik a V. halmazt,
amely a fanak az e elhagyasdval keletkez6 azon komponensét jeloli, amelybe e belép, akkor az igy keletkezett
rendszer keresztezés-mentes. Ismét érvényes egyfajta megforditas.

TETEL 1.4.6 AV részhalmazaibdl dllé tetszéleges F keresztezés-mentes rendszerhez létezik egqy H = (U, F)
iranyitott fa valamint V' pontjainak egy ¢ leképezése U-ba gy, hogy F tagjai és a fa élei 1-1 értelmien
megfelelnek egymdsnak, éspedig olymddon, hogy tetszbleges e élre =1 (Ve) az e-nek megfeleld halmaz F-ben.



Biz. Legyen z az alaphalmaz tetszOleges pontja. F minden z-t tartalmazé tagjat helyettesitsiik a kom-
plementerével. A keletkez6 F' halmazrendszer lamindris. Alkalmazhatjuk a 1.4.4 tételt. A kapott feny&ben
forditsunk meg minden olyan élt, amely az eredeti F egy z elemet tartalmazé tagja komplementerének felel
meg. Ekkor a kivant reprezentiaciét kapjuk. e

Legyen adott a D = (V, A) irdnyitott graf ponthalmazan egy F keresztezd halmaz-rendszer. Készitsiik el a
Br (0,+1)-értékli métrixot, melynek sorai az F tagjainak, mig oszlopai a D éleinek felelnek meg. Egy elem
akkor 1 (illetve —1), ha az oszlopnak megfeleld él belép (illetve kilép) a sornak megfelel§ halmazba (halmazbdl).
Minden egyéb elem 0.

Lemma 1.4.7 A By mdtriz hdlézati mdtriz (és igy teljesen unimoduldris).

Biz. Az illitds kozvetleniil adédik a 1.4.6 tételbdl. e

Gyakorlat 1.5 Egy F keresztezés-mentes halmazrendszerhez és D = (V, A) digrdfhoz hozzdrendelhetink egy
0 — 1 mdtrizot, amelyben a soroknak az F tagjai, az oszlopoknak D élei felelnek meg, és a mdtriz egy az,e
eleme (Z € F, e € A) akkor 1, ha e belép Z-be, (minden mds esetben 0). Példdval mutassuk meg, hogy ez a

mdtrix nem feltétleniil teljesen unimoduldris.

Gyakorlat 1.6 Ha F olyan keresztezés-mentes halmazrendszer, amelyben nincs két egymdst tartalmazo tag,
akkor F részparticio vagy ko-részparticio.

Feladat 1.7 Egy reguldris keresztezés-mentes hipergrdf felbomlik particick és ko-particiok egyesitésére.
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2. Fejezet

ALAPEREDMENYEK ES
BIZONYITASI MODSZEREK

Ebben a fejezetben attekintiink néhany standard bizonyitasi technikat és segitségiikkel belatjuk a grafelméletnek
a kombinatorikus optimalizdlds szempontjabol legfontosabb alaperedményeit is.

Egy tipikus grafelméleti eredmény valamilyen el6irt tulajdonsagu részgraf (teljes parositds, Hamilton kor, k
sulyu feszitd fa) 1étezését allitja megfelels feltételek fenndlldsa esetén. A bizonyitdsok egy része csupéan egzisz-
tencia bizonyitds. Szdmunkra kiilonosen értékesek az olyan konstruktiv, algoritmikus bizonyitdsok, amelyek
hatékony algoritmust eredményeznek a szébanforgd részstruktira kiszamitasdra. Ebben és a kovetkezo6 részben
egy-egy tipikus algoritmikus elvet targyalunk.

2.1 Algoritmikus bizonyitasok I: a moh6é megkozelités

Ha egy matematikai allitdst be akarunk bizonyitani, természetes els6 probalkozés ,,toronyirant” elindulni,
bar tobbnyire a mohé megkdozelités nem segit. Példaul Kénig 2.2.1 tételét nem tudjuk gy bizonyitani, hogy
egymas utan vélasztunk diszjunkt éleket, mert igy egy olyan nem bévitheté péarositashoz juthatunk, amely
nem maximalis elemszdmu. Vannak esetek azonban, amikor a mohé hozzdallds eredményes. Ezek koziil a
legismertebb Kruskal eljirdsa maximadlis sulyd fa megkeresésére. Valdjdban egy teljes elmélet épiilt ki (a
matroidelmélet) annak feltérképezésére, hogy a Kruskal tipusi mohé algoritmus milyen koriilmények kozott
miikodik helyesen. De vannak mésféle mohé megkozelitések is, és most ezekre mutatunk példakat.

TETEL 2.1.1 Ha egy H = (V, F) digrdfban az s és t pontokra ou(s) =0 = 6w (t) és on(v) = 6 (v) minden
v eV —{s,t} pontra, akkor D-ben létezik 0(s) élidegen it s-bél t-be.

Biz. Az s-bdl kiindulva mohé médon épitsiink egy sétat. A fokszam feltételek miatt egyrészt s-be sohasem
érhetiink vissza, mésrészt barmely v € V — {s,¢} pontbdl mindig tovdbb tudunk haladni addig még nem
hasznélt élen. fgy a végil kapott séta t-ben végzdédik. A séta magiban foglal egy P utat s-bol t-be. A P
éleinek kihagydsaval keletkez6 H’ digrafban s kifoka eggyel kisebb, mint H-ban, és a fokszdm feltételek H'-re
is fenndllnak. Az eljardst iterdlva megkapjuk a keresett d(s) élidegen utat. e

Bar egy tetszéleges D digrafban ez a mohd megkozelités nem alkalmas k élidegen s-bdl t-be vezetd 1t
megkeresésére, a 2.1.1 tétel azonban mégis elvi lehetéséget teremt erre. A tétel alapjin ugyanis nem kell
az utakat kozvetleniil keresniink, hanem elég D-nek egy olyan H részgrafjat megkonstrudlnunk, amelyben
0(s) = k és teljesiilnek a 2.1.1 tétel fokszam feltételei. Megjegyezziik, hogy ez az egyszerli megfigyelés inspirdlta
a folyamok fogalménak megsziiletését.

TETEL 2.1.2 (poléaris Dilworth) A P részbenrendezett halmazt fedd antildncok minimdlis szdma egyenld
a leghosszabb lanc elemszdmaval.

Biz. Vildgos, hogy max < min. Az egyenlOség igazoldsdhoz legyen A; a P minimadlis elemeinek halmaza. Ez
nyilvédn antildnc. Legyen As az A; elhagydsa utdn a minimaélis elemek halmaza. Ezt folytatva megkonstrualjuk
az A1, Aa, ..., Ac antildncokbdl 4116 felbontasat P-nek. Ezutdn visszafelé haladva eléllitunk egy ¢ elembél all6
lancot. Legyen a. az A. antildnc tetszéleges eleme. Az a. elem nem keriilt bele A._i-be, ezért van A._1-nek
egy a.-nél kisebb a.—1 eleme. Ez az elem nem kertilt A._2-be, tehdt van A._s-ben egy a._2 elem, amely kisebb,
mint a.—1. Ezt az eljarast folytatva, megkapunk egy c elemti lancot. e
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A fenti bizonyitéds egy kétfdzisi mohd eljardsnak tekinthets. Az elsé fazisban moh6 médon megkonstrualtuk
az antilanc felbontést, a masodikban pedig szintén moh6 médon, de mér az elsé fazis altal szolgaltatott antilanc
felbontds ismeretében, megkonstrualtuk a maximalis ldncot.

A poléris Dilworth tételt egyszer(i fogdssal kiterjeszthetjiik a stlyozott esetre is.

TETEL 2.1.3 (stlyozott poldris Dilworth) Legyen adott a P elemein egy nemnegativ egész s silyozds. A
mazimdlis sulyd ldnc siulya egyenld a silyokat fedd (nem feltétlentil kiillonb6z8) antildncok minimdlis szdmdval.

Biz. Toroljuk ki a nulla sulyu elemeket, majd minden p elemet helyettesitsiink egy s(p) elemi lanccal, melynek
tagjal pontosan ugyanazon elemekkel legyenek Osszehasonlithaték, mint p. A Kkiterjesztett részbenrendezett
halmazra megfogalmazott polaris Dilworth tétel éppen a silyozott esetet adja. e

Feladat 2.1 A fenti kétfdzisu eljards dtalakitisaval adjunk direkt bizonyitdst a silyozott polaris Dilworth
tételre.

2.1.1 Reészfak, részutak

TETEL 2.1.4 (Dirac) Adott az F fa részfdinak eqgy F rendszere. Az F-bdl kivdlaszthatd diszjunkt fak mazimdlis
v szama egyenld az F-t lefogo csicsok minimadlis T szdmdval.

Biz. Nyilvan v < 7, igy csak a forditott iranyd egyenlGtlenség igazolasaval foglalkozunk. Vélasszuk ki F-nek
egy tetszbleges r pontjat. Egy részfa talppontjan az r-hez legkozelebbi pontjat értjiik, és ennek tavolsagat
r-t6l a részfa r-t6l valé tdvolsdganak hivjuk.

Ameddig csak lehet, valasszunk ki egymds utdn F-bdl fékat gy, hogy mindig az r-t6l legtdvolabbi olyan
fat valasztjuk, amely diszjunkt az addig mar kivalasztottaktol. Jelolje az igy kivalasztott fak halmazat Z,
talppontjaik halmazat pedig 7. Belatjuk, hogy T lefogja az F minden tagjit, amib6l v > 7 mar kovetkezik.
Valéban, ha indirekt volna egy F’' € F lefogatlan fa, akkor az metszi 7 valamely tagjat. Jeldlje I az Z-
nek az algoritmus sordn legkorabban vélasztott azon tagjat, amely metszi F'-t. Az ' lefogatlansdga miatt I
talppontja nincs F’-ben és F’ diszjunkt az Z &sszes I-nél kordbban kivélasztott tagjatdl, vagyis I valasztdsakor
nem a kivalasztési szabdly szerint jartunk el, ellentmondés. e

TETEL 2.1.5 (Gallai) Adott az S szakasz zdrt részintervallumainak egy F rendszere. Akkor és csak akkor
lehet az F tagjait k paronként diszjunkt intervallumokbdl dllo osztdlyba sorolni, ha S minden pontjdt legfeljebb
k darab F-beli szakasz feds.

Biz. A sziikségesség nyilvanvalé. Az elegendGséghez igazoldsdhoz S-t vizszintesen képzeljiik. Az interval-
lumokat (baloldali) kezdépontjuk sorrendjében tekintve egymads utdn betessziik a k szinosztaly koziil a legkorabbi
olyanba, amelybe betehets a diszjunktsig megsértése nélkiill. Amennyiben egy F' € F intervallumot nem
tudunk elhelyezni, mert semelyik szinosztdlyba nem teheté be a diszjunktsdg megsértése nélkiil, gy F
kezd6pontjat a valasztasi szabaly miatt mind a k szinosztély egyik intervalluma tartalmazza, ellentmondasban
a feltevéssel, hogy egy pontot Osszesen csak k intervallum fedhet. o

Gyakorlat 2.2 Adott az S szakasz zdrt részintervallumainak egy F rendszere. Igazoljuk Gallai mdsik tételét,
miszerint az F-bdl kivdlaszthato diszjunkt intervallumok mazimdlis szdma egyenld az F tagjait lefogd pontok
minimdlis szdmdval.

Feladat 2.3 Adott A és B diszjunkt halmaz és egqy m : AU B — Z_ fokszam elbirds. Gale és Ryser tétele
szerint akkor és csak akkor létezik olyan egyszerli G = (A, B; E) péros graf, amelyre d(v) = m(v) minden
v € AU B csicsra, ha m(A) = m(B) és minden j = 1,...,|A]| értékre a j legnagyobb A-beli m(v) érték
Osszege legfeljebb EuEB min{j, m(u)}. Igazoljuk a feltétel sziikségességét, majd egy alkalmas mohd algoritmus
segitségével az elegenddséget is.

2.1.2 Iranyitasok

A G = (V,E) irdnyitatlan graf éleinek (vagy roviden G-nek) egy irdnyitdsdn egy olyan irdnyitott grafot
értlink, amely G-bél keletkezik azaltal, hogy G minden uv élét helyettesitjiik az u-bél v-be és a v-bdl u-ba
vezetd irdnyitott élek egyikével. Kicsit altalanosabban beszélhetiink egy vegyes graf irdnyitasardl, amikor is a
vegyes graf irdnyitott éleit valtozatlanul hagyjuk, mig az irdnyitatlan éleket helyettesitjiik egy-egy irdnyitottal.

Gyakorlat 2.4 FEgy irdnyitatlan grdfnak akkor és csak akkor van olyan irdnyitdsa, amelyben minden pont
elérhetd egy megadott s gyokérpontbol, ha G Gsszefiiggd.

TETEL 2.1.6 (Robbins) Egy G irdnyitatlan grdfnak akkor és csak akkor létezik erdsen dsszefiiggd irdnyitdsa,
ha G 2-élosszefiggd.
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Biz. A sziikségesség nyilvanvald. Az elegenddséghez tetszoleges sorrendben tekintjiik a graf éleit és egyenként
megiranyitjuk 6ket, csak arra iigyelve, hogy ne keletkezzék irdnyitott vagds. Azt kell igazolnunk, hogy az
eljards mindig befejezhet6. Ennek érdekében tekintsiink egy koézbensd allapotot, amikor éleknek egy F' C E
részhalmazat mar megiranyitottuk és jelolje Fa megirdnyitott F-t. Legyen e = wv € E — F a soron kévetkezo
irdnyitatlan él. Amennyiben az u-bdl v felé torténd irdnyitds egy iranyitott vagast hozna létre, igy létezik
egy olyan X vu-halmaz, amelyre az e-tél eltekintve az X és V — X kozotti valamennyi él irdnyitott (eleme
F -nek) éspedig V — X-t61 X-felé. Hasonléképp, amennyiben e-nek a v-bdl u-felé torténd irdnyitdsa hozna
létre iranyitott vagast, akkor létezne egy olyan Y ww-halmaz, amelyre e-tdl eltekintve az Y és V — Y kozotti
valamennyi él iranyitott Y-tél V — Y-felé. Ekkor viszont az X N'Y halmazbdl nem 1ép ki sem iranyitott, sem
irdnyitatlan él, és ugyanez all az X UY halmazra is. Mivel a feltevés szerint eddig még nem hoztunk létre
irdnyftott vagast, igy szlikségképpen X NY =0 és X UY =V, azaz Y =V — X. fgy az X és V — X kozott
egyediil az e él vezethet, ellentétben a feltevéssel, hogy G 2-élosszefiiggs. o

Figyeljiik meg, hogy a bizonyitas az alabbi altaldnosabb eredményt is kiadja:

Kovetkezmény 2.1.7 FEgy vegyes grdf akkor és csak akkor irdnyithato erdsen osszefliggévé, ha mincs benne
tisztdn irdnyitott vdgds és irdnyitatlan értelemben 2-€élosszefiiggl. e

Az 2.1.6 tétel dgy is megfogalmazhatd, hogy egy irdnyitott graf bizonyos éleit &t lehet forditani gy, hogy
er6sen Osszefiigg6 digréfot kapjunk, feltéve persze, hogy az iranyitatlan alapgraf 2-él6sszefiiggé. Természetesen
kinédlkozik a kérdés, mennyi az atforditandé élek minimaélis szdma. Meglepé médon a valasz sokkal mélyebb
eszkozoket igényel, mint a Robbins tétel, de legalabb létezik. Lucchesi és Younger tétele szerint a keresett
minimum éppen az élidegen irdnyitott vagdsok maximalis szdméaval egyenld. (Ldsd a 7 fejezet szakaszét.)

Természetesen vetédik fel a Robbins tétel (egy mdsirdnyid) dltaldnositdsanak kérdése: mikor lehet egy gréfot
k-élosszefliggére iranyitani. Nyilvan ehhez sziikséges, hogy a graf 2k-élosszefliggd legyen, és Nash-Williams
bebizonyitotta, hogy ez a feltétel elegend6 is (ldsd a 4.3.1 tételt.) A bizonyitds, amely a fentinél ravaszabb
eszkozt igényel, a 4. fejezetben szerepel. A nehézséget jelzi, hogy mar k = 2-re sem igaz az, ami k = l-re,
amint azt fentebb lattuk, még érvényes volt; nevezetesen, hogy az éleket mohé médon egymas utén, tetszéleges
sorrendben irdnyithattuk, csupdn arra iigyelve, hogy ne hozzunk létre hibds (azaz a k = 1 esetben irdnyitott)
vagast. Tekintsiik példdul azt a G = (V, E) gréfot, ahol V = {v1,v2,v3,v4} és G-nek a kovetkezd 11 éle van:
v1V2, V3V4, 3-3 parhuzamos él vi és vy kOzOtt, v1 és vs kozott, valamint ve és vs kozott. Ennek a grafnak az
olvasé kénnyen talalhat 2-él6sszefiiggs irdnyitasat. Ugyanakkor, ha két parhuzamos vivy élt vy felé irdnyitunk,
a harmadikat v; felé; két parhuzamos vivs élt vs felé iranyitunk, a harmadikat v, felé; végiil két parhuzamos
v2v3 élt v3 felé irdnyitunk, a harmadikat ve felé, akkor egyrészt, amint azt szimpla eset szétvalasztds mutatja,
az irdnyitatlanul maradt vivs, v3vs éleknek mar nem tudunk gy irdnyitast adni, hogy 2-élosszefiiggd digréafot
kapjunk, méasrészt ennek a ténynek nincs egyszeriien megfogalmazhaté altaldnos oka.

Az igy kapott vegyes graf tehat azt is mutatja, hogy a Nash-Williams féle irdnyitasi tétel és a 2.1.7 tétel
természetesen kindlkozé kozos altaldnositdsa k > 2-re nem érvényes: Egy vegyes D = (V, A) irdnyitott és
G = (V, E) irdnyitatlan grafbdl all6 vegyes gréfban az E elemei akkor és csak akkor irdnyithaték gy, hogy
k-élésszefiiggd digréfot kapjunk, ha minden X C V halmazra dg(X) > (k— op(X))t + (k—dp(X))*. Nyitva
marad tehat a kérdés, hogy mikor létezik egy vegyes grafnak k-élosszefiiggl iranyitdsa, és az el6bbi kicsiny
példa jelzi, hogy a vélasz nem igérkezik egyszeriinek. A szubmoduldris dramok elmélete segitségével azonban
az irdnyithatésdg feltétele megadhato.

Feladat 2.5 Igazoljuk Robbins tételét eqgy mélységi fa segitségével.

Feladat 2.6 Legyen D olyan digrdf, amely irdnyitatlan értelemben 2-élosszefiiggd. Legyen F' egy tartalmazdsra
nézve minimdlis részhalmaza az éleknek, amelynek elemeit dsszehizva erdsen dsszefiiggd digrifot kapunk (azaz
F minimdlis olyan, hogy minden irdnyitott vagast lefog). Igazoljuk, hogy ha dsszehizds helyett F' minden
elemének megforditjuk az irdnyitdsdt, mdr akkor is erdsen oOsszefiliggd digrdfot kapunk.

Feladat 2.7 Igazoljuk, hogy egy elvigo élt nem tartalmazo digrdf élei két szinnel szinezhetdk gy, hogy minden
irdnyitott vdgds mindkét szinbdl tartalmazzon élt.

Feladat 2.8 Egy irdnyitatlan G grifnak adva van két erdsen osszefiiggd irdnyitdisa. Igazoljuk, hogy az egqyikbdl
el lehet jutni a mdsikba irdanyitott utak illetve irdnyitott kérdk egymads utani megforditdsdaval ugy, hogy minden
kdzbensd irdnyitds erdsen dsszefiiggd!

Feladat 2.9 Egy G = (V,E) 0sszefiiggd grdafnak akkor és csak akkor létezik olyan irdnyitdsa, amely egy
megadott T C V halmaz pontjaiban pdratlan kivile meg pdros, ha |E| és |T| ugyanolyan paritdsi.

Feladat 2.10 Egy 2-€élosszefiiggd grdafnak létezik kiozel-Euler erdsen 6sszefiiggd irdnyitdsa.
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2.1.3 Szinezések

TETEL 2.1.8 Egy G = (V, E) dsszefiiggd irdnyitatlan grdf kromatikus szama legfeljebb a A + 1, ahol A a
G maximdlis fokszamdt jeléli. Rdaaddsul létezik olyan A + 1 szinnel torténd szinezés, ahol a A + 1-dik szint
legfeljebb csak egy elére meghatdrozott vi pont haszndlja.

Biz. A v; ponttal kezdve konstrualjuk meg a graf pontjainak egy olyan vi,...,v, sorrendjét, ahol a vi-t6l
eltekintve minden pontbdl megy kisebb indexi(i ponthoz él. A graf dsszefliggdsége folytdn ez mindig megtehetd.

E sorrendben visszafelé haladva egyma&s utén szinezziik meg a csicsokat a A+ 1 szin koziil mindig legkisebb
indext hasznélva, arra iigyelve csupédn, hogy szomszédos csucsok kiilonb6z6 szint kapjanak. Mivel minden
csucsnak legfeljebb A szomszédja van a grafban, ezért egy v; (i > 2) csics megszinezésekor, miutdn van
kisebb indexti, még szinezetlen szomszédja, legfeljebb csak A — 1 tiltott szin van, és igy a A rendelkezésre 4116
szinb6l tudunk valasztani. A A + 1-dik szinre esetleg a v1 csicsndl lehet sziikség. o

Kérdés, hogy meg lehet-e szabadulni, a A + 1-dik szintél. A paratlan kor mutatja a A = 2 esetben és egy
teljes A+ 1 pontu graf A > 3-ra, hogy a vélasz altaldban nemleges. Az el6bbi mohé szinezési eljaras csoppnyi
finomitasa azonban 3-0sszefiiggd grafok esetén segit.

TETEL 2.1.9 Legyen G = (V,E) graf 3-ésszefiiggd nem teljes grdf. Ekkor G pontjai megszinezheték A
szinnel.

Biz. [Lovész] Mivel a graf nem teljes, {gy van két nem szomszédos pontja. Az ezeket Gsszekotd legrovidebb
Ut elsé harom pontjat jeldlje rendre vy, v1,vn—1. Ekkor v, és v,_1 is szomszédos vi-gyel, de egyméassal nem
szomszédosak. Mivel a graf 3-osszefliggd, igy G’ = G —{vn,vn—_1} Osszefiiggd, és ezért G’ pontjainak létezik egy
V1,...,Un—2 sorrendje, amelyben minden v; (i > 2) cstcsbdl vezet visszafelé él. A v,,-t8l kezdve e sorrendben
visszafelé haladva egymas utan szinezziik meg a csicsokat a A szin koziil mindig legkisebb sorszamit hasznalva,
arra ligyelve csupan, hogy szomszédos csiicsok kiilonb6z6 szint kapjanak. Ekkor tehét v, és v,—1 az egyes szint
kapja. Mivel minden csticsnak legfeljebb A szomszédja van a grafban, ezért a v; (i > 2) cstcs megszinezésekor,
miutédn van kisebb indexii még szinezetlen szomszédja, legfeljebb csak A — 1 tiltott szin van, és igy a A
rendelkezésre 4ll6 szinbél tudunk valasztani. A vy csicsnak viszont a v, és a v,—1 két egyforméra szinezett
szomszédja, igy a v1 szomszédjaira is legfeljebb A — 1 szint hasznéltunk fel, tehdt ezt is meg tudjuk szinezni
a A szin valamelyikével. o

Feladat 2.11 Igazoljuk Brooks aldbbi tételét.

TETEL 2.1.10 (Brooks) Ha egy egyszerd osszefiiggd grdf mem a teljes grdf és mem pdratlan kor, akkor
kromatikus szama legfeljebb a mazximdlis fokszdm.

2.1.4 Forras telepités

Egy G = (V, E) irdnyitatlan graf minden csicsén adott egy r(v) egész szdm. Azt mondjuk, hogy az S halmaz
forrds, ha S-b6l minden v € V' — S pontba vezet r(v) élidegen tt. Ezek szerint a V' csicshalmaz maga forrés.
A feladat a legkisebb elemszamu forrdst meghatdrozni. Legyen R(X) := max{r(v) : v € X}. A Menger
tétel szerint egy S halmaz pontosan akkor forrds, ha minden X C V — S halmazra dg(X) > R(X). Ennek
megfeleléen a forrdsok azok a részhalmazok, melyek lefognak minden hidnyos halmazt, ahol X hidnyos, ha
de(X) < R(X). Természetesen elég lefogni a tartalmazédsra nézve minimadlis hidnyos halmazokat.

TETEL 2.1.11 A minimdlis elemszdma forrdas elemszdama egyenld a diszjunkt hidanyos halmazok mazximdlis
szdmaval.

Biz. Vildgos, hogy min > max. Az egyenléség igazolasahoz egy mohé algoritmus segitségével megkonstrualunk
egy S forrashalmazt valamint minimé4lis hidnyos halmazoknak egy |S| tagi diszjunkt rendszerét.

Rendezziik nagysidg szerinti novekvd sorrendbe a csicsokat: 7(vi) < r(v2) < ... < 7(vn). Kezdetben legyen
S =V majd az adott sorrendben a pontokon egyenként végighaladva az aktudlis S-bdl akkor dobjuk ki a
soron kévetkezd v; pontot, ha a cstkkentés utdn még mindig forrast kapunk. Ez azt jelenti, hogy ha v;-t nem
lehet kidobni, akkor létezik egy olyan X; minimadlis hidnyos halmaz, amelynek S-sel az egyetlen kozos pontja
v;, és igy specidlissan v; a legnagyobb index{i pontja. A novekvé sorrend miatt R(X;) = r(v;).

Jelolje S az algoritmus altal szolgaltatott végsé forras halmazt és legyen v;, v; két eleme S-nek. A tétel
kovetkezik az aldbbi allitasbol.

Allitas 2.1.1 X, N X; = 0.

Biz. Legyen X; = X; — X; és X = X; — X;. Ha, indirekt, a metszet nem-iires, akkor X; és X} nem hidnyos,
azaz d(X[) > R(X]) és d(X}) > R(X}). Miutdn X; NS = {w;} és X; NS = {v;}, {gy vi € X| és v; € X]. Ezért
R(X]) =r(v) és R(X}) = r(v;), amib8l r(vi) + r(v;) = R(X:) + R(X;) > d(Xs) + d(X;) > d(X]) + d(X]) >
R(X]) + R(X}) = r(vi) + r(v;), ellentmondés. e

2014. méjus 12.file:algbizl
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2.2 Algoritmikus bizonyitasok II: javité utak
2.2.1 Konig és Hall tételei

Most bemutatjuk az egész elmélet alapkévének tekintheté Kénig tételt és annak javité utas bizonyitasat.

TETEL 2.2.1 (K&nig Dénes) Egy G = (S,T; E) pdros grdfban a diszjunkt élek mazimdlis v = v(G) szima
egyenld az éleket lefogd pontok minimdlis T = 7(G) elemszdmaval.

Biz. Egy v elemi pérositas lefogasdhoz kell legaldbb v csics, igy az Osszes élhez is kell, ezért v < 7.

A nemtrividlis v > 7 irdny igazolasdhoz konstrudlunk egy M pérositast és egy L lefogdst, melyek el-
emszama ugyanaz. Az eljards tetszéleges M parositdsb6l indul ki, ami kezdetben az iires halmaz is lehet.
Az altaldnos 1épésben vagy taldlunk egy nagyobb elemszami pérositdst, és ekkor a nagyobb pérositdsra
vonatkozéan iterdljuk az eljardst, vagy pedig egy |M|-mel megegyezd elemszamu lefogdst, amikoris az al-
goritmus véget ér.

Irdnyitsuk meg M éleit T-t6l S felé, mig az Gsszes tobbi élt forditva. Jeldlje Rg illetve Rt az S-ben illetve
a T-ben az M altal fedetlen pontok halmazat. Jeldlje Z az Rs pontjaibdl az igy kapott irdnyitott grafban
irdnyftott dton elérhetd pontok halmazat (amit példdul szélességi kereséssel taldlhatunk meg).

Két eset lehetséges. Amennyiben Rr-nek esik pontja Z-be, akkor megkaptunk egy olyan Rs-t és Rp-t
Osszekoté P utat, amely M-ben alterndl. Most M és P szimmetrikus differencidja egy M-nél eggyel tobb élbél
all6 M’ pérositds. (Technikailag az eljarast konnyd végrehajtani: a megtaldlt it éleinek irdnyitdsat egyszertien
megforditjuk.)

A masik esetben Rr diszjunkt Z-t6l. Z definiciéja folytdn Z-bél nem 1ép ki irdnyitott él. Ervényes tovabb4,
hogy Z-be nem lép be megiranyitott wv € M pérositds él, hiszen v csak u-n keresztiil érheté el, igy v csak
akkor lehetett iranyitott iton elérheté Rg-bdl, ha u is az volt.

Kovetkezik, hogy az L := (T'N Z) U (S — Z) halmaz egyrészt lefogja az Gsszes élt, masrészt minden M-beli
élnek pontosan az egyik végpontjit tartalmazza, tehdt |M| = |L|. o

A fenti bizonyités egyuttal egy O(nm) lépésszamu algoritmust is jelent a szébanforgé optimumok meghataro-
zésara. Kozvetlen folyoméanyként adédik Hall tétele.

TETEL 2.2.2 (Hall) Egy G = (A, B; E) pdros grifban akkor és csak akkor létezik A-t fedd pdrositds, ha
A minden X részhalmazdra teljesil az un. Hall féle feltétel, azaz |T'(X)| > |X|, ahol T'(X) jeloli azon B-beli
pontok halmazdt, melyeknek van szomszédja X -ben.

Biz. A feltétel sziikségessége kézenfekvd. Az elegenddséghez azt kell beldtnunk, hogy v > |A|. Ha ez nem
allna, akkor Koénig tétel szerint 1étezik az éleknek egy A-ndl kevesebb pontbdl allé6 L lefogdsa. De ekkor az
X := A — L halmazra |[BNL| < |X| és I'(X) C BN L, azaz X megsérti a Hall feltételt. o

Iranyitasok segitségével algoritmikus bizonyitast adunk Lovasz egy kapcsolédo tételére.

TETEL 2.2.3 (Lovasz) Ha egy G = (S,T; E) pdros grdfban akkor és csak akkor létezik olyan erdd, amelyben
minden s € S pont foka 2, ha minden X C S nemdires halmazra

ID(X)| > |X] + 1. (2.1)

Biz. Az X és T'(X) altal feszitett részgrafban egy erdének egyrészt legfeljebb | X |+ |I'(X)|—1 éle van, mésrészt
2| X|, amennyiben teljesiti, hogy S-ben minden pontjinak foka kettd. A kettd Osszevetésébdl (2.1) sziikségessége
adédik.

Mivel a Hall-féle feltétel még szigorian is teljesiil az S minden nemdiires részhalmazara, G-nek létezik S-t
fed6 M parositasa. Jelolje R a T azon pontjainak halmazit, melyeket M nem fed. Huzzuk Ossze R-t egy
r pontta. Iranyitsuk az M elemeit T-felé, mig az Osszes tobbi élt S-felé. Alh’tjuk, hogy az igy létrejott D
digrafban r-bél S minden eleme elérheté. Valéban, ha az S nem elérhet6 pontjainak X halmaza nemiires,
akkor I'a(X) = I'n(X), azaz X megsértené (2.1)-t. Ha viszont S minden pontja elérheté r-bél, akkor a T-nek
is minden pontja, és igy D-nek van r gyoker( feszité fenydje, amelynek élei az eredeti G gratban egy S minden
pontjaban masodfoku erdot alkotnak. e

Feladat 2.12 Legyen S C V a G = (V,E) dsszefiiggd grdf pontjainak egy stabil halmaza. Dolgozzuk ki a

sziikséges és elegendd feltételét eqy olyan feszitd fa létezésének, amely minden S-beli pontban mdsodfoki. Algo-
ritmikusan hogyan taldlhaté meg eqy ilyen fa?

14



2.2.2 Fokszamkorlatos iranyitasok

Vizsgéljuk meg olyan irdnyitasok létezésének feltételét, amelyeknél a graf minden csicsanak a befoka elére
megadott korldtok kozé esik. Kicsit konkrétabban, legyen f : V — Z; U {—oco} és g : V — Z; U {oo} két
fiiggvény, melyekre f < g. (Egy csticson a —oo alsé korldt azt jelenti, hogy ezen a csticson egyaltaldn nincs alsé
korlat. Itt nullat is irhatndnk, de jobb a —oo, mert igy a feltételben rogton latni lehet, hogy az ilyan csticsok
nem jatszanak szerepet. Analég a helyzet a {oo} fels6 korldttal.) Kezdjiik egy nagyon egyszer(i specidlis esettel.

Egy irdnyftatlan grafot akkor neveziink Euler-grafnak, ha minden pont foka paros (fliggetleniil attdl, hogy
a graf Osszefliggb-e vagy sem). Egy irdnyitott grafot vagy egy irdnyitatlan graf egy irdnyitdsat akkor neveziink
Euler-grafnak, ha minden pont befoka egyenlé a kifokaval. Kicsit dltaldnosabban, egy graf irdnyitasat
ko6zel-Eulernak hivjuk, ha minden pontnak a befoka és a kifoka legfeljebb eggyel tér el. Természetesen egy
irdnyitatlan Euler graf kozel-Euler iranyitdsa Euler irdnyités.

TETEL 2.2.4 Egy G irdnyitatlan grdfnaek akkor és csak akkor van Euler irdnyitdsa, ha G Euler.

Biz. Iranyitatlan Euler-graf kénnyen lathaté médon mindig felbonthaté élidegen irdnyitatalan korok egyesitésére.
E korok mindegyikét korbe irdanyitva egy irdnyitott Euler-grafot kapunk. e

Kovetkezmény 2.2.5 Tetszdleges G grafnak van kézel-Euler irdnyitdsa.

Biz. Jeldlje a péaratlan fokd pontok halmazat T'. Adjunk a gréfhoz egy 1j pontot, és kossiik 6ssze a T' minden
elemével. Igy Euler-grafot kaptunk, amelynek az elébbi tétel szerint van Euler irdnyitdsa, és ezt az eredeti
élekre megszoritva G-nek egy kozel-Euler iranyitdsat kapjuk. e

TETEL 2.2.6 Ha egy irdnyitatlan grdfnak D1 és Do két olyan irdnyitdsa, amelyre o1 (v) = p2(v) minden v
csucsra fenndll, akkor irdnyitott kérok egymds utdni megforditdsdval el lehet jutni D1-b6l D2-be.

Biz. Ha egy él irdnyitdsa ugyanaz a két irdnyitdsban, gy azt kihagyva indukciéval készen vagyunk. fgy
minden él forditva szerepel a két irdnyitdsban, és ezért p1(v) = p2(v) = §1(v), vagyis D; irdnyitott Euler graf.
Emiatt élidegen korok unidjdra bomlik, amiket egyméas utan atforgatva Do-t kapjuk. e

TETEL 2.2.7 A G = (V, E) grdfnak akkor és csak létezik olyan irdnyitdsa,
(1) amelyben o(v) > f(v) minden v csicsra fenndll, ha

e(X) > f(X) minden X CV -re, (2.2)
(ii) amelyben p(v) < g(v) minden v csicsra fenndll, ha

(X)) < g(X) minden X CV -re, (2.3)
(iii) amelyben f(v) < o(v) < g(v) minden v csdcsra fenndll, ha mind (2.2), mind (2.3) fenndll.

Biz. (2.2) sziikségessége. Tegyiik fel, hogy létezik j6 iranyitds. Ekkor f(X) < > [o(v) : v € X] < e(X).

(2.2) elegendésége. G egy irdnyitdsdban nevezziink egy s pontot hibdsnak, ha o(s) < f(s). Vélasszunk
G-nek egy olyan irdnyftdsat, amelynek a Y [f(v) — o(v)) : v hibés] Ssszeggel definidlt hib4ja minimalis. Ha ez
a hiba 0, vagyis ha nincs hibds cstics, akkor készen vagyunk.

Legyen most az s csics hibés és jeloljiik X-szel a megadott iranyitdsban azon pontok halmazat, amelyek s-
bél elérhetdk. Ekkor X-bél nem 1ép ki él, és igy > [o(v) : v € X] = e(X). Most X sziikségképpen tartalmaz egy
olyan ¢ pontot, amelyre o(t) > f(¢), mert ha nem létezne ilyen pont, akkor f(X) > > [o(v) : v € X] = e(X)
volna ellentmondédsban (2.2)-gyel. Egy s-bél t-be vezetd it éleinek irdnyitdsat megforditva G-nek egy olyan
irdnyitdsat kapjuk, amelynek hibdja kisebb, mint a meglévd irdnyitdsé. A mddszer ismételt alkalmazdsival
legfeljebb f(V) ut megforditdsdval egy jé irdnyitast kapunk.

Analég médon igazolhaté a tétel masodik része (azzal az eltéréssel, hogy most egy ¢ pont akkor hibds, ha a
meglévd irdnyitdsban o(t) > g(t) és X-szel azon pontok halmazét jeldljiik, amelyekbdl ¢ elérhetd). Valgjaban
a masodik rész formailag is ekvivalens az els6 azon vialtozatdval, amikor olyan irdnyitast keresiink, amelyben
minden v pont kifoka legaldbb f(v) := dg(v) — g(v).

Végiil a harmadik rész igazoldsdhoz induljunk ki egy olyan irdnyitdsbdl, amelyre (x) o(v) < g(v) teljesiil
minden v pontra. Alkalmazzuk az elsé rész algoritmusat és figyeljiilk meg, hogy ennek sordn egy pontnak a
befoka csak akkor né, ha o(s) < f(v) < g(v), vagyis (*) automatikusan érvényben marad. e

Feladat 2.13 Adjunk szikséges és elegendd feltételt arra, amikor nem csak a pontok befokdra van also-felsé
korldt eléirds, hanem a kifokdra is. (A megoldédshoz szabad haszndlni a 2.2.7 tételt.)

Erdemes kiemelni a tétel alabbi, mindenképp meglepének mindsitendd kévetkezményét.
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Kovetkezmény 2.2.8 Tegyik fel, hogy a G grdfnak van olyan irdnyitdsa, amelyre o(v) > f(v) minden v
cstcsra és van olyan irdnyitdsa, amelyre o(v) < g(v) minden v csucsra, akkor olyan is van, amely egyszerre
elégiti ki mindkét kivansdgot.

Az itt megfogalmazott tulajdonsigot jobb hijan linking tulajdonsidgnak nevezhetjiik. Szdmos helyen feltiinik,
héatterében, amint majd latni fogjuk, egy polimatroidokra vonatkozé tétel all.

Kovetkezmény 2.2.9 (Irdnyitdasi Lemma) Adott G = (V, E) grdfra ésm : V — Z fiiggvényre a kovetkezdk
ekvivalensek.
G irdnyithatd gy, hogy minden v csicsra p(v) = m(v),

e(X) > m(X) minden X C V-re és m(V) = |E|
i(Y) <m(Y) minden Y C V-re és m(V) = |E|.

Biz. Miutdn e(X)+i(V—-X) = |E| =m(V) = m(X)+m(V — X), az (2.5) and (2.6) feltételek ekvivalencidja
kovetkezik. (2.5) nyilvdn sziikséges (2.4)-hez. Megfigyeljiik, hogy f := m-re (2.5) és (2.2) ugyanaz, igy a 2.2.7
tételbdl kapjuk, hogy van olyan irdnyitdsa G-nek, amelyre g(v) > m(v) minden v cstcsra. Mivel |E| = Y [o(v) :
vEeV] > [m(v):v € V] =m(V)=|E|, minden v pontra egyenléség van, azaz o(v) = m(v). e

Gyakorlat 2.14 Igazoljuk, hogy ha ¢ és o' a G két olyan irdnyitdsinak befok figgvénye, amelyekre o(v) =
m(v) = ¢'(v) minden v csicsra fenndll, akkor o(X) = o(X') minden X C V -re.

Feladat 2.15 A G = (V, E) grdf csicsainak legyen U egy részhalmaza. Eqym' : U — Z fiigguényhez akkor és
csak akkor létezik G-nek olyan irdnyitdsa, amelyre o(v) = m'(v) mindenv € U-ra, haic(X) < m'(X) < eq(X)
fenndll minden X C U halmazra.

Fentebb mar emlitettiik, hogy egy iranyitatlan Euler graf mindig iranyithaté gy, hogy minden pontnak a
befoka egyenld a kifokdval. Az aldbbi dltalanositds 6nmagédban is csinos, de az élidegen-utakrdl szolé fejezetben
meglepd alkalmazasra is lel majd.

Kovetkezmény 2.2.10 (Ford és Fulkerson) Adott egqy M = (V, A+ E) vegyes grdf, amely a G = (V, E)
irdnyitatlan és D = (V, A) irdnyitott grdfok osszetevésével keletkezett. Akkor és csak akkor lehet gy irdnyitani

az E elemeit, hogy az elédlld irdnyitott grdf Euler-féle legyen (azaz minden pont befoka megegyezzék a ki-
fokaval), ha M-ben minden pont pdros sok (irdnyitott és irdnyitatlan) éllel szomszédos azaz

op(v) + op(v) + da(v) pdros (2.7)

da(X) > op(X) — 6p(X) teljesil minden X C V -re. (2.8)

Biz. A G egy G = (V, E) irdnyitasanak befok illetve kifok fiiggvényét jeldlje o5 és 6 5. D + G akkor Euler-féle,
ha minden v csticsra op(v) 4 05(v) = 0p(v) + d5(v), ami p5(v) + d5(v) = de(v) miatt azzal ekvivalens, hogy
05(w) = (0p(v) — op(v) —dc(v))/2. A jobboldalt jeldljiik m(v)-vel. Ez (2.7) miatt egész. Alkalmazzuk a 2.2.9
kovetkezményt, és figyeljiikk meg, hogy az m adott vélasztdsdndl (2.8) ekvivalens az (2.5) feltétellel. o

Feladat 2.16 A 2.2.9 kovetkezményt haszndlva vezessiik le Hall tételét. (Segitség: A G = (S,T; F) péros graf
éleinek keressiink olyan irdnyitasat, amelyben minden S-beli pont befoka 1 és minden T-beli ¢ pont befoka
da(t) —1.)

Feladat 2.17 Mutassuk meg, hogy a 2.2.7 tétel bizonyitdsaban szerepld utdtfordités technika az elébbi feladat
megolddsa nyomdn a Kénig tételre leirt javité utas bizonyitdst adja vissza.

Feladat 2.18 Bizonyitsuk be a 2.2.9 kévetkezményt a Hall tételre tamaszkodva. (Segitség: Készitsiink el egy
péros grafot gy, hogy G minden élét osszunk fel egy ponttal [ezen osztépontok alkotjdk a paros graf pontjainak
egyik osztdlyat], tovdbbd minden v pontjit helyettesitsiink m(v) darab ponttal. Az {gy kapott paros graf egy
teljes pdrositdsa G egy (2.4)-t teljesité irdnyitdsdnak felel meg, mig a Hall féle feltétel az (2.5) feltétellel
ekvivalens.)

Feladat 2.19 A 2.2.7 tétel segitségével adjuk meg annak sziikséges és elegendd feltételét, hogy egy adott pdros
grifnak létezzék olyan részgrdfja, amelyben minden pont fokszdma elére megadott korldtok kézé esik.

Feladat 2.20 Az el6z8 feladatot felhaszndlva adjuk meg annak szikséges és elegendd feltételét, hogy egy

irdnyitott grdfnak létezzék olyan részgrdfja, amelyben minden pont befoka is és kifoka is elére megadott korldtok
kozé esik.
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Feladat 2.21 A 2.2.8 kdvetkezmény segitségével igazoljuk az aldbbi eredményt, amely a linking tulajdonsdg
egy korai megjelenése.

Kovetkezmény 2.2.11 (Mendelssohn és Dulmage) Ha egy G = (S, T; E) pdros grdfban létezik pdrositds,
amely fedi az X C S halmazt és létezik pdrositds, amely fedi az’ Y C T halmazt, akkor létezik olyan pdrositds
is, amely egyszerre fedi X-t és Y-t. e

Feladat 2.22 [Landau tétele] Legyen mi > mgo > ... > my nem-negativ egészeknek egy sorozata. Akkor és
csak akkor létezik olyan turnament, amelyben az i-dik pont befoka m;, ha Zn m; =n(n—1)/2 és Zf:l m; <

(k= 1)/2+k(n—k) (k=1,...,n). =

Gyakorlat 2.23 Egy D’ digrdfban leqgyen s és t két olyan pont, hogy s-be nem lép be él, t-b6l nem jon ki él,
tovdbbd minden mds csics befoka megegyezik a kifokdval. Ekkor D'-ben létezik 6'(s) élidegen 1t s-bél t-be.

.

Feladat 2.24 Legyen D = (V, A) irdnyitott grdfban s és t két olyan csics, melyekre pp(s) =0 =0p(t) és
o(T) > k fenndll minden t5-halmazra. (2.9)

Igazoljuk, hogy D tartalmaz egy olyan D’ részgrdfot, amelyben o' (v) = §'(v) teljesil minden v € V — {s,t}
pontra és §'(s) = k = ¢'(t). Vezessiik le ebbsl a Menger tétel élidegen vdltozaldt, amely szerint D-ben akkor
és csak akkor létezik k élidegen 1t s-bdl t-be, ha (2.9) fenndll. (Segitség: Legyen G az az irdnyitatlan graf,
amelyet D-bdl kapunk az élek irdnyitdsanak elhagydsaval. Keressiink G-nek olyan G irdnyitasat, amelyben
minden v € V — {s,t} pont befoka az eredeti, s befoka k és t befoka op(t) — k. D azon élei &ltal alkotott D’
részgraf, melyek G-ben forditva vannak, j6 lesz.)

Iranyitasok egy alkalmazasa

Egy G = (V, E) irdnyitatlan graf minden v pontjdn adott tiltott fokszdmok egy F'(v) C {0,1,...,da(v)}
halmaza, ahol d¢(v) jeldli v pont G-beli fokat. A G egy G’ = (V, E') részgrafja F-elkeriil8, ha dg/(v) € F(v)
minden v csucsra.

TETEL 2.2.12 Ha
|F(v)] < |da(v)/2] minden v csicsra, (2.10)
akkor G-nek létezik F-elkerild részgrafja.

Lattuk, hogy minden G grafnak van D = (V, E) kozel-Euler irdnyitdsa. Ebben minden v pontra op(v) >
lda(v)/2] és igy az aldbbi eredménybdl kovetkezik a 2.2.12 tétel.

TETEL 2.2.13 Ha egy G grdfnak van olyan D = (V, E) irdnyitdsa, amelyben minden v pontra op(v)
|F(v)|, akkor G-nek létezik F-elkeruld részgrdfia.

Y

Biz. Elszdm szerinti indukcié. Egy e € F élre jelolje € a megfelels iranyitott élt D-ben. Ha 0 semelyik csicsban
sem tiltott fokszdm, akkor a (V,0) élmentes részgrafja G-nek F-elkeriils. Tegyiik fel, hogy 0 € F(t) valamely
t csicsra. Ekkor op(t) > |F(t)| > 1 és ezért van olyan e = st él G-ben, amelyre € ¢ felé van irdnyitva.

Legyen G~ := G — e és D™ := D — €. Definidljuk F~-t a kovetkezOképp. Legyen F~(t) :={i —1:14 €
F)\{0}}, F~(s):=={i—1:14¢€ F(s)\{0}}, végill z € V — {s,t} esetén legyen F~(z) := F(z). Mivel
[F~@)| =|F®)|—1,1gy op-(v) > |F~ (v)| fenndll minden v csticsra. Indukcié miatt G~ -nek létezik egy G”
F~-elkeriil részgrafja. Az F~ konstrukciéjabdl adédéan G-nek a G’ := G” + e részgréfja F-elkeriils. o

A 2.2.7 tétel (i) részét a 2.2.13 tétellel kombindlva kapjuk a kdvetkezot.

TETEL 2.2.14 Ha egy G irdnyitatlan grifban ec(X) > SJ[|F(v)| : v € X]| minden X C V részhalmazra
fenndll, akkor G-nek létezik F-elkerild részgrdfja. e

Feladat 2.25 Igazoljuk, hogy eqy 0sszefiiggd grafnak mindig van olyan irdnyitdsa, amelyben egy esetleges pont
kivételével minden pont befoka pdratlan.

Nyitott probléma. Keressiink az utébbi feladatnak és tételnek kozos altaldnositasét.

2014. méjus 12.file:algbiz2
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2.3 Algoritmikus bizonyitasok III: helyi javitasok

A javité utakat haszndlé megfontoldsok hasznos bizonyitési (és algoritmikus) eszkdznek bizonyultak, de hatranyuk,
hogy egy 1épés viszonylag nagymérvii valtoztatassal jar: a Kénig tétel bizonyitdsaban egy teljes alternald it
mentén torténd cserével, vagy a 2.2.7 iranyitasi tételben egy egész iranyitott ut egyszerre vald atiranyitasdval.

A moho eljardsoknak ehhez képest sokkal jobbak voltak, mert ott valamilyen elv szerint haladtunk a cél felé,
javitgatds méar nem tortént. A kettd kozott el lehet képzelni egy olyan eljardst, amelyben van ugyan javitgatas,

de ezek mindegyike csupan lokélis, kis 1éptékili valtoztatas. Példaul az iranyitasi feladatban egyszerre mindig
csak egy él irdnyitasat forditjuk meg, vagy a parositédsi feladatban egyszerre csak egy péarositasbeli élt cseréliink

fel egy kinti élre. Az aldbbiakban egy ilyen jellegli megkozelitést adunk meg. Elészor 1j bizonyitast adunk a
2.2.7 tétel els6 részének nemtrividlis iranyara.

2.3.1 Iranyitasok

A tétel a kovetkezd volt.

TETEL 2.3.1 A G = (V, E) grdfnak akkor és csak létezik olyan irdnyitdsa, amelyben o(v) > f(v) minden v
csucsra fenndll, ha
e(X) > f(X) minden X C V-re, (2.11)

ahol e(X) jeloli azon élek szdmdt, melyeknek legaldbb az egyik végpontja X -ben van.

Biz. (Elegendéség) Az eljdrds egy tetszéleges irdnyitdsbdl indul. Egy pontot tobbletesnek illetve hidnyosnak
neveziink annak megfelelden, hogy o(z) > f(z) vagy o(z) < f(z). Végig fenntartunk egy 6 : V' — {0,1,...,n =
|V |} szintfuggvényt, amelyrdl azt koveteljiikk meg, hogy

minden tébbletes pont a 0 szinten van, (2.12)
minden wov irdnyitott élre O(v) > 6(u) — 1, (2.13)

azaz minden él legfeljebb egy szintet 1ép lefelé. Kezdetben 6 = 0.

Készen vagyunk, ha nincs hidnyos cstcs, igy tegyiik fel, hogy van. Akkor is készen vagyunk, ha van olyan
ures szint, amely felett van hidnyos csics. Ekkor ugyanis az iires szint felett 1évé csicsok Z halmazdbdl nem
1éphet ki él (hiszen egy ilyen él legaldbb két szintet 1épne lefelé) ésigy e(Z) = ZUEZ o(v) < ZUEZ flv) = f(2),
azaz Z megsérti a feltételt. Specidlisan, ez az eset all fenn, ha van hidnyos csics az n-dik szinten, akkor biztosan
van ires szint.

Az eljaras egy n-dik szint alatti v hidnyos csicsndl kétféle 1épést hasznédlhat. Amennyiben létezik lefelé
mend wv él, amelyre tehdt 6(v) = 6(u) — 1, igy ennek forditsuk meg az irdnyitasat. Ha nem létezik ilyen él,
ugy emeljiik meg u szintjét eggyel. Mindkét miivelet fenntartja a 6-ra eldirt tulajdonsigokat.

Mivel mindig lefelé mend él irdnyitdsit forditjuk meg, igy egy uv él két megforditdsa koézott a 6(u) + 0(v)
Osszeg legaldbb kett6vel né. Tovabba minden pont szintje legfeljebb n, igy a 6(u) + 0(v) Osszeg legfeljebb 2n,
és ezért minden élt legfeljebb n = 2n/2-szor forditunk meg. Emiatt élforditdsbdl dsszesen legfeljebb mn lehet,
mig szintemelésbél legfeljebb n?, vagyis az eljards legfeljebb 2mn 1épés utdn véget ér. o

2.3.2 Parositasok

Léssunk most egy hasonl6 elven miik6dé bizonyitast Kénig tételére.

TETEL 2.3.2 (Kénig) Egy G = (S,T;E) pdros grifban a mazimdlis elemszdmi pdrositds v elemszdma
egyenld az éleket lefogd pontok minimadlis T szdmdval.

Biz. Mivel barmely M pérosités éleinek lefogdsdhoz kell legalabb |M| pont, igy a v = 7 egyenl8ség igazoldsdhoz
kell taldlnunk egy M pérositast és egy L lefogé pontrendszert, melyekre |M| = |L|. Feltehetjik, hogy nem
létezik izoldlt pont. Elek egy M részhalmazat félparositasnak nevezziik, ha S-ben minden pont foka pontosan
1, azaz s € S-re dy(s) = 1 (a T-beli fokokra nincs megkotés).

Az eljards sordn adott egy 6 : T'— {0,1,...,n = |T|} szintfiiggvény, amelyre

minden M altal fedetlen pont szintje 0 (2.14)
és
u € S,uv € M,uz € E— M esetén 6(z) > 6(v) — 1. (2.15)

Nevezziink egy T-beli ¢ csicsot aktivnak, ha das(t) > 2. Amig létezik, tekintsiink egy aktiv ¢ pontot az n-dik
szint alatt. Ha ehhez vannak e = st € M és f = sz € E — M élek, melyekre 6(z) = 6(t) — 1, akkor legyen
M := M —e+ f. Amennyiben ilyen élek nem léteznek, emeljiik meg eggyel ¢ szintjét. Mindkét miivelet megorzi
a feltételeket.
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Az eljards vagy akkor ér véget, ha nincs tobb aktiv pont, azaz M péarositis, mert ekkor M bizonyosan
maximalis elemszamu, hiszen L := S lefogja a graf Osszes élét. Vagy pedig akkor, ha minden aktiv pont
a legfels6, n-dik szinten van. Ekkor ugyanis létezik tires szint. Jel6lje Z az ennél magasabb szintli pontok
halmaz4t, és legyen Z’ azon S-beli pontok halmaza, melyeknek M-beli szomszédja Z-ben van. Ekkor (2.15)
feltétel miatt Z’-bél kizdrdlag Z-be megy él, azaz L := Z U (S — Z') az osszes élt lefogja. Mdsrészt minden
Z-beli és minden S — Z’'-beli pontnal kivélasztva egy M-beli élt kapunk egy |L| elemszdmu pérositdst kapunk.

Az eljards sorén a fedetlen pontok szédma sohasem né, és igy legfeljebb n-szer cstkken. Ha mindig a legalac-
sonyabb szintl aktiv ponttal dolgozunk, akkor legfeljebb n élcsere utan vagy a fedetlen pontok szama csokken
vagy szintemelés kovetkezik, igy legfeljebb n® 1épés utdn az eljirds véget ér. o

2014. méjus 12.file:algbiz3
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2.4 Szétszedés pontos halmaz mentén

A 2.2.1 részben a Kénig tételbél mar levezettiik Hall tételét. Most lassunk egy nem konstruktiv, direkt bi-
zonyitéast.

TETEL 2.4.1 (Hall) Egy G = (A, B; E) pdros grdfban akkor és csak akkor létezik A-t fedd pdrositds, ha A
minden X részhalmazdra teljesil az un. Hall féle feltétel, azaz

T = 1X], (2.16)
ahol T'(X) jeloli azon B-beli pontok halmazdt, melyeknek van szomszédja X -ben.

Biz. [Halmos és Vaughan] A feltétel sziikségessége kézenfekvd. Az elegend8séghez eldszor tegyiik fel, hogy
az A minden valédi nemiires részhalmazédra a (2.16) feltétel szigori egyenlStlenséggel teljesiil. Ekkor a graf
tetsz8leges uv élére (u € A), az u és v kihagydsdval keletkezd G grafban még mindig teljesiil a Hall-féle feltétel,
igy indukcié miatt G’-ben létezik A —u-t fedd parositas, amit az uv éllel kiegészitve A-t fedd péarositast kapunk.

Tegyiik most fel, hogy 1étezik A-nak egy A’ valédi nemiires részhalmaza, melyre [['(A’)| = |A’|. Ekkor
egyrészt az A" UT(A’) éltal feszitett G’ részgrafban teljesiil a Hall feltétel, hiszen egy X C A’ halmaz G'-
beli szomszédai ugyanazok, mint a G-beli szomszédai. Emiatt indukcié folytén létezik G’'-ben A’-t fedd M’
pérositds. Masrészt allitjuk, hogy az A’ UT(A’) torlésével keletkezd G grafban is az A” := A — A’ halmaz
X részhalmazaira teljesiil a Hall feltétel, mert I'"'(X) = I'(A’ U X) — I'(A’), amibél a Hall feltételt A" U X-re
alkalmazva kapjuk, hogy |I''(X)| = |[T(A' U X)| — |T(A")| > A U X|—|A|=|X]| e

Kovetkezmény 2.4.2 (K&nig élszinezési tétele) G = (A, B; E) A-reguldris pdros grdf kromatikus indeze
A. Madsszoval, G élhalmaza felbomlik A teljes pdrositdsra.

Biz. A szerinti teljes indukciét haszndlva elegendd azt igazolnunk, hogy G-nek létezik teljes péarositdsa. Az
A egy X részhalmazéra tekintsiik az X és ['(X) 4ltal feszitett G’ = (X, T'(X); E’') részgrafot. Kihasznalva G
regularitdsat, kapjuk, hogy A|X| = |E'| < A|T(X)], és igy a Hall tétel alapjan létezik teljes pdrositds. e

Azt mondjuk, hogy egy H = (V, &) hipergrdfnak van reprezentdns rendszere, ha minden hiperéléhez
hozza lehet rendelni egy elemét gy, hogy kiilénb6z6 hiperélhez kiilonb6z6 elemet rendeliink.

TETEL 2.4.3 Egy hipergrdfnak akkor és csak akkor van reprezentdns rendszere, ha bdrmely j élének egyesitése
legaldbb j elemd.

Biz. Alkalmazzuk a Hall tételt a hipergrafhoz tartozé péaros gréfra. e

A pontos halmaz mentén térténd szétszedés mddszere olyan esetekben hasznalhaté, amikor bizonyos feltételek
fennélldsa esetén valamely konfigurdcié létezését akarjuk igazolni. A lényege abban &ll, hogy vagy valami
egyszerl redukciét végre tudunk hajtani a feltételek megsértése nélkiil és ekkor indukciéval készen vagyunk,
vagy pedig egy ,kritikus” (mdsszéval pontos) halmaz mentén két (esetleg tobb) kisebb részre bontjuk a fe-
ladatot, és az azokra induktivan nyert megolddsok Osszeragasztisaval az eredeti feladat megoldasat kapjuk.
Gyakran ez a megkozelités a teljes bizonyitashoz elegend6, de ha nem, akkor is jelentGsen egyszertisitést tesz
lehet6vé. Lassuk a mdédszer néhany tovabbi alkalmazasat.

TETEL 2.4.4 (Dilworth) Egy P részbenrendezett halmazban a fedd ldncok minimdlis szdma egyenld a
mazimdlis antildnc méretével. Ekvivalensen, P akkor és csak akkor fedhetd le k ldnccal, ha nincs k-ndl nagyobb
antildnc.

Biz. Mivel ldncnak és antildncnak legfeljebb egy kozos eleme lehet, a feltétel sziikséges. Az elegenddség iga-
zoldsdhoz jeldlje k a maximélis antildnc méretét. A tétel trividlis, ha nincs két Gsszehasonlithaté elem, igy
tegylik fel nem ez a helyzet.

Legyen u egy minimélis elem és v egy u-ndl nagyobb maximélis. Amennyiben az u és v kihagydsa utdn mar
nincs k elemi antildnc, gy indukciéval a maradék halmaz k — 1 ldnccal lefedhetd. Ehhez hozzdvéve az {u, v}
(kételemi) lancot, az egész P-nek egy k-ldncbdl 4ll6 fedését kapjuk.

Feltehetjiik tehat, hogy van egy k-elemii A antildnc, amely sem u-t, sem v-t nem tartalmazza. Jelélje AT
azon x elemek halmazit, melyekre 2 > a valamely a € A elemre. Mivel A antildnc, A N AT = (), tovabba
AU A" -ban a minimélis elemek halmaza éppen A. A v maximalitdsa miatt v € AT, mig v minimalitdsa miatt
u & AU A", Indukciéval kapjuk, hogy AU A" fedhetd k linccal.

Anal6g médon definidlva A™-t, indukciéval kapjuk, hogy A U A™-ban a maximélis elemek halmaza A és
AU A™ is fedhetd k ldnccal.

Miutdn A antildnc, kapjuk, hogy ATNA™ = () és a két k tagt ldnc-csaldd a k elemti A mentén Gsszeilleszthetd
P-nek egy k lancbdl all6 fedésévé. e
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TETEL 2.4.5 Ha egy G = (S,T; E) pdros grdfban minden pont foka pozitiv, akkor a pontokat fedd élek
minimdlis szdma egyenld G fliggetlen pontjainak maximdlis szdmdval.

Biz. Tekintsiik azt a részbenrendezést S U T-n, amelyben egy s € S elem pontosan akkor nagyobb egy t € T’
elemnél, ha st € E. Alkalmazzuk a Dilworth tételt, és figyeljiik meg, hogy minden egyelemii lanc kiterjeszthet&
kételemiivé, hiszen G-ben minden pontnak van szomszédja. e

Az 1.2.1 Gallai lemma felhasznélasdval rogtén kiadédik Kénignek a bevezetében méar algoritmikusan bebi-
zonyitott 2.2.1 tétele.

Feladat 2.26 Tetszdleges grdfban eqgy M pdrositds akkor és csak akkor mazximdlis elemszamai, ha nincs olyan
ut, amely két fedetlen pontot kit dssze és minden mdsodik éle M -bels.

Feladat 2.27 Tetszdleges grafban ha egy halmazt fed pdrositds, akkor fed mazximdlis elemszdma pdrositds is.

TETEL 2.4.6 (Irdnyitott él-Menger) FEgy irdnyitott grdifban akkor és csak akkor vezet s-bdl t-be k > 1
élidegen 1it, ha minden S st-halmaz kifoka legaldbb k.

Biz. A feltétel sziikségessége nyilvanvalé. Amennyiben létezik s-bél t-be egyélii vagy kétélii P 1t, gy ennek
éleit kihagyva minden st-halmaz kifoka pontosan eggyel csokken. A keletkezé D’-ben indukciéval 1étezik k — 1
élidegen 1t, melyekhez P-t hozzdvéve megkapjuk az eredeti digraf k élidegen tjat.

Létezik tehdt e = uv olyan él, amely sem s-sel, sem t-vel nem szomszédos. Ha e-t torolve tovdbbra is minden
st-halmaz befoka legaldbb k, akkor indukciéval készen vagyunk, igy feltehetjiik, hogy e kilép egy S pontosan
k kifoku st-halmazbdl.

Az S 6sszehtizdsaval keletkezé D’ digrafban indukcié miatt van k élidegen 1t az S-bél keletkezd s’ pontbdl
t-be. Analég, D-b8l a T := V — S 6sszehiizédsaval keletkezd D" digrafban indukcié miatt létezik s-bél kiinduld
k élidegen 1t a T-bdl keletkezd t'-be. Miutdn D-ben az S-b8l pontosan k él megy ki, ez a két (k 1itbdl allo)
utrendszer Osszeilleszthetd, és igy D-ben kapunk k élidegen utat s-bél t-be. o

TETEL 2.4.7 (Irdnyitatlan él-Menger) Egy irdnyitatlan grdfban akkor és csak akkor létezik s és t kézott
k > 1 élidegen 4it, ha minden S st-halmaz foka legaldbb k.

Az irdnyitatlan él-Menger tétel bizonyitdsa teljesen analég a fenti irdnyitott bizonyitdssal.

Gyakorlat 2.28 Mind az iranyitott, mind az irdnyitatlan esetben adott S, T C V diszjunkt részhalmazokra
az élidegen S-b8l T-be vezetd utak mazimdlis A(S,T) szdma egyenld az X-be lépd élek szdmdnak minimumdval
az osszes T C X CV — S részhalmazra.

Az eddigi tételek egy szinten vannak abban az értelemben, hogy egyszerli elemi konstrukcidk segitségével
egymasra visszavezethet6k. Most viszont az el6bbieknél mélyebb tétel kovetkezik.

TETEL 2.4.8 (Tutte) Egy irdnyitatlan G = (V, E) grdfban akkor és csak akkor létezik teljes pdrositds, ha
teljesil a Tutte-féle feltétel, azaz minden X C V halmazra az X eltorlésével keletkezé pdratlan pontszdmd
(roviden péaratlan) komponensek q(X) szdmdra q(X) < |X]|.

Biz. Sziikségesség. Ha M egy teljes parositds és C' C V a csicsoknak egy pdratlan részhalmaza, akkor C-bél
1ép ki M-beli él. Ezért X C V-re a G — X-ben 16v6 ¢(X) darab pédratlan komponens mindegyikébél 1ép ki
M-beli él, amelyek masik végpontja sziikségképpen X-ben van. Igy a q(X) < |X| feltétel valéban sziikséges.

Elegenddség. Pontszdam szerinti indukciéval dolgozunk. A 0 pontu gréfra a tétel semmitmondd, ezért
feltessziik, hogy |V| > 1. Az X = () halmazra a Tutte feltétel azt adja, hogy G minden komponense péros, és
emiatt |V| paros.

Nevezziink egy X C V halmazt pontosnak, ha ¢(X) = | X|. Egy egyelemi X := {v} halmaz bizonyosan
pontos, hiszen egyrészt |V —v| paratlansdga miatt ¢({v}) > 1 = |{v}|, mésrészt a Tutte feltétel miatt g({v}) <
[{v}|, vagyis valéban ¢({v}) = |{v}|. Legyen Xy egy maximadlis elemszdmu pontos halmaz.

Allitds 2.4.1 G — Xo minden komponense pdratlan.

Biz. Indirekt, legyen K a G — Xy egy péaros komponense. Legyen v € K tetszbleges elem és X' := Xo + v.
Mivel K péros elemszdmd, igy q(X') > q(Xo) + 1. Ezt, az Xo pontossdgat valamint a Tutte feltételt X'-re
hasznélva kapjuk, hogy ¢(X') < |X'| = | Xo|+1 = q(Xo) +1 < ¢(X'). Emiatt végig egyenléség 4ll, specidlisan
q(X') = |X'], vagyis X' is pontos, ellentmondéasban Xy maxim4lis vélasztdsdval. e

Nevezziink egy Osszefiigg6 grafot faktorkritikusnak, ha barmely pontjat kihagyva létezik teljes parositdsa.
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Allitas 2.4.2 G — X, minden C komponense faktorkritikus.

Biz. A C halmaz egy v elemére legyen V' := C — v és G’ = (V', E') jeldlje a G grafnak a V' 4ltal feszitett
részgrafjst. X C V'-re jeldlje ¢'(X) a G’ — X péaratlan komponenseinek szamat.

Tegyiik fel indirekt, hogy G’-nek nincs teljes parositdsa. Indukcié alapjan létezik egy X{§ C V'’ halmaz,
amelyre ¢'(X() > | Xg| + 1, és rdaddsul itt nem dllhat egyenl8ség hiszen |V'| pdrossdga miatt az | Xg| és ¢'(Xg)
ugyanolyan paritasd.

Ekkor az X; := Xo U X{ + v halmazra egyrészt ¢(X1) = [¢(Xo) — 1]+ ¢’ (Xg) > [| Xo| — 1]+ | X4| +2 = | X1,
mésrészt a Tutte feltétel miatt q(X1) < |Xi|, vagyis X1 pontos halmaz, ellentmondédsban X, maximélis
valasztasaval. e

Toroljik ki az Xo altal feszitett éleket és a G — Xo komponenseink mindegyikét huzzuk Ossze egy-egy
pontra. A keletkez6 péros gréfot jelolje Go = (Xo, Yo; Fo), ahol Yy az Osszehtizott pontok halmaza (és ezért
|Xo| = q(Xo) = [Yo]).

Allitas 2.4.3 Go-ban van teljes pdrositds.

Biz. A Hall tétel alapjan elég azt kimutatni, hogy Yo részhalmazaira teljesiil a Hall feltétel. Tegyiik fel indirekt,
hogy Yo-ban létezik j pont, amelyre az Xo-beli szomszédok X’ halmaza j-nél kevesebb pontbédl all. Ez azt
jelenti, hogy G-b6l az X' kihagyésaval keletkezd komponensek kozott ott lesz a j pontnak G-ben megfelels j
pératlan komponens, azaz q(X') > j > | X’|, ellentmonddsban a Tutte feltétellel. o

A Gy egy teljes parositdsa G-ben egy olyan M’ parositdsnak felel meg, amely minden Xo-beli pontot egy
G — Xo-beli paratlan komponenssel kot Gssze és ezek mindegyikébdl egyetlen pontot fed. Mivel a péaratlan
komponensek mind faktorkritikusak az M’ pérositds kiegészithetd G teljes parositdsdvi. e e

Még a XIX. szdzadban tiizték ki a négyszin sejtést, amely azt &llitja, hogy minden sikgrafban lehetséges
a tartomdnyokat négy szinnel szinezni gy, hogy szomszédos tartomdnyok szine kiilonbozzék (és amelyre
mindmdig csak szamitégépes bizonyitds ismeretes). Nem til nehéz igazolni, hogy a négyszin sejtés ekvivalens
azzal, hogy egy 2-élosszefiiggd 3-regularis sikgraf éleit meg lehet szinezni harom szinnel gy, hogy azonos
szind élek végpontjai kiillonbozoek legyenek. Mésként fogalmazva, a graf élhalmaza felbonthaté harom teljes
parositdsra. Petersen példaval megmutatta, hogy a feltételek koziil a sikbeliség nem hagyhaté ki. Azt azonban
sikeriilt beldtnia (jéval a Tutte tétel el6tt), hogy egyetlen teljes parositds létezéséhez a sikbelisdget mar nem
is kell kikotni.

Kovetkezmény 2.4.9 (Petersen) Minden 2-élosszefiiggd S-requldris G = (V, E) grdfban van teljes pdrositds.

Biz. Tutte tétele alapjan elég a Tutte feltétel fennalldsat igazolnunk. Figyeljiik meg el6szor, hogy minden C
péaratlan halmazbdl legalabb 3 él 1ép ki, hiszen a 3-regularitds miatt paratlan sok, mig a 2-élosszefiiggdség
miatt legaldbb ketto.

Legyen X C V a pontok egy részhalmaza. Tekintsiik a graf éleinek azon F' részhalmazat, melyek X és
az X elhagydsdval keletkezd q(X) paratlan komponens kozott vezetnek. Ekkor F' egyrészt e pdratlan kompo-
nensekbdl kilépd élek halmaza és gy |F| > 3¢(X), mdsrészt F' minden elemének egyik végpontja X-ben van
és {gy 3-regularitds miatt |F'| < 3]|X|, amibél ¢(X) < |X]|, tehdt a Tutte feltétel tényleg teljesiil. o

file: pontos, 2014. mé&jus 12.
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2.5 Elemi konstrukciok

Ebben a részben bemutatunk néhdny egyszerii fogdst (,,elemi konstrukciét”), melyek segitségével meglévd
tételeket dtalakithatunk vagy altaldnosithatunk. Elészér mutassuk meg, hogy a Hall tételbél miképp vezethetd
le annak altalanosabb, deficites alakja.

TETEL 2.5.1 (Ore) Egy G = (A, B; E) pdros grdfban egy pdrositds dltal fedetlen A-beli pontok minimdlis
szdma egyenld az A-beli X részhalmazok h(X) := |X| — |T'(X)| hidnydnak p mazimumdval.

Biz. Egy pdrositds az X elemei koziil legfeljebb |I'(X)|-t tud fedni, {gy legaldbb h(X) pont fedetlen marad.
A forditott irdnyhoz azt kell kimutatnuk, hogy létezik egy olyan pdrositds, amely legfeljebb p A-beli pontot
nem fed. Ennek érdekében egészitsiik ki a B halmazt egy p pontbdl all6 1ij halmazzal, és ennek minden elemét
kossiik 6ssze A minden elemével. Az {gy nyert G’ gréfban minden X C A halmaznak p 4j szomszédja van,
és ezért G’-re mar teljesiil a Hall féle feltétel. Ebb6l a Hall tétel alapjan adédik, hogy G’-ben létezik egy M’
pérositas, amely fedi A-t. M’-nek legfeljebb p 1j éle van, amiket kihagyva G-nek egy olyan pdrositasat kapjuk,
melynek legaldbb |A| — u éle van, azaz amely A-nak legfeljebb p é1ét nem fedi. o

Gyakorlat 2.29 Mutassuk meg, hogy Kénig és Ore tételei ekvivalensek.
Ugyanez a megkozelités haszndlhaté a Tutte tétel esetén is.

TETEL 2.5.2 (Berge-Tutte formula) Egy G = (V, E) grdfban egy pdrositds dltal fedetlen pontok minimdlis
szdma egyenld az X C V részhalmazok q(X) — | X| hidnydnak p mazimumdval. Ekvivalens alakban, a figgetlen
élek mazximadlis v szdma, mdsszéval a maximdlis pdrositas elemszama egyenld a

min {|V| = (g(X) ~ |X]}/2 (2.17)
értékkel.

Biz. Az X elhagydsdval ¢(X) pdratlan komponens keletkezik. Ha egy pérositds e paratlan komponensek
valamelyikének minden pontjat fedi, akkor tartalmaz az X és a komponens kozott vezetd élt. Emiatt legfeljebb
| X| teljesen fedett péaratlan komponens létezhet, vagyis legaldbb ¢(X) — |X| pédratlan komponensnek van
fedetlen pontja, azaz tetsz6leges parositas legaldbb ¢(X) — | X| pontot hagy fedetlenil és igy legalabb p-t.

A megforditashoz azt kell kimutatnuk, hogy létezik olyan pdrositds, amely legfeljebb p pontot nem fed.
Ennek érdekében egészitsiik ki V-t egy p 1j pontbdl 4ll6 U halmazzal, és ennek minden elemét kossiik Gssze
egymassal és V minden elemével. Az igy kapott G’ grafban ha egy X’ halmaz megsérti a Tutte féle feltételt,
akkor X’ nem lehet iires, hiszen ¢(X) — | X| és |V| mindig megegyez8 paritdsd és ezért u + |V| paros. Emiatt
X'-nek tartalmaznia kell mind a p 1j pontot (hiszen azok minden mds ponttal dssze vannak kotve). Legyen
X :=X'—U. Ekkor G’ — X' = G — X, és mivel G' — X’ az | X'|-nél t6bb pdratlan komponenst tartalmaz, X
hidnya nagyobb, mint u = |U]|, ellentétben u definicidjaval.

A Tutte tétel alapjan adddik, hogy G’-ben létezik egy M’ teljes parositds. M’-nek legfeljebb u 1j éle van,
amiket kihagyva G-nek egy olyan parositasiat kapjuk, amely legfeljebb p pontot hagy fedetleniil. o

Feladat 2.30 Igazoljuk a Berge-Tutte formula aldbbi ekvivalens alakjdt.

TETEL 2.5.3 (Berge-Tutte formula mas alakban) Egy G = (V, E) grdfban a mazimdlis pdrositis va
elemszdama egyenld a

min{|X| + Y "||K]/2] : X €V} (2.18)

értékkel, ahol az 0sszegzés a G — X részgraf K komponenseire megy.

2.5.1 Pontszétnyitas

Kézenfekv6 elemi miivelet a pontszétnyitds, amelynél egy irdnyitott graf pontjait helyettesitjiik kett&vel
szétosztva kozottilk az eredeti pontba be- és kimend éleket. TObb varidns is lehet aszerint, hogy a szétnyitott
pont két példanya kozott vezetiink-e élt vagy nem, megtartjuk-e az élek iranyitdsit vagy nem.

TETEL 2.5.4 (Menger, irdnyitott pont valtozat) Fgy D = (V, A) irdnyitott grdifban, amelyben nincs él

s-bél t-be, akkor és csak akkor létezik s-bol t-be k belsdleg diszjunkt ut, ha az st utakat nem lehet k-ndl kevesebb
V — {s, t}-beli ponttal lefogni.
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Biz. [Az él-Mengerbdl] A feltétel nyilvan sziikséges. Az elegenddség igazoldsdhoz készitsiink egy ij D’ digrafot.
Minden u pontot helyettesitsiink két 1dj csiccsal, melyeket jeloljon v’ és u”/, de toroljiik az s’ és ' csticsokat.
Minden uv € A élre vegyiik D’-be az u'v" élnek k + 1 padrhuzamos példdnydt, tovabbd minden u € V — {s, ¢}
csticsra tegyiik D’-be az u”’u’ élt. Amennyiben D’-ben van s’-bdl t”/-be k élidegen 1t, gy a konstrukcié miatt
ezek k pontidegen ttnak felelnek meg az eredeti D-ben. Ha viszont D’-ben nincs k élidegen 1t, akkor az
irdnyitott él-Menger tétel szerint (2.4.6) 1étezik k — 1 él, amely lefogja az 6sszes s'-bdl t”/-be vezetd utat. Ismét
csak a konstrukcié miatt ezen élek sziikségképpen v’’’ tipusiak, és igy k — 1 V — {s, t}-beli csticsnak felelnek
meg, melyek lefogjik az Osszes s-bol t-be vezet6 utat, ellentmonddsban a tétel feltevésével. o

Gyakorlat 2.31 Vezessiik le a Menger tétel (eredeti) irdnyitatlan pont vdltozatdt.

TETEL 2.5.5 (Menger, irdnyitatlan pont véltozat) Egy G = (V, E) irdnyitlan grdfban, amelyben nincs
€l s ést kozott, akkor és csak akkor létezik s-bdl t-be k belsdleg diszjunkt it, ha az st utakat nem lehet k-ndl
kevesebb V' — {s, t}-beli ponttal lefogni.

Gyakorlat 2.32 Vezessiik le Hall tételét az irdanyitatlan pont-Menger tételbdl.
A Menger tétel egyéb ekvivalens alakokban is megfogalmazhaté. Példaul:

TETEL 2.5.6 Egy D = (V,A) digrdfban legyen S és T a csicsoknak két k elemd diszjunkt részhalmaza.
Akkor és csak akkor létezik S-b6l T-be k diszjunkt it, ha az S-bl T-be vezetd utakat nem lehet k-ndl kevesebb
ponttal lefogni.

Biz. A tétel rogton kovetkezik a 2.5.4 tételbSl: Adjunk D-hez egy 1ij s pontot és minden v € S-re egy sv élt,
tovédbba egy 1j t pontot és minden v € T-re egy vt-élt. Most azonban egy direkt bizonyitast is bemutatunk,
amely a Hall tételt hasznélja.

Készitsiink egy G = (A’, B"; E) péros grafot a kovetkez&képpen. Minden u pontot helyettesitsiink két tj
csticesal, melyeket jeldljon u' és v, de S minden s elemére toroljiik az s” csicsokat és T minden ¢ elemére
toroljiik a ¢ csicsokat. Az egy vesszds pontok halmazat jelolje A’, a kétvesszésokét B”. Minden uv € A élre
vegylik G-be az w/v” irdnyitatlan élt, tovdbba minden u € V — S — T csicsra tegyiik G-be az u''u’ élt.

Amennyiben G-ben van M teljes parositds, akkor ez meghatdroz k diszjunkt utat S-bol T-be. Ugyanis
bérmely s € S-beli pontra legyen s'uy € M,ujus € M,...,ujt" € M, ekkor s,u1,uz,...,u;,t egy D-beli
irdnyitott ut, és ezek az utak sziikségképpen diszjunktak. Ha viszont nincs teljes parositds G-ben, igy a Hall
tétel szerint 1étezik egy X’ C A’ halmaz, melynek |X’|-nél kevesebb szomszédja van. Legyen V' := S’ — X' és
Z" :=T(X')— (X = S)". Ekkor |T(X")| < |X’| azt jelenti, hogy |Y'| + |Z"| < k. A konstrukci6é miatt Y U Z
D-beli halmaz lefogja az Osszes S-bol T-be vezetd utat, ellentmondésban a feltevéssel.

Feladat 2.33 Vezessiik le a 2.5.4 tételt a 2.5.6 tételbdl.
Az el6bbihez hasonlé pontszétnyitdsos konstrukciéval levezethetjiik Dilworth 2.4.4 tételét is.

TETEL 2.5.7 (Dilworth) A P-t fedd ldncok minimdlis szdma egyenld a legnagyobb antildnc elemszdmduval,
vagyis P szélességével.

Biz. A max < min egyenlStlenség ismét nyilvanvalé. A forditott irdny igazoldsdhoz készitsiink el egy G =
(X,Y; E) paros gréfot, melynek mindkét osztélya a P halmaznak felel meg, és valamely x; elem y;-vel akkor
van Osszekotve, ha p; > p;. (z; NINCS 6sszekotve y;-vel.) P elemszamét jelolje n.

Lemma 2.5.8 G tetszbleges M pdrositdsdnak megfelel P-nek egy n — |M| ldncbdl dllé felbontdsa.

Biz. Tekintsiik a B halmaz M altal fedetlen pontjait. Ezek szdma n — |M|. Legyen x; olyan pont, amelyet
M nem fed. Mindegyik ilyen z; elemhez megkonstrualunk egy C; lancot, a kovetkez6képpen. Ha y; fedetlen,
akkor C} alljon az egyetlen p; elembdl. Ha y;-t fedi valamely M-beli x;y; él, akkor p; > p;, és legyen p; a lanc
kovetkez6 eleme. Ha y;-t fedi valamely M-beli z,y; él, akkor legyen py a lanc kovetkezd eleme. fgy folytatva,
a lancot addig noveljiik, amig a lanchoz utolsénak vett p,, elemhez tartozd y., csicsot méar nem fedi M-beli
él.

ﬂy médon az M altal nem fedett n — | M| darab X-beli csics mindegyikéhez definidltunk egy lancot P-ben.
A lemma kovetkezik abbdl, hogy az igy kapott ldncok paronként diszjunktak és lefedik P-t. e

Lemma 2.5.9 Legyen L C X UY a pdros grdf éleinek minimdlis lefogdsa. Ekkor P-ben van olyan A antildnc,
amelyre |L| + |A|] = n.
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Biz. Elészor belatjuk, hogy ha z; € L, akkor y; ¢ L. Ha indirekt mindkét csics L-ben volna, akkor L
minimalitdsa miatt a grafnak létezne olyan x;y; illetve xxy; éle, melyekre y;, xr & L. Ekkor tehat pr > p; > pj,
amibél pi, > pj, és igy xiy; éle a grafnak. Ezt az élt viszont nem fogja le L, amely ellentmondés azt bizonyitja,
hogy valéban nem lehet x; és y; mindegyike L-ben.

Legyen most A := {p; : ©; € L,y; ¢ L}. Rogton latszik, hogy az A halmaz kielégiti a lemma kovetelményeit.

A két lemmat felhasznédlva Dilworth tétele rogton kovetkezik a Kénig tételbél, ami szerint egy paros grafban
a fliggetlen élek maximdlis szama egyenl$ az éleket lefogé pontok minimalis szdméaval. e e

Az irdnyitott pont-Menger tételnek illetve a Dilworth tételnek a Hall illetve Kénig tételre torténd fenti
visszavezetése egyuttal algoritmust is biztosit a szébanforgé max és min értékek meghatdrozasira, hiszen a
Kénig tételre adott javité utas bizonyitas konstruktiv.

file: elemi, 2014. m&jus 12.
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2.6 Szub- és szupermodularis fuggvények hasznalata

A szubmoduléris fiiggvények hatékony bizonyitdsi modszereket kindlnak. Ezt el6szor Hall tételén szemléltetjik.

2.6.1 Hall tétel tjra

TETEL 2.6.1 (Hall) Egy G = (A, B; E) pdros grdfban akkor és csak akkor létezik A-t fedd pdrositds, ha A
minden X részhalmazdra
IT(X)[ > |X], (2.19)

ahol T'(X) jeloli azon B-beli pontok halmazdt, melyeknek van szomszédja X -ben.

Biz. (elegend8ség) Nevezziink egy X C A halmazt pontosnak, ha [['(X)| = | X|, és a rovidség kedvéért jeloljiik
IT(X)]-t v(X)-szel.

Lemma 2.6.2 Két pontos halmaz metszete és unidja is pontos.

Biz. Legyen X és Y pontos. A Hall-féle feltétel miatt v(X NY) > |[X NY|és v(XUY) > [ X UY]. Igy a ~
szubmodularitdsa, valamint X és Y pontossiga folytan | X|+|Y| = y(X)+~v(Y) > v(XNY)+~v(XUY) > | XN
Y|+ |XUY| = |X|+|Y| Emiatt minden egyenlétlenség egyenl8séggel teljesiil, specidlisan (X NY) = | X NY|
sy(XUY)=|XUY]| e

A lemma ismételt alkalmazdsdval kovetkezik, hogy egy z megadott pontot tartalmazé pontos halmazok
B(z) metszete is pontos.

A bizonyitasra térve feltehetd, hogy G minimalis abban az értelemben, hogy barmely él elhagyédsa utdn mér
megséril (2.19). Alh’tjuk, hogy A-ban minden pont els6 foku. Tegylik fel ugyanis, hogy egy z € A csicsbdl
kiindul két él: e = zu és f = zv (u # v). Mivel az e kihagydsa mar elrontja (2.19)-t, igy létezik egy z-t
tartalmazo olyan X pontos halmaz, amelyben z az egyetlen u-val szomszédos pont. B(z) C X miatt feltehetd,
hogy X = B(z). Ugyanigy kapjuk, hogy B(z)-ben z az egyetlen v-vel szomszédos pont. Ekkor viszont B(z) — z-
nek sem u, sem v nem szomszédja, és ezért |B(z)| —1 = |B(z) — z| < v(B(z) —2) = v(B(2)) — 2 = |B(2)| — 2,
ellentmondas.

Tehat valéban minden A-beli pont foka egy, és ekkor E maga egy A-t fedd pdrositds, hiszen (2.19) miatt
barmely két A-beli pontnak van két szomszédja. e e

Most megmutatjuk, hogy ugyanez a bizonyitasi Gtlet szinte valtoztatds nélkiil hasznalhaté Lovasz 2.2.3
tételében az elegenddség igazoldsira.

TETEL 2.6.3 (Lovdsz) A G = (S,T;E) pdros grdfban akkor és csak akkor létezik olyan erdd, amelyben
minden s € S pont foka 2, ha minden X C S nemdires halmazra

ID(X)| > |X] + 1. (2.20)

Biz. Elegendéség. Az X és I'(X) éltal feszitett részgrafban egy erd6nek egyrészt legfeljebb |X| + |I'(X)| — 1
éle van, mésrészt 2|X|, amennyiben teljesiti, hogy S-ben minden pontjdnak foka kettd. A kettd Osszevetésébdl
(2.20) sziikségessége adddik.

Hasznéljuk ismét a v(X) := |['(X)]| jelolést. Nevezziink egy nemiires halmazt pontosnak, ha a (2.20)-t
egyenléséggel teljesiti, azaz v(X) = | X| + 1.

Lemma 2.6.4 Két pontos halmaz metszete és unidja is pontos, amennyiben a metszet nem tires.

Biz. Legyen X és Y pontos. A (2.20) feltétel miatt y(X UY) > | X UY|+1ésv(XNY) > |XNY|+2 (itt
hasznaljuk, hogy X NY # 0). fgy a v szubmodularitdsa, valamint X és Y pontossdga folytdn | X|+1+|Y|+1 =
p(Y)=9X)+7Y) >y(XNY)+4(XUY) > | XNY|+1+|XUY|+1=]|X|+1+|Y]|+ 1. Emiatt minden
egyenlStlenség egyenldséggel teljesiil, specidlisan y(X NY) = | X NY|+1ésvy(XUY)=|XUY]| e

A lemma ismételt alkamazdsdval kovetkezik, hogy egy megadott z pontot tartalmazé pontos halmazok B(z)
metszete is pontos.

A bizonyitdsira térve feltehetd, hogy G minimaélis abban az értelemben, hogy barmely él elhagyasa utan
(2.20) mér megsériil. Allitjuk, hogy minden s € S pont foka kettd, azaz {s} pontos. Ha ugyanis d(s) > 2,
akkor {s} C B(s). G minimalitdsa miatt az su; élre (i = 1,2) létezik egy olyan s-t tartalmazé pontos X;
halmaz, amelyben s az egyetlen u;-val szomszédos pont. B(s) C X; miatt feltehet6, hogy X; = B(s). Ekkor
viszont B(s) — s-nek kettével kevesebb szomszédja van, mint B(s)-nek, azaz v(B(s) — s) = v(B(s)) — 2 =
|B(s)| +1—2=|B(s) — s| vagyis B(s) — s megsérti a (2.20) feltételt.

Tehdat valéban minden s € S pont foka 2. Kimutatjuk, hogy G maga erd6. Ha ugyanis tartalmazna egy C'
kort, akkor ennek S-beli pontjai X halmazinak csak | X| darab szomszédja lenne. o

Nevezziink egy hipergrafot erd6-reprezentalhaténak, vagy roviden erd6snek, ha minden hiperélébdl kivélaszt-
hato két elem gy, hogy a kivélasztott parok mint grafélek erdét alkotnak. Egy hipergrafrél azt mondjuk, hogy
erOsen teljesiti a Hall feltételt, ha barmely j > 0 hiperélének az egyesitése legalabb j + 1 elemf.
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Kovetkezmény 2.6.5 FEgy hipergrdf akkor és csak akkor erdds, ha erdsen teljesiti a Hall feltételt.
Biz. Alkalmazzuk Lovész tételét a hipergréafhoz tartozé paros grafra. e

Kovetkezmény 2.6.6 Ha egy hipergrdaf erdsen teljesiti a Hall feltételt, akkor csiucsait két szinnel lehet gy
szinezni, hogy ne legyen egyszini hiperél.

Biz. Mivel a hipergraf erGsen teljesiti a Hall feltételt, igy erdds. Marpedig egy erd6 pontjainak létezik két-
szinezése. o

2.6.2 El—Menger Gjra

Hasonlé triikkel lassuk be az irdanyitott el-Menger tételt.

TETEL 2.6.7 (Irdnyitott él-Menger) Egy D = (V, A) irdnyitott grdfban akkor és csak akkor vezet s-bél
t-be k > 1 élidegen 1it, ha minden S st-halmaz kifoka legaldbb k, azaz

0(S) > k. (2.21)
Biz. (elegenddség) Nevezziink egy X st-halmaz pontosnak, ha §(X) = k.
Lemma 2.6.8 Két pontos halmaz metszete és unidja is pontos.
Biz. Legyen X és Y pontos. (2.21) miatt (X NY) > k és §(XUY)

>
és Y pontossdga folytdn |k|+ k| = 6(X)+6(Y) > 6(XNY)+6(XUY
egyenléséggel teljestl, specidlisan §(X NY) =k és (X UY) =k. o

k. fgy a 0 szubmodularitdsa, valamint X
) > k+ k. Emiatt minden egyenlétlenség

A lemma ismételt alkamazdsdval kovetkezik, hogy egy megadott z pontot tartalmazé pontos halmazok B(z)
metszete is pontos.

A bizonyitdsra térve feltehet6, hogy D minimédlis abban az értelemben, hogy barmely él elhagyédsa utan
mar megsériil (2.21). Allitjuk, hogy minden z € V — {s, t} pont befoka és kifoka egyenld. Valéban, ha mondjuk
d(z) > o(z), akkor a minimalitds miatt barmely z-b6l kilép6 él kilép egy pontos halmazbdl és igy kilép B(z)-bél
is. De ekkor §(B(z) —z) < §(B(z)) —0(z) + o(z) < 6(B(z)) = k, ellentétben a (2.21) feltétellel. (A 6(z) < o(z)
eset analdg).

Tehat valéban minden V — {s,t}-beli pontra §(z) = p(z) és persze a minimalitds miatt p(s) = 0 . De
egy ilyen digrafban létezik d(s) > k élidegen 1ut, hiszen s-bél kiindulva és csatlakozé élek mentén haladva
0(z) = o(z) miatt megkapunk egy ¢-be vezetd utat, és ezt d(s)-szer megismételhetjiik, mert a maradékra
§'(2) = 0'(2) fennmarad. e

2.6.3 Iranyitasi lemma djra

Szubmodularitast hasznélva belatjuk a 2.2.9 kévetkezményben megfogalmazott irdnyitasi lemma nemtrivialis
irdnyat. Tegyiik fel tehat, hogy adott G = (V, E) grifra és m : V — Z fiiggvényre m(V') = |E| és teljesiil (2.5),
azaz m(X) < e(X) minden X C V halmazra fenndll, ahol e(X) jeloli azon G-beli élek szdmat melyeknek
legaldbb egyik végpontja X-ben van. Emlékezziink ra, hogy az e fliggvény szubmodularis. Nevezziink egy
halmazt pontosnak, ha m(X) = e(X). Eszerint az lires halmaz pontos.

Allitas 2.6.1 Két pontos halmaz metszete és unidja is pontos.

Biz. m(X)+m(Y)=e(X)+eY) > e(XNY)+e(XUY)>m(XNY)+m(XUY) =m(X)+m(Y), amibél
az allitas kovetkezik. o

Az irdnyitdsi lemma bizonyitdsdhoz m(V') szerinti indukciét haszndlunk. Az §llitds semmitmondd, ha
m(V) = |E| = 0, igy feltehetjiik, hogy van olyan s pont, melyre m(s) > 0. A lemma miatt 1étezik egy
egyértelml legb6vebb s-t nem tartalmazé Z pontos halmaz. Van olyan f = wus él, melyre v ¢ Z, mert
kiilénben e(Z 4+ s) = e(Z) = m(Z) = m(Z +s) —m(s) < m(Z + s), azaz Z + s megsértené a feltételt. Hagyjuk
ki az f élt és csokkentsiik eggyel m(s) értékét. A keletkezd G’ grafra és m’ befokszdm eléirdsra teljesiil a (2.5)
feltétel, mert ha egy X halmaz megsértené, akkor X eredetileg egy pontos us-halmaz volt. De a Z véalasztésa
folytdn u € X C Z, ellentétben az u ¢ Z feltevéssel.

Indukciéval G'-nek 1étezik m’ befoki irdnyftdsa, amihez az us irdnyftott élt hozzdvéve a G-nek m befoki
irdnyitasat kapjuk. e e
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2.6.4 Megengedett aramok: Hoffman tétel

Jeloljon D = (V, A) egy irdnyitott grafot. Legyen f: A — R U {—o0o} alsé kapacités, g : A — RU {400} felsd
kapacitds ugy, hogy f < g. Valamely z : A — R vektorra és S C V részhalmazra legyen g.(5) := > (z(uwv) :
wv € A, uv belép S-be) és legyen 0, (S) := p(V —S5). Az x vektort Aramnak (circulation) nevezziik, ha teljestil
rd a megmaraddsi szabdly (conservation rule), azaz g, (v) = dz(v) fennéll minden v csicsra. (Figyelem: az
f-ben megengediink —oo komponenst, ami persze csak annyit jelent, hogy az illet6 élen az dram értéke nincs
alulrél korldtozva. Ez azt is jelenti, hogy csak az olyan e élen rendeliink majd az f(e) < z(e) egyenlStlenséghez
dudl véltozdét, amelyen az f(e) korldt véges. Analég médon a g-nek lehetnek +oo komponensei, de az = dram
komponensei mindig valésak. Az f alsé korldtban +oo-t, a g felsé korlatban pedig —oo-t nem engediink meg.
Néha eldirjuk, hogy az f vagy a g komponensei egészértékiiek legyenek; ebbe beleértjikk a +oo-t is.)

Gyakorlat 2.34 (a) Igazoljuk, hogy x akkor és csak akkor dram, ha 0z(v) < 6z(v) fenndll minden v csicsra.
(b) Ha © dram, akkor 0.(Z) = 6.(Z) minden Z C V részhalmazra is fenndll.

Az x dramot megengedettnek (feasible) mondjuk, ha f <z < g.

TETEL 2.6.9 (Hoffman) Akkor és csak akkor létezik megengedett dram, ha
05 (X) < 64(X) minden X CV halmazra. (2.22)
Tovdbbd, ha f és g egészértékiiek és (2.22) fenndll, akkor létezik egészértékii megengedett dram is.

Biz. A sziikségesség igazoldsdhoz, tegyiik fel, hogy = megengedett dram. Ekkor d4(X) — 0¢(X) > 62(X) —
0-(X) = 0, amibdl (2.22) kovetkezik.

Tekintsiik a kdvetkezd fliggvényt. B(X) := 04(X) — 05(X). Most (2.22) azzal ekvivalens, hogy G nem-
negativ. Az X,Y C V halmazokra jelolje d»(X,Y") az z(e) értékek Osszegét mindazon e élekre, melyek X —Y
és Y — X egy-egy pontjat kotik ossze (mindegy melyik irdnyban). A bizonyitds kulcsa a kovetkezd lemma.

Lemma 2.6.10 S(X)+8Y)=08(XNY)+B(XUY)+d,—s(X,Y).

Biz. Konnyen ellenérizhetjiik, hogy minden lehetséges él hozzajarulasa a két oldalhoz ugyanannyi. e

A Hoffman tétel bizonyitdsdhoz visszatérve nevezziink egy e élt pontosnak, ha f(e) = g(e). Nevezziink
csucsok egy Z részhalmazit pontosnak, ha 3(Z) = 0. Tegyiik fel indirekt, hogy a D digrafra nem igaz a tétel,
és vdalasszunk egy olyan ellenpéldat (adott D), amelyben a pontos élek és a pontos halmazok egyiittes szdma
maximdlis. Az nem lehet, hogy minden él pontos, mert akkor z := f (= g), (2.22) miatt, megengedett dram
volna. Legyen a = st olyan él, amelyre f(a) < g(a).

Alh’tjuk, hogy a belép egy pontos T' halmazba. Valéban, ha nem 1épne be, akkor f(a)-t meg tudnénk gy
névelni, hogy a médositott f’ alsé korldtra tovabbra is fenndllna f' < g és p;/(Z) < §4(Z) minden Z C V-re,
tovabbd vagy az a él vilna pontossd, vagy pedig egy olyan halmaz, amelybe az a él belép. Ez a lehetdség
azonban ellentmondana a pontos élek és halmazok maximélis egyiittes szaméra tett feltevéslinknek. Tehét az
a él valéban belép egy T pontos halmazba. Analég médon ldthatd, hogy a kilép egy S pontos halmazbdl.

Az a él 1étezése folytdn tudjuk, hogy a dg—¢(S,T") érték szigordan pozitiv. A lemmat és (2.22)-t alkalmazva
kapjuk, hogy 0 +0 = B(S) + B(T) > B(SNT)+ B(SUT) > 0+ 0, amely ellentmondds mutatja, hogy
nem létezhet ellenpélda, és igy a tétel kovetkezik. Ugyanez a gondolatmenet azt is mutatja, hogy ha f és g
egészértékili, akkor van egészértékli megengedett dram is. e o

Megjegyezziik, hogy Hoffman tételébdl kozvetleniil kiolvashaté a Maximélis-folyam Minimadlis-végds (MFMC:
max-flow min-cut) tétel.

TETEL 2.6.11 (Ford és Fulkerson, MFMC) Egy D = (V,A) digrdfban adott g : A — R, kapacitdsra
nézve a megengedett st-folyamok mazimdlis nagysdga egyenld a min{dy(S) : s € S C V — ¢} minimummal.
Amennyiben g egészértéki, létezik egészértékii mazximdlis folyam is. @

Feladat 2.35 Vezessiik le az MFMC tételbél a Menger tétel aldabbi ,,vegyes” vdltozatadt.

TETEL 2.6.12 (Menger: vegyes pont-él valtozat) Legyen D = (V, A) digrdf és legyenek k,l pozitiv
egészek. Akkor és csak akkor létezik D-ben kl élidegen it s-bdl t-be gy, hogy minden csiucson legfeljebd [
darab it halad keresztil, ha bdrhogy kihagyva egy X CV — {s,t} halmazt (0 < |X| < k — 1), a maradékban
minden st-halmazbdl legaldbb (k — | X|) él Iép ki.

file: graf: szub 2014. méjus 12.
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2.7 Konstruktiv karakterizaciok

Kozismert és konnyti, hogy egy graf akkor és csak akkor Osszefiiggd, ha egy pontbdl felépithetd 1j élek egymaést
kovet6 hozzdaddsaval, ahol azt koveteljiik meg, hogy az 4j élnek legaldbb az egyik végpontja meglévé pont
legyen. Nem sokkal nehezebb igazolni a 2-él6sszefliggd grafok tgynevezett fiilfelbontasi tételét:

TETEL 2.7.1 Egy grdf akkor és csak akkor 2-élésszefiiggd, ha elddllithats egyetlen pontbol kiindulva két
meglévd pont kézotti uj €l hozzdaddsdval és eqy meglévd él uj ponttal térténd felosztdsdval. (A két miiveletet
egybe is foglalhatjuk: adjunk a grafhoz egy utat, amely két meglévs pontot kot dssze, de belsd pontjai jak.)

Biz. Rogton latszik, hogy sem az élhozzdadas, sem az élfelosztds a 2-éloszefiiggdséget nem rontja el. A meg-
forditashoz tegyiik fel, hogy egy H = (U, F') részgrafot mér sikeriilt utak hozzdaddsaval felépiteniink. Ha
U =V, akkor a kimaradt éleket, mint egyélii utakat egyenként a grafthoz vehetjiik. Ha U C V', ugy létezik egy
e =uv él, amelyre u € U, v € V — U. Mivel G 2-él6sszefiiggd, létezik G — e-ben it v-bol u-ba. Ezen ut U-ig
tarté kezd6 szakasza az e éllel egyiitt olyan utat ad, amellyel a H-t tovabb épithetjiik. o

Az ilyen jellegli ,konstruktiv karakterizdciék” hasznosak lehetnek tételek bizonyitasdban. Példdul ezen
fiilfelbontds tétel segitségével rogton latszik Robbins 2.1.6 tétele:

TETEL 2.7.2 (Robbins) Egy G irdnyitatlan grifnak akkor és csak akkor létezik erésen dsszefiiggd irdnyitdsa,
ha G 2-€élésszefiiggd.

Biz. A G fiilfelbontasdban szereplé valamennyi utat irdnyitott uttal helyettesitve er6sen Osszefiiggd digrafot
kapunk. e

Feladat 2.36 Igazoljuk, hogy egy irdnyitatlan grdf akkor és csak akkor 2-0sszefiiggs, ha elall egy hdromszdghdl
utak (,,fulek”) hozzdaddsdval, ahol a hozzdadott wutrdl megkdveteljik, hogy a végpontjai kilénbozé meglévd
pontok.

Feladat 2.37 Igazoljuk, hogy eqy 2-dsszefiiggd graf barmely két éle rajta van egqy kéron.

Feladat 2.38 Igazoljuk, hogy egy legaldbb négyponti 2-dsszefiliggd grdfnak van olyan éle, amelyet Gsszehizva
2-6sszefliggd grdfot kapunk.

Feladat 2.39 Igazoljuk, hogy egy legaldabb 4 ponti 2-0sszefiiggd grafban barmely e él elhagydsa vagy osszehizdsa
megdrzi a 2-0sszeféggdséget.

Az aldbbiakban ezen megkozelitésnek egy sokkal izgalmasabb alkalmazdsit mutatjuk be.

2.7.1 3-0sszefiiggd grafok eldallitasa

Ebben a szakaszban az él 6sszehizdsanak miiveletébe beleértjiik, hogy a keletkezé hurkokat kitoroljik, és a
keletkez6 parhuzamos éleknek csak egy példanyét tartjuk meg. Tehat egy egyszerii graf egy élének Osszehizasa
egyszerl grafot eredményez. Egy irdnyitatlan grafot akkor neveznek 3-6sszefiigg6nek, ha legaldbb négy pontja
van és legfeljebb 2 csiicsanak kitérlése utan mindig Osszefiiggé graf marad.

Feladat 2.40 Menger tételét haszndlva igazoljuk, hogy egy grdf pontosan akkor 3-6sszefiiggd, ha bdrmely két
pontja kézdtt vezet 3 belsdleg pontidegen 1it.

Lemma 2.7.3 (Tutte) Legyen G = (V, E) egy legaldbb 6t ponti 3-6sszefiiggd irdnyitatlan grdf. Fkkor G-nek
létezik olyan éle, amelyet 6sszehizva 3-0sszefiiggd grdfot kapunk.

Biz. (Thomassen) Nevezziink egy e élt 6sszehiizhaténak, ha G/e 3-Osszefiiggd. Amennyiben az xy él nem
Osszehizhatd, dgy létezik egy olyan z pont, hogy G — {z,y, 2} nem Osszefiiggd. Tegylik fel indirekt, hogy
minden zy élhez van ilyen z pont, és vélasszuk az {z,y, z} hdrmast Ugy, hogy =y él, G’ := G — {z,y, 2} nem
Osszefiiggd és legnagyobb K komponense a lehetd legnagyobb.

Allitas 2.7.1 A K U {z,y} ponthalmaz dltal feszitett G1 grdf 2-6sszefiiggé.

Biz. Mivel z-bdl is és y-bdl is vezet él K-ba, igy G1 Osszefiliggd, sot G1 —x és G1 —y is. fgy ha t elvagd pontja
Gh-nek, akkor t # z,t # y. Mivel zy él, igy = és y a G1 — t grafnak ugyanahhoz a komponenséhez tartozik.
De ekkor a G — t egy mésik komponenséb6l G-ben csak z-hez vagy t-hez vezethet él, vagyis {t, z} elvdgnd a
G grafot, ellentmondasban G 3-0sszefliggd voltaval. e

Legyen K’ a G'-nek egy mésik komponense. Mivel G 3-6sszefliggd, 2-bél vezet egy uz él K'-be, (hiszen ha
nem vezetne, gy mér az x és y pontok elhagydsdval is létrejonne a K’ komponens). Mivel uz-t Ssszehiizva
a 3-Osszefliggéség elromlik, létezik egy olyan v pont, amelyre G = G — {u, v, 2} nem 0Osszefiiggd. Tekintsiik
G"'-nek azt a K" komponensét, amely metszi K U{z, y}-t. Az Allitas szerint K U{z,y}—{v} 6sszefiiggs grafot
feszit és teljesen benne van K”-ben, ellentmonddsban a K-ra tett maximalitdsi feltevéssel. o @
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TETEL 2.7.4 Egy graf akkor és csak akkor 3-6sszefiiggd, ha elddll a teljes négyesbdl kiindulva az aldbbi két
mdvelet alkalmazdsdval:

(1) Egy meglévd élnek hizzuk be egy pdrhuzamos példdnydt.

(ii) Vegyink egy legaldbb negyedfoki z pontot. A z-be futd éleket osszuk fel két legaldbb kételemd csoportba
gy, hogy eqyik csoport se csak pdrhuzamos €élb6l dlljon. Helyettesitsiik a z pontot két dsszekitott 2’ és 2"
csticesal. Az egyik csoport z-ben végz8dd élt helyettesitsiik 2’ -ben végz8dé élekkel, mig a mdsik csoportot z"-ben
végzdddekkel.

Biz. Konnyen ellendrizhetd, hogy a megadott miiveletek megdrzik a 3-Osszefiiggéséget. A megforditds a 2.7.3
lemma kozvetlen folyoménya. e

Azt mondjuk, hogy egy graf felosztott 3-6sszefiigg6, ha egy 3-0sszefiiggs grafbdl keletkezik élek pontokkal
torténd felosztasaval.

TETEL 2.7.5 Legyen e = st egy legaldbb 5 ponti 3-ésszefiiggd G = (V,E) grdf éle. Ekkor vagy az e
Osszehizdsdval keletkezd G /e graf 8-dsszefiggd, vagy a G — e felosztott 3-Gsszefiiggd.

Biz. Amennyiben G/e nem 3-sszefiiggd, tigy létezik olyan z pont, amelyre hogy G' = G — {s,t,2} nem
osszefliggd. Belatjuk, hogy G — e-ben barmely u,v pontpérra, ahol {u,v} N {s,t} = 0, 1étezik 3 nyiltan (azaz
végpontjaitdl eltekintve) diszjunkt uwv-iit. G-ben mindenesetre 1étezik 3 belsSleg diszjunkt uv-iit, melyeket
jeloljon Py, P2, Ps. Készen vagyunk, ha ezek egyike sem tartalmazza e-t, igy tegyiik fel, hogy mondjuk P;
tartalmazza.

Nem lehet, hogy u és v a G'-nek két kiilonbéz6 komponenséhez tartozik hiszen P; hasznilja az {s,t,z}
elvagé ponthdrmas két pontjat. Tegyiik fel, hogy mondjuk v a G’ K komponensében van. Ekkor u vagy K-ban
van vagy u = z. Mindkét esetben a P> és Ps utak belseje teljesen K-ban fekszik. Legyen K’ a G’ egy mdsik
komponense. Mivel mind s-bdl, mind ¢-bél vezet él K’'-be, létezik s és t kozott egy olyan P’ 1t, amelynek
belseje K'-ben van. Ekkor a P; tdtban az e élt kicserélhetjiik a P’ ttra, és a keletkezd uv-sétdt P; wv-tittd
egyszerlsitve P»-tdl és Ps-tdl diszjunkt, e-t elkeriilé utat kapunk. e

Megjegyezziik, hogy ha G 3-Osszefiiggé és G — e felosztott 3-Gsszefiiggd, akkor G — e-ben csupén az e
végpontjai lehetnek masodfokuiak.

TETEL 2.7.6 Egy legaldbb 5 ponti 3-dsszefiiggé G = (V, E) grdfnak van olyan e éle, amelyre G — e felosztott
3-dsszefliggd.

Biz. Nevezziink egy e élt elhagyhaténak, ha G — e felosztott 3-Osszefiiggé. Amennyiben e nem hagyhaté el,
dgy léteznek x,y pontok, melyekre G — {z, y}-ban e elvdgé él, rdadédsul olyan, amelyre G — {z,y} — e mindkét
komponense legalabb két ponti. Ebbdl kovetkezik, hogy ha G-nek 5 pontja van, akkor minden éle elhagyhaté.
Pontszam szerinti indukciét alkalmazunk és feltessziik, hogy |V'| > 6. Feltehetjiik, hogy G egyszer(i. Ha indirekt
nincs elhagyhato él, akkor a 2.7.5 tétel folytdn valamennyi él Gsszehtizhato.

Tekintsiink egy tetszéleges f = st élt. A G' = G/f graf 3-osszefiiggd, {gy indukcié miatt G’-ben létezik
olyan e = uv él, amelyre G’ — e felosztott 3-Osszefiiggd. Mivel e nem hagyhaté el G-b6l, 1éteznek az z és y
pontok, hogy G—{z, y} —e-nek két komponense van, K; és K», és mindkett6 legaldbb 2 elemti. Nem lehet, hogy
mindkettd legaldbb 3 elemfi, mert akkor az e él G’-b&l sem volna elhagyhaté. Legyen mondjuk K; pontosan
2 elemii és az e két végpontja kozil legyen u a Ki-ben. Miutédn d(u) > 3, K1 kételemii és G egyszer(, kell
lennie egy élnek u és {x, y} kozott. Ha viszont mondjuk zu éle a grafnak, akkor zu nem 6sszehizhatd, hiszen
x,y,u elvagd pontharmas G-ben, ellentmonddsban a fenti megéllapitassal, hogy minden él 6sszehiizhaté. e

A 2.7.6 tétel kozvetlen folyomanya az aldbbi konstruktiv karakterizacio.

TETEL 2.7.7 Egy legaldbb 5 ponti G graf akkor és csak akkor 3-dsszefiiggd, ha a K4 teljes négyesbdl kiindulva
felépithetd az alabbi miveletek segitségével.

(A) Kosstink dssze két meglévd pontot egy uj éllel.

(B) Osszunk fel egy €élt egy j ponttal és ezt kissiik dssze egy meglévbvel.

(C) Osszunk fel két élt egy-egy ponttal és kossiik ezeket Gssze. o

2.7.2 Egy alkalmazas: grafok sikbarajzolasa

Alkalmazasként levezetjiik Kuratowski tételét, illetve annak Tutte-t4l szdrmazé élesitését. Egy grafot nevezziink
felosztott Ks-nek, ha a teljes 6tpontd graf éleinek pontokkal torténd felosztasaval keletkezik, azaz ha a Ks
éleinek legalabb egy éli belsdleg diszjunkt utakkal torténé helyettesitésével jon 1étre. Hasonl6 értelemben
beszélhetiink felosztott K3 3-rél, amely a teljes 3 - 3-as paros graf élfelosztasabdl keletkezik.

Gyakorlat 2.41 Mutassunk olyen grdfot, amely nem tartalmaz felosztott Ks-t, de eqy alkalmas élét 6sszehizva
mdr tartalmaz.
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Gyakorlat 2.42 Legyen H egy 3-reguldris graf. Igazoljuk, hogy ha G nem tartalmaz felosztott H-t, akkor egy
élének dsszehizdsa utdn sem tartalmaz.

Lemma 2.7.8 Ha egy grdf nem tartalmaz felosztott Ks-t és K3 3-t, akkor egy élének 6sszehiizdsa utdn sem
tartalmaz.

Biz. (vézlat) Az el6z6 gyakorlat szerint élosszehizdssal K3 3 nem johet 1étre. Tegyiik fel, hogy G-nek az e = wv
élét Osszehuzva egy felosztott K5 keletkezik. Eset szétvalasztassal ellenérizhetd, hogy G tartalmazott K3 s-t.
[ ]

TETEL 2.7.9 (Tutte) Ha G = (V, E) olyan 3-6sszefiiggd egyszert grdf, amely nem tartalmaz felosztott Ks-t
és felosztott K3 3-t, akkor bedgyazhato a sikba igy, hogy minden élt egyenes szakasz reprezentdl, két élnek csak
a végpontja lehet kozos, és a tartomanyok konvezek.

Biz. Amennyiben |V| = 4, gy a graf a teljes négyes, amelynek létezik a kivant bedgyazdsa. Tegyiik most
fel, hogy |[V| > 5. A 2.7.3 lemma szerint létezik olyan z'z” él, amelyet Osszehizva egy G1 3-Osszefiiggd
grafot kapunk, amely a lemma szerint nem tartalmaz felosztott Ks-t és K3 3-t. Az Osszehtizott pontot jeldlje
. Indukcié folytdn Gi-nek létezik a kivant bedgyazdsa. Mivel G1 — x 2-6sszefliggd, igy G1 — r minden
tartomdnydat a graf egy kore hatdrolja. Ezek koziil jelolje K azon (esetleg végtelen) tartomédny hatarat, amelyik
az x-t belsejében tartalmazza.

Alh’tjuk, hogy az 7’ és x'’ egyikének van olyan (a mésiktdl kiilonbozd) szomszédja, amely nem szomszédja
a masiknak. Ha ugyanis nem ez volna a helyzet, akkor a 3-Osszefliggéség miatt léteznek u, v, z pontok melyek
mind az 2’-nek mind az z’'-nek szomszédai. Ekkor viszont az x’,x”, u,v, z pontok a K kor segitségével egy
felosztott teljes 6tost hataroznak meg.

Legyen tehdt u mondjuk az x’-nek egy olyan szomszédja, amely nem szomszédos x”’-vel. Az u-tél indulva
a K korén haladva mindkét irdnyban lesz egy elsd pont, amely szomszédja z''-nek. Jeldljiik ezt a két pontot
s-sel illetve t-vel. Mivel 2’ legalabb harmadfoku, s és t kiilénboz6. Azt allitjuk, hogy o’ valamennyi szomszédja
a kornek ugyanazon az s és t kozotti {vén van, mint az u pont, mert ha mondjuk a v pont az atellenes iven
volna, akkor az x’, 2", u, v, s,t a korrel egy felosztott K3 3-t hatdrozndnak meg. Emiatt az = pontot szét lehet
,nyitni” gy, hogy a G graf kivant sikba rajzoldsit kapjuk. e e

Nevezziink egy felosztott Ks-t vagy K3 3-t tiltott részgrafnak.
TETEL 2.7.10 (Kuratowski) FEgy grdf akkor és csak akkor sikbarajzolhatd, ha nem tartalmaz tiltott részgrdfot.

Biz. Az Euler formula szerint ¢t +n = m + 2, ahol ¢ a tartomanyok szdma, n a csiucsoké, m pedig az éleké.
A teljes 6t6s nem sikbarajzolhat6, mert ha indirekt az lenne, akkor ¢ = 10 + 2 — 5 = 7. Mivel pedig minden
tartomdnyt legaldbb harom él hatérol, az élek szdma legaldbb 7-3/2, és igy legaldbb 11 lenne, holott csak 10.
A K33 sem sikbarajzolhaté, mert kiilonben ¢ = 942 — 6 = 5 lenne. Mivel pedig minden kor legaldbb négyéli,
{gy az élek szdma legaldbb 4t/2 = 10 volna, holott csak 9. Kovetkezik, hogy a felosztott K5 vagy K3 3 sem
stkbarajzolhatd, és igy egy ilyeneket tartalmazé graf sem az.

A megforditashoz tegyiik fel indirekt, hogy G egy ilyen részgrafokat nem tartalmazé graf, amely nem
rajzolhaté sikba. Feltehetd, hogy G minimalis. Nyilvan G 6sszefiiggd, hiszen ha nem az, akkor a komponensei
maéar sikba rajzolhatdk, és igy G maga is az volna. Hasonléképp lathatd, hogy G-ben nincsenek hurkok és
parhuzamos élek, azaz G egyszerii.

Alh’tjuk, hogy G 2-6sszefiiggd. Ha ugyanis ¢t elvagd pont volna, akkor létezne V-nek két X, Y részhalmaza,
melyekre t € X NY,V = X UY,|X| > 2,|Y| > 2, nincs él X —Y és Y — X kozott, tovdbba az X illetve az
Y éltal feszitett G1 és G2 részgrafok Osszefiiggbek. Ekkor mind 1, mind G2 sikbarajzolhaté, amelyeket ¢-nél
torténd osszeillesztésével G egy sikbarajzolasat kapnank.

Most belatjuk, hogy G 3-Osszefliggé. Mivel a teljes négyes sikbarajzolhatd, ezért a legfeljebb négyponti
grafok is azok, {gy |V| > 5. Tegyiik fel indirekt, hogy {z,y} elvigja a grafot. Ekkor 1étezik V-nek két X,V
részhalmaza, melyekre X NY = {z,y},V = X UY,|X| > 3,|Y| > 3, nincs é]l X —Y és Y — X kozott, tovabba
X illetve az Y altal feszitett G1 és G2 részgrafok osszefiiggéek. Legyen Gx az X altal feszitett graf plusz
az e = zy él, mig Gy az Y éaltal feszitett graf plusz e. Alh’tjuk, hogy Gx nem tartalmaz tiltott részgrafot.
Val6ban, ha tartalmazna, akkor az szlikségképpen hasznalnéd az 4j e élt, hiszen G-ben nincs tiltott részgraf.
Ugyanakkor Gy-ban létezik it x és y kozott, és akkor az e élt ezen tutra cserélve egy G-beli tiltott részgrafot
kapnénk.

Analég kapjuk, hogy Gy sem tartalmaz tiltott részgrafot. Indukciéval adddik, hogy mind Gx, mind Gy
sikbarajzolhaté. Rdadasul mindkettének 1étezik olyan sikbarajzolasa is, amelyben a szébanforgé e él a végtelen
tartomdny hatdran van. (Ugyanis egy sikgraf a gémbre is felrajzolhatd, és akkor az e &ltal hatdrolt egyik T
tartomdny egy bels§ pontjdbdl a gombot egy téle diszjunkt sikra vetitve a kivént sikbarajzoldst kapjuk.)
emiatt a két sikbarajzolds Osszeillesztheté e mentén gy, hogy a G + e egy sikbarajzoldsat kapjuk.

Végiil 3-6sszefiiggd grafokra a tétel kovetkezik a 2.7.9 tételbdl. e
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Azt mondjuk, hogy egy G graf minorként tartalmaz egy H grafot (vagy hogy a H G-nek minorja), ha
G-bél kiindulva élek Gsszehuzasdval és elhagydsaval el lehet allitani egy H-val izomorf gréfot. Példaul az
erdék pontosan azok az egyszerii grafok, amelyek semmilyen hiaromszoget nem tartalmaznak minorként.

Feladat 2.43 Vezessiik le Wagner tételét: Egy grdf akkor és csak akkor sikbarajzolhatd, ha mem tartalmaz
minorként Ks-t vagy K3 3-t.

file: konkar 2014. m&jus 12.
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3. Fejezet

IRANYITASOK

Az eddigi irdnyitasi eredményeket vizsgdlva joggal tdmad kedviink kozos dltaldnositdsok utdn nézni. Mikor
létezik példaul fokszdm korldtokat kielégité erésen Osszefiiggd irdnyitds? Avagy mikor létezik olyan erésen
Osszefiiggd irdnyitds, amelyben egy megadott halmaz befoka minimalis?

3.1 Erosen Osszefiiggo iranyitas fokszam megkotésekkel

A kérdések megvélaszoldsahoz segitségiinkre lesz a oq(X) vagy roviden o(X) fliggvény, amely G — X kom-
ponenseinek szamét jeloli, ha X # 0 és (@) = 0. A 1.2.3 lemmdban metsz8 X, Y halmazokra igazoltuk

o(X)+oY)<o(XNY)+o(XUY)+da(X,Y)

egyenlOtlenséget. Fontos megfigyelés, hogy G egy erdsen Gsszefliggé irdnyitdasdban minden X C V halmaz
kifoka is és befoka is legaldbb o(X).

TETEL 3.1.1 Adott f : V — Z, U{—0c0} és g :V — Z, U{co} két fiigguény, melyekre f < g < da. A
G = (V, E) 2-élosszefiiggd irdnyitatlan grdfnak akkor és csak létezik olyan erdsen dsszefiggd irdnyitdsa,
(1) amelyben o(v) > f(v) minden v csicsra fenndll, ha

e(X) > f(X) 4+ o(X) minden X C V-re, (3.1)
(ii) amelyben o(v) < g(v) minden v csicsra fenndll, ha
i(X) < g(X) —o(X) minden ) C X C V-re, (3.2)
(i) amelyben f(v) < o(v) < g(v) minden v csicsra fenndll, ha mind (3.1), mind (3.2) fenndll.

Biz. Tegyiik fel el8szor, hogy létezik erdsen Osszefliggd irdnyitds, amelyben g(v) > f(v) minden v cstcsra
fennall. Ekkor X-bdl legalabb o(X) él kilép, igy f(X) <> low):v e X]=e(X)—86(X) <e(X)—o0(X), azaz
(3.1) kovetkezik.

Tegytk most fel, hogy (3.1) teljesiil. Induljunk ki G-nek egy olyan erdsen Osszefliggd irdnyitdsdbol, amelyre
a H:=>[(f(v) — o(w))t : v € V] ,hibadsszeg” minimdlis. (Itt 2 := max{0,z}.) Amennyiben H = 0, azaz
o(v) > f(v) teljesiil minden pontra, gy készen vagyunk, {gy tegyiik fel, hogy H > 0, azaz van olyan r¢ pont,
amelyre o(s) < f(s).

Ha X és Y két dtmetszd, 1 befoku részhalmaza V — ro-nek, akkor X NY és X UY is 1 befokud (ugyanis
14+1=0(X)+0(Y)>o(XUY)+o(XNY)>1+1-b8l o( X UY) =1=o(X NY) adddik). Igy az ro-t nem
tartalmazé maximalis C1,...,C, 1-befoki halmazok paronként diszjunktak. Igaz tovabbd, hogy két ilyen C;
ko6zott nem vezethet él, mert ha mondjuk Ci-bél vezetne Csz-be, akkor C7 U Cs is 1 befoku volna, ellentétben a
maximalitdssal. Legyen X = V —U;C; (illetve X = V, ha nem létezik ro-t nem tartalmazé 1 befokd.) Kapjuk,
hogy 0(X) < /¢ < o(X) < §(X), amibdl §(X) = o(X).

Allitjuk, hogy X-nek van ,,tultelitett” ¢ pontja, azaz olyan, amelyre o(t) > f(t). Valéban, ha nem igy lenne,
akkor f(X) > [o(v) v e X]=e(X) —(X) =e(X) — o(X), ellentétben a (3.1) feltevéssel.

Legyen P egy tetszbleges ro-bdl t-be vezetd tt. Alh’tjuk, hogy ennek iranyitdsat megforditva erésen 6sszefiiggd
irdnyitast kapunk. Valéban, ha az atirdnyitds utdn egy Z halmazba nem lépne be él, akkor sziikségképpen
t € Z,s ¢ Z, tovdbba a P 1t egyetlen egyszer 1épne Z-be és nem volna més Z-be 1ép6 él, azaz o(Z) = 1. Ilyen
Z halmaz 1étezése azonban ellentmondana a C; halmazok maximalis valasztasanak.

A P ut megforditdsa rdadasul olyan erdsen Osszefiiggh irdnyitast eredményez, amelynek a hibdja eggyel
kisebb, mint a kiindulasi irdnyitasé, ellentmondasban annak minimélis hibaju véalasztasaval.
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A maésodik rész analég médon bizonyithat6, de konnyen le is vezethetd az elsé részbdl, hiszen a kikotés,
hogy egy v pont befoka legfeljebb g(v) azzal ekvivalens, hogy v kifoka legalabb f'(v) := dg(v) — g(v). Kénnyen
latszik, hogy az f'-re felirt (3.1) éppen a (3.2) feltétellel ekvivalens, igy van olyan erésen osszefiiggd iranyitds,
amelyben minden v pont befoka legaldbb f'(v). Ezt atforditva olyan erésen Osszefiiggd irdnyitést kapunk,
amelyben minden v pont kifoka legaldbb f’(v), azaz befoka legfeljebb g(v).

A harmadik részhez induljunk ki G-nek egy olyan erdsen Osszefliggd irdnyitasabdl, amelyben v minden pont
befoka legfeljebb g(v) és erre alkalmazzuk az els§ rész bizonyitdsét. Csak azt kell megfigyelni, hogy ott egy ro
pont befoka csak akkor néhet, ha o(s) < f(s). Igy az f < g feltevés miatt a o(v) < g(v) tulajdonsdg nem tud
elromolni. e

Feladat 3.1 Igazoljuk, hogy az elséd rész bizonyitisiban definidlt X halmaz éppen azon pontokbdl dall, ame-
lyekbe vezet ro-bol 2 élidegen irdnyitott ut. Ennek alapjdan tervezziink hatékony algoritmust a keresett irdnyitds
megtaldldsdra.

Feladat 3.2 Igazoljuk, hogy egy irdnyitatlan grdf valamely erdsen dsszefiiggd irdnyitdsdbol dt lehet jutni
bdrmely mdsik erésen 6sszefiiggd irdnyitdsdba irdnyitott utak és/vagy kordk egymds utdn torténd megforditdsdval
ugy, hogy minden kézbensd irdanyitdas erdsen osszefiliggd.

A 3.1.1 tétel egy djabb megnyilvanuldsa a linking tulajdonsdgnak. A tétel tekinthet6 a Robbins tétel
fokszamkorlatos kiterjesztésének, és igy joggal kérdezhetjiik meg, hogy vajon a 2.1.7 kovetkezménynek is van-e
hasonlé fokszamkorlatos alakja. Meglepé mddon a linking tulajdonsdg itt mar érvényét veszti, azaz a kévetkezo
allitds nem érvényes: Ha egy vegyes grafnak van olyan erésen Gsszefiiggs irdnyitdsa, amelyben minden v pont
befoka legaldbb f(v), és van olyan erésen Osszefiiggd irdanyitdsa, amelyben minden v pont befoka legfeljebb g(v),
akkor létezik olyan erésen Osszefiiggd irdnyitdsa is, amelyben minden pont befoka legaldabb f(v) és legfeljebb
g(v). Az &llitdst cafolé vegyes graf négy pontbdl &ll, vivs és vovs irdnyitatlan élek, vs és vy kozott van két
ellentétesen irdnyitott parhuzamos él, és vi és vy kozott van két ellentétesen irdnyitott parhuzamos él. Az
megiranyitasra keriil6 iranyitatlan élek befokaira vonatkozé f alsé korlat a négy ponton rendre 1,0,0,0, mig
a g felsé korlat rendre 1,1,0, 1.

A linking tulajdonsig idénkénti meglétének illetve hidnydnak tényszerii konstatéldsan til, j6 volna megérteni
mi van héttérben. Magyardzatul most csak egy kodos mondattal szolgdlhatunk: g-polimatroidokra (melyek
egy specidlis poliéder osztélyt alkotnak) érvényes a linking tulajdonsdg, mig két g-polimatroid metszetére mér
nem. Mérpedig egy iranyitatlan graf erésen Osszefiiggd irdnyitdsaihoz tartozé befok vektorok g-polimatroidot
feszitenek, mig egy vegyes graf esetében a megfeleld poliéder mar két g-polimatroid metszete.

Legyen ismét G 2-él0sszefiiggd irdnyitatlan graf. A o(X) fuggvény alsé becslésiil szolgdlt G egy er8sen
Osszefiiggd irdnyitdsdban az X-be belépd élek minimdlis o*(X) = o5 (X) szdméra. Mennyi ez a minimum
pontosan? Ha G egy 2n pontu utbdl keletkezik az élek parhuzamos megduplazasaval, és X a péaratlan sorszamu
pontokbdl &ll, akkor egyrészt o(X) = | X| = n, mdsrészt minden erdsen Osszefliggd irdnyitdsban X-be 2n — 1
él 1ép be; mutatva, hogy a o(X) elég rossz alsé becslés tud lenni.

Lemma 3.1.2 Jelolje G’ azt a pdros grdfot, amely gy dll el G-bdl, hogy az X dltal feszitett komponensek
és a V — X dltal feszitett komponensek mindegyikét egy-egy ponttd hizzuk dssze. Jelolje X' az X -bél keletkezd
halmazt (amely a péros graf egyik osztélya). Ekkor of/ (X') = oa(X).

Biz. G egy erésen 6sszefiiggd irdnyitdsa az 6sszehizdskor nyilvan G’ egy erdsen osszefiiggd iranyitasat adja, igy
0e0(X') < 0g(X). Megforditva, G’ egy er8sen Osszefligg irdnyitésa a 2.1.7 kovetkezmény alapjan kiegészithets
G egy erdsen Osszefliggd irdnyitdsava, és igy ol (X') > oq(X). e

A lemma alapjan elég a problémé&t paros grafokra megoldani.

TETEL 3.1.3 Legyen G = (S,T; E) 2-élosszefiiggd pdros grdf. G erdsen 6sszefiiggd irdnyitdsaiban a T-be
1épd élek minimdlis o™ (T) szdma egyenld:

max{> " o(Xi) : {X1,..., X} particiondlja T-t}. (3.3)

Biz. (max < min) Tetszdleges erdsen Gsszefiiggd irdnyitds esetén o(X) > o(X), amibél o(T) = Y. o(X;) >

(max > min) Megadunk egy algoritmust, amely tetsz6leges o befok fiiggvényi erésen Gsszefiiggd irdnyitasbdl
kiindulva vagy taldl egy jobb erdsen Osszefliggd iranyitast, azaz olyant, amelyben T-be kevesebb él megy
be, vagy pedig taldl T-nek egy {Xi,...,X:} partici¢jit, amelyre o(X;) = o(X;) minden i = 1,...,¢t-re.
Miutdn az elsd lehetéség legfeljebb csak |E|-szer fordulhat eld, a mésodik biztosan bekovetkezik, és ilyenkor
o*(T) < o(T) =Y, 0(X;), azaz valéban min < max fog adédni.

Nevezziink egy X halmazt pontosnak (az adott er8sen Osszefiiggd irdnyitdsra nézve), ha o(X) = o(X).
(Speciélisan S UT mindig pontos.)
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Lemma 3.1.4 Ha A és B metsz6 pontos halmazok, akkor AU B és AN B is pontosak.

Biz. Felhasznélva az 1.2.3 lemmét, kapjuk: o(A) + o(B) = 0(A) + 0(B) < o(ANB)+0(AUB)+d(A,B) <
0(ANB)+ o(AUB)+d(A,B) = 9(A) + o(B), amibdl (AU B) = 9(AUB) és 6c(ANB) = p(ANB). e

Ebbél kozvetlentl addédik:

Lemma 3.1.5 Ha pontos halmazok egy rendszere osszefliggd hipergrdfot alkot, akkor e halmazok unidja is
pontos. Egy v pontot tartalmazd pontos halmazok P(v) metszete pontos. e

Legyen tehat o egy erésen Osszefliggd iranyitas befok fliggvénye. Két eset lehetséges.

1. Eset Minden v € T csicsra P(v) CT. Jelolje X1,..., X, a {P(v) : v € T} hipergraf komponenseit. Ekkor
{X;} a T egy particigjat alkotja és a 3.1.5 lemma szerint mindegyik X; pontos. Vagyis az adott irdnyitds
kielégiti a megkivant o(T) = ). o(Xi) = >, 0(Xi) egyenléséget.

2. Eset Léteznek olyant € T és s € S csicsok, amelyekre s € P(t). Legyen P egy ro-bél t-be vezet irdnyitott
ut és forditsuk meg P éleinek az irdnyitasat. Az 1j irdnyitasban nyilvan eggyel kevesebb él 1ép be T-be, mint
eddig. Alh’tjuk tovédbba, hogy az 1j iranyitas is erésen Gsszefiiggé. Valdban, ha nem az volna, Ugy létezne egy
olyan Z t7o-halmaz, amelyre o(Z) = 1, ellentmonddsban a feltevéssel, hogy s € P(t). @ ®

Felvetodik a kérdés, hogy a fenti eredmények dtvihetOk-e arra az esetre, amikor az irdnyitas erésen Ossze-
fiiggGsége helyett egy ro gyokérbol vals elérhetséget irunk els. A véalasz igen, s6t kideriil, hogy ez a probléma
még konnyebb is és rogton méd nyilik az dltaldnosabb gyokeres k-élosszefiiggdség kezelésére.

3.2 Gyokeres k-élosszefiiggové iranyitas

Azonnal latszik, hogy egy G irdnyitatlan grafnak pontosan akkor van olyan irdnyitdsa, amelyben egy megadott
ro pontbdl minden més pont irdnyitott tton elérhetd, ha a graf osszefliggd. Adott k > 1 egészre mikor 1étezik a
G-nek egy ro-bdl k-élosszefiiggd irdnyitdsa, azaz olyan, amelyben minden nemiires 7o-halmaz befoka legaldbb
k? Az alabbi tétel nemcsak ezt a tulajdonsigot karakterizdlja, hanem régtén megadja az un. deficites alakot
is, amely azt mondja meg, hogy legkevesebb hany 1ij él hozzdadasaval 1étezik a keresett irdnyitas.

TETEL 3.2.1 Legyen a G = (V, E) irdnyitatlan grdfnak ro egy kijelolt pontja, és legyen v nemnegativ egész.
Akkor és csak akkor lehet G-hez «y 1j élt dgy hozzdadni, hogy a megndvelt grdifnak létezik ro-bdl k-élosszefiiggd
irdnyitdsa, ha

e(F) = h(t—1) — 7 (3.4)

teljesil V- minden F := {Vi,..., Vi} particidjira. Az ij élek mind vdlaszthatdk ro-bdl induldnak.

Biz. Egy 70-bdl k-élosszefliggd iranyitdst nevezziink réviden jénak. Ha ~ \j él hozzdadasa utan létezik jé
irdnyftés, akkor mindegyik ro-t nem tartalmazé V; részhalmazra o(Vi) > k, fgy e(F) +v > et (F) > k(t — 1),
ahol az e jelolés a megnovelt grafra utal, azaz (3.4) fennall.

Az elegendéség igazolasdhoz adjunk G-hez minimélisan sok rg végpontu 1j élt gy, hogy a kiegészitett
grafban mér 1étezzék jé irdnyitas. Jeldlje a minimumot +’. Célunk azt kimutatni, hogy v < .

Jelolje o a megnovelt graf j6 irdnyitdsdnak a befok fliggvényét. Feltehetjik, hogy o(s) = 0. Nevezziink
egy X C V —ro halmazt pontosnak, ha o(X) = k. Ha X és Y két metsz6 pontos halmaz, akkor k + k =
o(X)+ oY) > o(XNY)+o(XUY) > k+ k miatt a metszet is és unié is pontos. Ebbdl az is kiadddik, hogy
ha pontos halmazok egy rendszere Osszefiiggd hipergrafot alkot, akkor a halmazok metszete is pontos.

Jelolje T azon pontok halmazét, melyek legaldbb egy tijonnan hozzdaadott él végpontjabdl az adott irdnyitasban
elérhet8k. Nyilvan s € T és o(V —T) = 0.

Lemma 3.2.2 Ha Z pontos és ZNT # 0, akkor Z C T.

Biz. Tegyiik fel, hogy Z Z T. Ekkor Y :=V —T-re k = oY)+ 0(Z2) = o(Y N Z) +o(Y U Z) +d* (Y, Z) >
k+0+dt(Y,Z) > k. Ebbél o(Y U Z) =0 és d" (Y, Z) = 0 adédik. Az els§ egyenléség miatt van olyan e = st
4j él, amelyre ¢ € Z-ben van (mert kiilonben T'N Z pontjai semelyik dj él fejéb8l nem lehetnének elérhetdk).
Ekkor viszont az e él miatt d* (Y, Z) > 0, amely ellentmondés a lemmét bizonyitja. e

Két eset lehetséges. Ha 1étezik T-ben olyan v pont, amely nincs benne pontos halmazban, akkor vegyiink
egy olyan st 1j élt, amelyre t-bdl vezet v-be egy P iranyitott ut. Forditsuk meg P éleinek iranyitasat, és
hagyjuk ki az e élt. Mivel v nincs pontos halmazban, az 1j irdnyitas tovdbbra is j6 lesz, ellentmonddsban az
Uj élek szamanak minimalitdsaval.

Nézziik most azt az esetet, amikor 7' minden pontja benne van pontos halmazban. Jeldlje Vi, ..., Vi1 azon
maximalis pontos halmazokat, melyek metszik T-t. Fentebb lattuk, hogy ezek paronként diszjunktak és hogy
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a T particiéjat alkotjédk. Legyen Vi := V — T és F := {Vi,...,Vi}. Mivel o(Vz) = 0, és minden 1j él belép
T-be, azt kapjuk, hogy k(t —1) =Y [o(Vi):i=1,...,(t = 1] = [o(V;) :i=1,...,t] = e (F) = e(F) + 7/,
igy (3.4)-t hasznalva, 7' = k(t — 1) — e(F) < v adddik. e e

Adott pozitiv egész k-ra és egész [ szamra egy G = (V, E) irdnyitatlan grafot akkor neveziink (k,!)-particié
Osszefiiggbnek, ha V pontjainak minden ¢ > 2 részes particidjara a koztes élek szdma legaldbb k(t — 1) +1. A
(k, 0)-particié-Osszefuiggbgrafokat roviden k-particié-osszefiiggének nevezziik. A (3.4) feltétel tehdt azt jelenti,
hogy a G graf (k, —v)-particié-osszefliggs. Erdemes a v = 0 specialis esetet kiilon megfogalmazni.

Kovetkezmény 3.2.3 Egy G grdfnak akkor és csak akkor létezik ro-bol k-élosszefiiggd irdnyitisa, ha G k-
particio-osszefiiggs. o

Most megmutatjuk, hogy miként lehet a fokszam korlatot és a gyoOkeres k-élosszefliggéségi elSirdst az
irdnyitasi feladatban 6tvozni. Figyeljiik meg, hogy ismét felbukkan a linking tulajdonsdg. A tételben hasznéljuk
az €, halmazfiiggvényt:

ex(X) =k, haro ¢ X, mig ex(X) =0, haro € X.

TETEL 3.24 A G = (V, E) grdfnak legyen ro egy kitintetett gyokérpontja. Legyen tovdbbd f :V — Zy U
{—o0} ésg: V — Z U{+oo} két fiigguény, melyekre f(v) < g(v) minden v € V pontra. G-nek akkor és csak
létezik olyan ro-bol k-élosszefliggd irdnyitdsa,

(1) amelyben o(v) > f(v) minden v csicsra fenndll, ha

e(F) > h(Vi) (3.5)

teljesil V- minden F := {Vi,...,Vi} particidjdra, ahol h(X) értéke £,(X), mig az egyelemt X = {v} halma-
zokon h(X) := max{f(v),er(v)}.
(if) amelyben o(v) < g(v) minden v csicsra fenndll, ha G k-particid-iosszefiggd és

9(X) > i(X) + ex(X) minden X CV halmazra. (3.6)
(iii) amelyben f(v) < p(v) < g(v) minden v csdcsra fenndll, ha mind (3.5), mind (3.6) fenndll.

(Az (iii) részhez nem kell kiilon G k-particié-Gsszefliggségét kikotni, hiszen a (3.5) feltétel azt mér maga
utdn vonja.)

Biz. A feltételek kénnyen ldthatéan sziikségesek, igy csak az elegendéségiik bizonyitasaval foglalkozunk. Fel-
tehetjiik, hogy k < f(v) minden v € V — ro pontra és g(v) < dg(v) minden v € V pontra. (Miért?)

Tegylik fel elgszor, hogy (3.5) fenndll. A 3.2.3 kovetkezmény alapjin létezik ro-bdl k-élosszefliggd irdnyitds.
Vegyiink olyant, amelyben a hidnyok > [f(v) — o(v)t : v € V] Gsszege minimalis. Készen vagyunk, ha ez a
szdm nulla, azaz minden v pontra o(v) > f(v) teljesiil, igy tegyiik fel, hogy létezik hibds s pont, olyan tehét,
amelyre o(S) < f(S). (Lehet, hogy s = r¢.) Jelolje T az s-b&l elérhetd pontok halmazat.

Jelolje Vi, ..., V, azon maximaélis k befoku ro-t és s-et nem tartalmazé halmazokat, melyek metszik T-t
(lehet, hogy nincsenek ilyenek). Egyrészt tudjuk, hogy ezek paronként diszjunktak, mésrészt a 3.2.2 lemma
szerint V — T-t6l is diszjunktak. Legyen most F az a particié, amely a Vi, ...,V halmazokon kiviil a T" :=
T—U;V; elemeibd]l mint egyelemi halmazokbdl all (ebben {r} bizonyosan szerepel), valamint a V' —T" halmazbdl,
amennyiben ez nemiires (tehdt, ha ro nem érheté el s-bdl).

Alh’tjuk, hogy T'-ben kell lennie olyan z pontnak, amelyre o(z) > f(z). Ha ugyanis nem volna ilyen, akkor
Slo(w) : v € T'] < Y [h({v}) : v € T"], és igy az F partici6 megsértené (3.5)-t: e(F) = > [o(X) : X €
Fl=kl+> o) :veT] <> [X): X e F|. Mérmost egy s-bSl z-be mend 1t irdnyitdsdt megforditva
egyrészt az ro-bol k-élosszefiiggdség nem romolna el, mésrészt a hidnyok > (f(v) — o(v))' 6sszege csékkenne,
ellentmondésban ezen 6sszeg minimalis valasztasaval.

Az (ii) rész bizonyitdsdhoz G-nek ismét egy ro-bdl k-6losszefiiggd irdnyitdsdbdl indulunk ki, éspedig olyanbdl,
amelynél a t&bbletek > [o(v) — g(v))T : v € V] Ssszege minimélis. Készen vagyunk, ha ez a szdm nulla, azaz
minden v pontra p(v) < g(v) teljesiil, igy tegyiik fel, hogy létezik hibds s pont, olyan tehat, amelyre o(s) > g(s).

Jeldlje T' azon pontok halmazat, melyekbél s elérheté. Nyilvan s € T. Amennyiben létezik s-et tartalmazo,
de ro-t nem tartalmazoé k-befoku halmaz, ugy ezek Z metszete is ilyen. Nyilvan Z C T. Z-ben van olyan z
pont, amelyre g(z) < g(z), mert kiilsnben g(2) < Y [o(v) : v € Z] = 0(Z) +i(Z) = k+i(Z) = ex(Z) +i(2),
ellentmondésban a (3.6) feltétellel. Mdarmost egy z-b6l s-be mené 1t irdnyitdsat megforditva tovabbra is ro-bdl
k-él0sszefliggl irdanyitdast kapnank, amelynek tobblet Osszege kisebb, mint eredetileg, ellentétben a kiindulési
irdnyitas valasztdsdval.

Tegyiik most fel, hogy nem létezik s-et tartalmazd, de ro-t nem tartalmazd k-befokd halmaz. T-ben van
olyan z pont, amelyre o(z) < g(z), mert kiilonben g(T') < > [o(v) : v € T] = o(T) +4(T) = 0+ i(T) =
ex(T) + i(T), ellentmonddsban a (3.6) feltétellel. Most egy z-bél s-be mend ut irdnyitdsat megforditva ismét
jobb iranyitast kapunk.
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Végiil az (iii) rész rogvest kovetkezik az elébbi bizonyitdsbdl, ha az (ii) rész bizonyitdsdnél olyan ro-bdl
k-€él6sszefiliggd iranyitdsbdl indulunk ki, amely a pontok befokdra mar teljesiti az alsé korlatot és megfigyeljiik,
hogy a bizonyitdsban megadott Ut irdnyitdsdnak dtforgatdsndl csak az s pont g(s)-nél nagyobb befoka csokken,
gy tehét a befok g(s) > f(s) miatt nem keriilhet f(s) ald. e

Feladat 3.3 Legyen G-nek ro és t két kilénbozé pontja. Mutassuk meg, hogy miként nyerhetd ro-re nézve
gyokeresen k-élosszefiiggd irdnyitdsdbol egy t-re nézve gyokeresen k-élosszefiiggd irdnyitds.

Feladat 3.4 Mi a feltétele annak, hogy G-nek létezzék ro-re nézve gyokeresen k-élésszefiiggd irdnyitdsa, amely-
ben 10-bol legfeljebb ~y él megy ki?

k = 1-re az als6 korldtos esetben a (3.5) feltétel egyszertisodik.

TETEL 3.2.5 A G = (V, E) dsszefiiggd grafnak legyen ro egy kitintetett gyokérpontja. Legyen tovabbd f :
V — ZU{—0o0} adott figguény. G-nek akkor és csak létezik olyan irdnyitdsa, amelyben minden csics elérhetd
ro-bdl és p(v) > f(v) minden v csdcsra fenndll, ha

e(X) 2 J(X) + o(X) = 21(X) (3.7)

teljestl V' minden nemiires X részhalmazdra, ahol o(X) az X elhagydsdval keletkezd komponensek szdma, mig
e1(X) annak megfelelden 0 vagy 1, hogy X tartalmazza ro-t vagy sem.

Biz. A feltétel nyilvan sziikséges. Elegend&ségéhez azt kell csak igazolnunk, hogy fennélldsa esetén (3.5) is
fenndll £ = 1-re. Tegyiik fel indirekt, hogy az F particidja V-nek megsérti a feltételt, és valasszuk F-t olyannak,
hogy minimélis sok tagja legyen. Legyen Z := {v € V : {v} € F,h(v) = f(v)}. Legyen F' := F—{{v} : v € Z}

Alh’tjuk, hogy a F' tagjai kozott nem vezet él. Valéban, ha V; és V; kozott vezetne, akkor helyettesitve ket
az uniéjukkal olyan F' particiét kapnank, amely k = 1 miatt szintén megsértené a (3.5) feltételt, ellentétben
|F| minim4lis vélasztdsdval. Most e(Z) = e(F) < Y [h(X): X € F] = f(2) + 0(Z) — £1(Z) ellentmondésban
a (3.7) feltétellel. o

3.3 k-élosszefiiggové iranyitas
Most bemutatjuk a Robbins tétel magasabb élosszefiiggéségre vonatkozo kiterjesztését.

TETEL 3.3.1 (Nash-Williams) Fgy G = (V, E) irdnyitatlan grdifnak akkor és csak akkor létezik k-élosszefiiggd
irdnyitdsa, ha G (2k)-élosszefiiggd.

Biz. A feltétel nyilvan sziikséges. Az elegendéség igazolasahoz nevezziikk G egy irdnyitdsdt jénak, ha k-
élosszefliggd, hibdsnak ellenkezé esetben, és kozel-jénak, ha (k — 1)-él0sszefiiggd és létezik ro és ¢ cstics
ugy, hogy minden k£ — 1 befokd halmaz, t7o-halmaz. Egy kozel-j6 irdanyitasban egy k — 1 befokd halmazt
nevezziink be-hibasnak, mig egy k befokut be-pontosnak. Ezek komplementere ki-hibas illetve ki-pontos.
Indirekt tegyiik fel, hogy G-nek nem létezik j6 iranyitédsa.

Lemma 3.3.2 G egy kozel-jé (de nem jé) irdnyitdsaban van olyan it, amelyet megforditva egy mdsik kozel-jo
irdnyitdst kapunk, amelyben a hibds halmazok szama kisebb.

Biz. Nevezziink egy particiét hibasnak akkor, ha vagy az egyik tagja be-hibéds és a tobbi be-pontos, vagypedig
az egyik tagja ki-hibas és a tobbi ki-pontos.

Allitas 3.3.1 Nincs hibds particio.

Biz. Valéban, egy s részes particié keresztéleinek a szdma egyrészt a részek be-fokainak (ki-fokainak) Osszege,
masrészt G (2k)-él6sszefiiggdsége folytdn legaldbb r(2k)/2 = rk. Igy hibds particié valéban nem létezhet, mert
anndl a szébanforgd osszeg k(r — 1) +(k—1) =7k —1. e

Szubmodularitasbél kapjuk, hogy a be-hibas halmazok N uniéja is be-hibas.

Allitas 3.3.2 Ha X és Y két keresztezé be-pontos halmaz, melyekre X NY € N, akkor X NY és X UY is
be-pontos.

Biz. XNY ¢ N miatt a metszet és az unié nem be-hibds, és ezért k+k = o(X)+0(Y) > o(XNY)+o(XUY) >
k + k, amibdl a metszet és az unié is be-pontos. e

Allitas 3.8.3 Létezik olyan b € V. — N pont, amelyre minden b-t tartalmazd be-pontos halmaz metszi N-t.
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Biz. A 3.3.2 4llitds miatt az N-t6l diszjunkt maximélis be-pontos halmazok paronként diszjunktak. fgy ha a
szébanforgd b pont nem létezik, akkor ezek unidja V' — N, vagyis az N-nel egyiitt egy hibas particiét alkotnak.
[ ]

Allitas 3.3.4 Legyen B egy b-t tartalmazé be-pontos halmaz, mig N' eqy B-t keresztezd be-hibds. Ekkor BN N’
be-hibds, és igyt € BN N'.

Biz. Mivel BU N’ tartalmazza b-t, igy o(BU N') > k, és ezért k+ (k — 1) = o(B) + o(N’) > o(BN N') +
o(BUN') > (k—1) + k, amibdl o(BN N') = k — 1 kovetkezik. o

A 3.3.2 allitasbdl kovetkezik, hogy a b-t nem tartalmazd, N-t metsz6 maximédlis ki-pontos halmazok
paronként diszjunktak. Ezek koziil jelolje Hi, He, . .., Hp azokat, amelyek V — N-t is metszik, mig L1, L2, ..., Le
azokat, melyek N-ben fekszenek. Amennyiben létezik olyan a € N csics, amely nincsen benne semelyik H;
vagy L; halmazban, igy egy a-bdl b-be vezetd P ithoz nem létezik be-pontos vagy be-hibds ba-halmaz, igy P
kielégiti a lemma kivanalmat.

Tegytik fel indirekt, hogy a H; és L; halmazok fedik N-t. Kell lennie H; halmaznak, mert kiilonben
{L1,...,L¢, V — N} hibés particiét alkotna. Mindegyik B; := V — H; halmaz be-pontos, melyek B; £ V — N
miatt keresztezik N-t, igy a 3.3.4 allitds miatt tartalmazzdk t-t. Vagyis semelyik H; sem tartalmazza t-t, azaz
kell lennie L; halmaznak is.

A 3.3.4 §llitds ismételt alkalmazdsdval kapjuk, hogy N1 := B1 NN be-hibés, hogy N2 := BoN N1, ..., Np :=
Bu N Np_1 mindegyike be-hibds. Mivel N, = B1 N ... N By, igy V — Ny, az L1,..., L, halmazokkal egyiitt
particiét alkot, amely hibas. Ez ellentmond a 3.3.1 allitdsnak, ami a lemmat bizonyitja. e

A lemmabdl a tétel mar konnyen kovetkezik. Tegytlik fel indirekt, hogy a tétel nem igaz. Egy grafthoz
elegendden sok élt hozzavéve mar biztosan létezik jé iranyitds, igy van olyan G ellenpélda, amelyhez egyetlen
élt hozzavéve van jé irdnyitas. Ebbdl az 1j élt kihagyva G-nek egy majdnem j6 irdnyitasat kapjuk, amely a
lemma ismételt alkalmazasdval j6va tehets. o o o

Most megmutatjuk, hogy a 3.1.1 tétel gond nélkiil kiterjeszthetd k-élosszefiiggd irdnyitasokra.

TETEL 3.3.3 Legyen adott f : V — Zy és g : V — Zi két figguény, melyekre feltessziik, hogy minden v
csicsra k < f(v) < g(v) < da(v). Legyen a G = (V, E) grdf 2k-élésszefiggs. G-nek akkor és csak akkor létezik
olyan k-élésszefiiggd irdnyitdsa,

(i) amelyben o(v) > f(v) minden v csicsra fenndll, ha V minden P = {Vo, Vi, ..., Vr} particidjdra

i(Vo) +e(P) = f(Vo) + kr, (3.8)
(ii) amelyben o(v) < g(v) minden v csicsra fenndll, ha V- minden P = {Vo, Vi,...,V,.} particidjdra
e(Vo) — e(P) < g(Vo) — kr, (3.9)

(iii) amelyben f(v) < o(v) < g(v) minden v csicsra fenndll, ha mind (3.8), mind (3.9) fenndll.

Biz. Tegyiik fel el6szor, hogy létezik k-élosszefiggd irdnyitds, amelyben o(v) > f(v) minden v csicsra fenndll.
Ekkor az i(Vo) + e(P) Osszeg éppen a Vi pontjaiba valamint a Vi, ..., V; halmazokba belépd éleket szdmolja,

ami viszont legalabb f(Vh) + kr, azaz (3.8) sziikséges.

Tegytk most fel, hogy (3.8) teljesiil. Induljunk ki G-nek egy olyan k-él0sszefliggé irdnyitdsdbdl, amelyre a
H = >"[(f(v) — o(v))* : v € V] , hibadsszeg” minimélis. (Itt 2 := max{0,z}.) Amennyiben H = 0, azaz
o(v) > f(v) teljesiil minden pontra, ugy készen vagyunk, igy tegyiik fel, hogy H > 0, azaz van olyan 7o pont,
amelyre o(s) < f(s).

Ha X és Y két metsz8, k befoki részhalmaza S — ro-nek, akkor X NY és X UY is k befoku (hiszen k+ k =
o(X)+0(Y) > o(XUY)+0(XNY) > k+k-b8l o(XUY) = k = o(XNY) adédik). [gy az ro-t nem tartalmazé
k befoki maximédlis Vi,...,V; halmazok pdronként diszjunktak. Legyen Vo =V —U(V; : ¢ = 1,...,r), ha
létezik ro-t nem tartalmazoé k befokd halmaz, mig Vp := V, ha nem létezik.

Allitjuk, hogy Vo-nak van ,,tultelitett” ¢ pontja, azaz olyan pont, amelyre o(t) > f(t). Valéban, ha nem
fgy lenne, akkor f(Vo) + kr > dlo(w) v e Vol + > [o(Vi) :i=1,...,7] = (Vo) + e(P), ellentétben a (3.1)
feltevéssel.

Legyen P egy tetszOleges 10-bdl t-be vezetd t. Alll’tjuk, hogy ennek irdnyitdsat megforditva k-élosszefiiggd
irdnyitast kapunk. Valéban, ha az atirdnyitas utdn egy Z halmazba k-nal kevesebb él lépne be, akkor sziikségképpen
te€Z,s ¢ Z, a P 1t egyetlen egyszer lépne Z-be és o(Z) = k. llyen Z halmaz 1étezése azonban ellentmondana
a V; halmazok maximaélis valasztasanak.

A P 1t megforditdsa rdaddsul olyan k-élosszefiiggd irdnyitast eredményez, amelynek a hibaja eggyel kisebb,
mint a kiinduldsi irdnyitasé, ellentmondéasban annak minimélis hibaju valasztasaval.

A maésodik rész analég médon bizonyithatd, de konnyen le is vezethetd az els6 részbdl, hiszen a kikotés,
hogy egy v pont befoka legfeljebb g(v) azzal ekvivalens, hogy v kifoka legaldbb f'(v) := dg(v) — g(v). Kénnyen
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latszik, hogy az f’-re felirt (3.1) éppen (3.2)-vel ekvivalens, {gy van olyan k-élosszefiiggd irdnyitds, amelyben
minden v pont befoka legaldbb f’(v). Ezt atforditva olyan k-élosszefiiggd irdnyitdst kapunk, amelyben minden
v pont kifoka legaldbb f’(v), azaz befoka legfeljebb g(v).

A harmadik részhez induljunk ki G-nek egy olyan k-élosszefiiggd irdnyitdsabdl, amelyben v minden pont
befoka legfeljebb g(v) és erre alkalmazzuk az elsé rész bizonyitdsit. Csak azt kell megfigyelni, hogy ott egy 7o
pont befoka csak akkor néhet, ha o(s) < f(s). fgy az f < g feltevés miatt a o(v) < g(v) tulajdonsdg nem tud
elromolni. e

Az els6 rész bizonyitasabdl rogvest adédik az alabbi hasznos megfigyelés.

Kovetkezmény 3.3.4 Ha G-nek létezik egy olyan k-élésszefiiggd irdnyitdsa, amelyben o(v) > f(v) minden
v csucsra, akkor G-nek tetszbleges k-élosszefiiggd irdnyitdsbdl kiindulva megkaphatunk egy ilyen irdnyitdst
irdnyitott utak egymds utdni megforditasdaval gy, hogy minden kézbensd irdnyitds k-élosszefiiggd.

TETEL 3.3.5 Ha D; és Ds ugyanannak az irdnyitatlan grdfnak két k-élosszefiiggd irdnyitdsa, akkor irdnyitott
utak és korok egymds utdni megforditdsdval el lehet jutni D1-b6l Do-be tigy, hogy minden kozbensd irdnyitds
k-éldsszefliggd.

Biz. Legyen f(v) := 02(v), v € V. Mivel > [f(v) : v € V] az élek szdmaval egyenld, igy G barmely olyan
irdnyitdsdra, ahol p(v) > f(v) fenndll minden v-re, szlikségképpen minden v-re egyenldség teljesil. A 3.3.4
kévetkezmény szerint D;-bdl kiindulva irdnyitott utak egymads utni dtforgatdsival egy olyan D k-élosszefiiggd
irdnyitdst kaphatunk, amelyben minden v pont befoka legaldbb f(v) és igy pontosan f(v), és rdaddsul ugy,
hogy a kézbensé irdnyitasok mind k-élosszefiiggék. A 2.2.6 tétel miatt D7-bdl korok atforditdsdval eljuthatunk
Do-be. Természetesen egy koratforditas a halmazok befokat, igy a k-élosszefiiggéséget sem befolyasolja.

3.4 Két alkalmazas

Erdemes hangstlyozni, hogy az eddig szerepld iranyitési tételek mindegyikében a keresett irdnyitast utak
irdnyitasdanak egymads utani megforditdsaval kaphattuk meg. Léteznek olyan irdnyitasi eredmények is, amikor
csak bonyolultabb mdédszerek segitenek. Ilyen példaul, ha egy vegyes grafot akarunk ro-bdl k-élosszefiiggére
irdnyitani. Itt példdul méar nem lesz érvényes a linking tulajdonsig. Most azonban az eddigi iranyitédsi eredményeknek
érdekes alkalmazasaként bemutatjuk két grafelméleti probléma megolddsat. Megjegyezziik azonban, hogy
mindkét tétel levezethetd a matroid metszet tételbol.

3.4.1 Csiicsok szétbontasa

A gréfelmélet ,,elsé” tétele szerint egy Osszefiiggd irdnyitalan grafnak akkor és csak akkor 1étezik Euler bejarésa,
ha minden pont foka paros. Egy Euler bejaras 1étezése 1igy is interpretalhatd, hogy minden csicsot masodfoki
pontokra lehet szétbontani gy, hogy Osszefiiggd grafot (szitkségképpen egy kort) kapjunk. Kérdés, hogy mi
mondhato, ha a szétbontott pontokra altalanosabb fokszam el6irdsok adottak.

Legyen G = (V, E) irdnyftatlan graf ponthalmazdn egy m mindeniitt pozitiv egészértéki fiiggvény. G-nek
egy m-bontdsan egy olyan grafot értiink, amely G-b6l keletkezik gy, hogy mindegyik v pontot m(v) részre
bontjuk szét, és a v-vel szomszédos éleket tetszés szerint kiosztjuk a szétbontott pontot kozott.

TETEL 3.4.1 (Nash-Williams) G-nek akkor és csak akkor létezik osszefiiggé m-bontdsa, ha
e(X)>m(X)+o(X)—-1 (3.10)
teljesil minden X C V' nemdiires részhalmazra.

Biz. Tegyiik fel el6szor, hogy G-nek létezik egy G’ osszefiiggd m-bontdsa. Valamely X C V halmazra tekintsiik
a G’ ponthalmazénak azt a particiéjat, amely egyrészt az X bontott pontjaibél mint egyelemii halmazokbdl,
mésrészt a G — X komponenseinek megfelelé G’-beli halmazokbdl &ll. A particié-részek szdma tehat m(X) +
o(X). Miutdn G’ 6sszefiiggd, a részek kozott legaldbb m(X)+o(X)—1 él vezet. Ezen élek olyan G-beli éleknek
felelnek meg, melyeknek legaldbb egyik vége X-ben van, {gy (3.10) valéban sziikséges.

Az elegendbség bizonyitasdhoz valasszunk ki egy tetszdleges ro csucsot. A 3.2.5 tétel azt éllitja, hogy egy G
grafnak valamely f:V — Z4 alsé korldtra nézve akkor és csak akkor van olyan irdnyitdsa, amelyben minden
cstics v befoka legaldbb f(v) és amelyben minden cstics elérhetd ro-bdl, ha minden X halmazra

e(X) > f(X) +o(X) — e1(X) (3.11)
Legyen most f(v) := m(v) ha v € V —ro és f(s) := m(s) — 1. Konnyen latszik, hogy ezen vélasztés
mellett (3.11) kovetkezik (3.10)-bdl, igy G-nek létezik a kivant irdnyitdsa. Legyen F egy tetszOleges feszitd
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ro-feny6 az adott irdnyitdsban. Minden v csiicsot bontsunk szét tigy, hogy kivalasztunk m(v) — 1 bemen élt,
melyek nincsenek F-ben, és ezen élek mindegyike definnidl egy egypontu részt a szétbontdsban. (Tehdt a v
szétbontdsandl egy kivétellel mindegyik rész egyelemi lesz.) Az igy kapott bontds Osszefliggdségét az F' fenyd
biztositja. e

Koévetkezmény 3.4.2 Ha G mindegyik z pontjdndl az m(z) szdm mellett adva van m(z) darab pozitiv szdm,
melyek 6sszege éppen z foka, és (3.10) teljesiil, akkor létezik olyan m-bontds, amelyben minden vj pont foka
elére adott.

Biz. A 3.4.1 tétel miatt van m-bontds. Amennyiben ez nem teljesiti a fokszam elSirast, akkor létezik 2’ és
2" két pont egy eredeti z pont bontésabdl, hogy z”-nek til nagy a foka, z’-nek pedig tul kicsi. Tekintsiik a
bontott grafnak egy feszits fajat. A z”-nek vegyiink egy olyan uz” élét, amely nem a fabeli 2”2 1t els6 éle,
és ezt cseréljiik 4t egy uz’ élre: megmarad az Osszefiiggéség és a fokok j6 irdnyban valtoznak. e

Megjegyzés A bontdsi probléma ekvivalens a kovetkezdvel. Adott egy alaphalmaznak egy {Vi,...,V,}
particiéja és minden {V;, V;} pédrra egy as;; nemnegativ egész. Olyan osszefiiggd grafot keresiink, amelyben
a V; halmazok stabilak és minden {V;, V;} par kozott legfeljebb ay; él vezet. (Egy S halmaz stabil, ha nem
feszit élt.) Ez egy matroid metszet probléma. Altaldnosabban azt is megkovetelhetjiik, hogy a keletkezd graf
k-particié-sszefliggd legyen.

Akkor és csak akkor létezik k-particid-dsszefiiggd m-bontds, ha G maga k-particié-osszefiiggd és V. minden
F :={Xo,X1,..., Xt} particidjdra i(Xo) + e(F) > tk, ahol e(F) a részek kozotti élek szdma.

3.4.2 Fokszam-korlatos fak

Egy 6sszefiigg iranyitatlan grafban szeretnénk olyan feszit6 fat keresni, amely a csicsokon fokszam korlatoknak
tesz eleget. Ez a probléma igy tul 4ltaldanos, hiszen ha minden pontban a fokszamra fels6 korlatként 2-t adunk
meg, akkor a feladat a Hamilton ut létezésének probléméjival ekvivalens, ami kéztudottan NP-teljes. Ha
azonban pontoknak csak egy stabil halmazin vannak korlatok, akkor 1étezik j6 karakterizacio.

TETEL 3.4.3 Legyen G dsszefiiggd iranyitatlan grdf és S C V' a G pontjainak egy stabil részhalmaza. Legyen
tovdbbd fs : S — Zy és gs : S — Zi U {oco} két figguény, melyekre fs < gs. Akkor és csak akkor létezik
G-nek olyan F feszité fdja,

(i) amelyre dr(v) > fs(v) minden v € S-re, ha

fs(X) < |X| + [T(X)| = 1 minden § C X C S halmazra, (3.12)
(i) amelyre dr(v) < gs(v) minden v € S-re, ha

gs(X) > |X|+o(X) — 1 minden § C X C S halmazra, (3.13)
(iii) amelyre fs(v) < dr(v) < gs(v) minden v € S-re, ha mind (3.12), mind (3.13) teljesiil.

Biz. Sziikségesség. Legyen F egy feszito fa és legyen X C S nemiires halmaz. Jelolje Fix az F-nek az X-szel
szomszédos élekbdl allo részerdejét. _

Ha most F olyan, hogy dr(V) > fs(v) fenndll minden v € S-re, akkor egyrészt |Fx| > fs(X), mésrészt,
mivel egy erdd élszama kisebb a pontszdménal, |Fx| < |[V(Fx)|—1= |X|+|Tr(X(S)| -1 < |X |+ |T(X)| -1,
és a kettd Osszevetésébdl (3.12) kovetkezik.

Legyen most F' olyan, amelyre dr (V) < gs(v) fenndll minden v € S-re. Mivel egy feszits fa V' tetszéleges t
részes particidjara legalabb ¢t —1 koztes élt tartalmaz, igy az X pontjaibdl mint egyelemii halmazokbdl valamint
a G — X komponenseibél 116 |X| 4 o(X) részes particiéra F legaldbb legalabb | X| + o(X) — 1 koztes élt. E
koztes élek persze mind X pontjaival szomszédosak (hiszen két komponens kozott egydltaldn nincs él), igy a
koztes élek szdma legfeljebb g(X), és a kettdt osszevetve (3.13) kovetkezik.

Az elegend6ség bizonyitasahoz feltehetjiik, hogy G péaros graf. Ha ugyanis T := V — S feszitene élt, akkor
ezeket egy-egy ponttal felosztva, az osztdspontokat S-hez véve és mindegyik osztdsponthoz 0 alsé és illetve
oo fels6 korlatot rendelve az eredetivel ekvivalens feladatot kapunk (mind a primdl oldalon, mind a feltételi
oldalon).

Legyen s € V — S egy tetsz6leges pont. A kapcsolatot az iranyitasok és a fokszam el6irt fak kozott az alabbi
lemma teremti meg.

Lemma 3.4.4 A G = (S,T; E) pdros grdfban legyen m : S — Z" olyan fiiggvény, amelyben m(S) = |V| — 1.
Akkor csak akkor létezik G-nek olyan F feszitd fdja, amelyre dr(v) = m(v) minden v € S pontra fenndll, ha
G-nek létezik olyan irdnyitdsa, amelyben ro-bol G-nek minden csucsa elérhetd és minden S-beli v csucs befoka
d(v) —m(v) + 1.
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Biz. Ha létezik a kivant F' fa, akkor irdnyitsuk F' éleit ugy, hogy ro gyokert feny6t kapjunk, az S pontjaival
szomszédos tobbi élt mind S-felé, mig a maradék éleket tetszélegesen. fgy olyan irdnyitast kapunk, amelyben
egyrészt V minden eleme elérhetd ro-bdl, masrészt egy tetszbleges v € S pont kifoka éppen m(v) — 1, azaz
befoka d(v) — m(v) + 1.

Megforditva, tekintsiik a grafnak egy olyan irdanyitasat, amelyben minden pont elérhet6 ro-bél és minden
S-beli v pont befoka o(v) = d(v) — m(v) + 1, azaz §(v) = m(v) — 1. Legyen E egy tetszéleges 1o gyokerti
feszité fenyd. Alh’tjuk, hogy az az F' feszit6 fa, amely az F irdnyitatlan értelemben vett éleibdl all, teljesiti
a dr(v) = m(v) kivanalmat a v € S pontokban. Valéban, dr(v) = 14 0z(v) < 1+ 6(v) = m(v), azaz
dr(v) <m(v), ésigy [V|—1=|F| =) _odr(v) <m(S)=|V|-1, amib8l dr(v) = m(v) kovetkezik minden
v € S pontra. e

veS

Definidljuk ag: V — ZiU{oco} és [ : V — Z U{—o0} fliggvényeket a kovetkez&képp. Legyen g(v) := oo, ha
veEV—-Sésg(v):=d(v)—fs(v)+1, hav € S. Legyen f(v) := {—o0},hav € V—-S5és f(v) :=d(v)—gs(v)+1,
ha v € S. Egyszertien ellendrizhetd, hogy a (3.12) feltétel ekvivalens a (3.6) feltétellel, és hogy a (3.13) feltétel
ekvivalens a (3.7) feltétel k = 1-re vonatkozé specidlis alakjaval. fgy a lemma alapjan a tétel kovetkezik. o o

Feladat 3.5 Igazoljuk, hogy eqy G hurokmentes 2-élosszefiiggd grdafnak, mindig van olyan F feszitd fdja,
amelyre dp(v) < [da(v)/2] +1 minden v csicsra fenndll.

2014. méjus 12.File: irany2
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4. Fejezet

TIRANYITATLAN LEEMELESEK
ES ALKALMAZASAIK

4.1 Az iranyitatlan élosszefiiggoség megorzése: leemelés

Legyen G = (U, E) irdnyitatlan griafnak e = zu és f = zv két szomszédos éle. Azt mondjuk, hogy a
G = (U, E — {e, f} +uv) grif a G-b8l az e és f élek leemelésével keletkezett. Analég médon definidlhatjuk
a leemelést egy G = (U, F) irdnyitott grafban is: legyenek e = uz és f = zv irdnyitott élek, ekkor definicié
szerint G*Y = (U,E — {e, f} + uv). Konnyen litszik, hogy mind az irdnyitott, mind az irdnyitatlan eset-
ben A(z,y;G) > Az,y; G°f) minden z,y pontpérra fennall, (ahol A(z,y) az irdnyitatlan esetben az x és y
kozott vezetd élidegen utak maximdlis szdmét jeloli, mig az irdnyitottban az z-bél y-ba vezetdkét). Tehdt
leemeléssel az élosszefiiggbség biztosan nem nd. Kérdés, hogy mikor nem csokken. Irdnyitatlan grafokra a
vélaszt a kovetkezd alapveté eredmény adja meg.

TETEL 4.1.1 (Lovasz) A G = (V + z, E) irdnyitatlan grdfban a kijeldlt z pont d(z) foka legyen pozitiv és
pdros. Legyen k > 2 egész és tegyiik fel, hogy

Az, y; G) > k minden x,y € V pontpdrra. (4.1)
Ekkor minden e = zt élhez létezik olyan f = zv €l, amelyekre \(z,y; Gef) > k minden x,y € V' pontpdrra.

Biz. Menger tétele alapjan a (4.1) feltevés azzal ekvivalens, hogy
d(X) > k minden @) # X C V részhalmazra, (4.2)

ahol d(X) jeloli az X halmaz fokszdmat, vagyis azon élek szdmét, melyeknek az egyik végpontja X-ben van,
a masik X-n kiviil. Ha leemeléskor egy halmaznak csokken a fokszama, akkor 2-vel csokken. Egy X C V
részhalmazt nevezziink veszélyesnek, ha d(X) <k + 1.

Legyen S a z szomszédainak halmaza. Egy f = zv él akkor nem emelhet? le az adott e = 2t éllel, ha v benne
van egy ¢t pontot tartalmazo veszélyes halmazban. Indirekt tegytik fel, hogy S lefedhet6 ¢-t tartalmazé veszélyes
halmazokkal, és legyen F a t pontot tartalmazé maximadlis (azaz nem bévithets) veszélyes halmazoknak egy
S-t fedd rendszere, melyre |F| minimdlis.

F nem lehet egytagi, mert ha X olyan veszélyes halmaz, melyre S D X, akkor d(V — X) = d(X) — d(z)
(k+1) —2=k—1, ami ellentmondana (4.2)-nek.

Az sem lehet, hogy F = {X,Y}. Ekkor ugyanis k +1+k+1>d(X)+dY) =d(X -Y) +d(Y — X) +
2d(X,Y) > k + k + 2, amibdl az adédik, hogy 2-bél egyetlen él megy X NY-ba. Az a := d(z,X —Y) és
B = d(z,Y — z) jelolést haszndlva azt kapjuk, hogy d(z) = 1 4+ a + 8. Miutdn d(z) paros, o # 3. Legyen
mondjuk @ > . De ekkor d(V — X) =d(X +2) =d(X) —(a+1)+8<dX)-2< (k+1)—-2< k-1,
vagyis V — X megsérti (4.2)-t.

Végiil kimutatjuk, hogy |F| > 3 sem lehetséges. Ezt kétféleképp is megtessziik: az olvasé eldontheti, {zléséhez
melyik all kozelebb. Az elsd megkozelités rovidebb, annak révén, hogy bevezet egy 1ij egyenlétlenséget a d(X)
fiiggvényre. A mésodik kicsit hosszabb, de csak a mar ismert d(X) +d(Y) =d(XNY)+d(XUY)+2d(X,Y)
azonossagot hasznalja. Kezdjiik tehat a Lovasztdl szarmazé harmas egyenlétlenséggel.

IA

Lemma 4.1.2 Egy irdnyitatlan grdfban, melynek ponthalmaza U, bdrmely A, B,C C U halmazra fenndll a
kdvetkezd egyenlétlenség:
d(A) +d(B) +d(C) >
d(ANBNC)+d(A—(BUC))+d(B—-(AUC))+d(C—-(AUB))+2d(ANBNC,U—-(AuBUC)).
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Biz. Az egyenlStlenséget elég egyélii grafokra igazolni. Ilyenekre pedig az egyenlétlenség az él elhelyezkedésétél
fligg6 egyszerii esetszétvalasztassal ellenérizhetd. o

Allitss 4.1.1 |F| < 2.

1. Biz. Ha indirekt 1étezne A, B,C € F, akkor a lemma alapjan 3(k + 1) > d(A) +d(B) +d(C) > d(AN BN
C)+d(A-(BUC))+dB-(AUC))+d(C—-(AUB))+2d(ANBNC,U—-(AUBUC)) > k+k+k+k+2,
ami ellentmond a k& > 2 feltevésnek. o o

2. Biz. Legyen ismét indirekt A, B,C € F.
Allitds A Ha X és Y dtmetsz6 veszélyes halmazok, melyekre t € X NY, akkor d(X,Y) = 1.

Biz. (k+ 1)+ (k+1) >d(X)+d(Y)=d(X-Y)+dY - X))+ 2J(X, Y) > k+k+2, amibdl az A &llitds
kovetkezik. o

Allitas B Legyenek X és Y &dtmetszé veszélyes halmazok, melyekre t € X NY, és tegyiik fel, hogy X
maximélis veszélyes. Ekkor d(X) =d(Y)=k+1andd(X NY) = k.

Biz. Mar lattuk, hogy két veszélyes halmaz nem fedheti S-t és igy X UY # V. Az X maximalitdsa miatt
dXUY)>k+2 Igy (k+1)+(k+1) >dX)+d(Y)>d(XUY)+d(XNY) > (k+2)+k, amibdl a B
allitas kovetkezik. o

Az A, B,C halmazok koziil legyen A és B az a kett6, melyek M metszete a legnagyobb. A B &llitast
X := A-ra és Y := B-re alkalmazva adddik, hogy d(M) = k. Emiatt C' és M nem lehet dtmetsz8, mert
akkor a B 4llitdst X := C-re és Y := M-re alkalmazva d(M) = k + 1 adédna. Tehat M C C, és igy az M
maximalitdsa miatt ANC = BNC = M. Az A llités szerint d(A, B) = d(A,C) = d(B,C) = 1 vagyis zt
az egyetlen él, amely kilép M-bdl, ellentmondasban a k > 2 feltevéssel. o o

Gyakorlat 4.1 Példdn mutassuk meg, hogy a fenti tétel k = 1-re nem érvényes. Mutassuk meg, hogy a tételben
a d(z) pdrossdgdra tett kikotés nem hagyhatd ki.

TETEL 4.1.3 Legyen a G = (V + z, E) irdnyitatlan grdfban a z pont d(z) foka pozitiv és pdros, és tegyiik fel,
hogy k > 2 egészre (4.1) fenndll. Ekkor a z-vel szomszédos élek pdrba dllithatdk gy, hogy a pdrok szimultdn
leemelésével kapott G' = (V, E') grdf k-élosszefiiggd.

Biz. A 4.1.1 tétel ismételt alkalmazdsival az eredmény rogton kovetkezik. o

A tételben megfogalmazott parba allitast és szimultdn leemelést teljes leemelésnek nevezziik. A tételbél
kapjuk, hogy k > 2-re egy k-élosszefiiggd graf barmely péaros foku csicsdndl van olyan teljes leemelés, amely
k-él6sszefiliggd grafot eredményez. A teljes leemelés inverz miivelete a kdvetkezd: valasszunk ki tetszolegesen j
megléve élt, mindegyiket osszuk fel egy ponttal, és egyesitsiik a j osztas-pontot egyetlen Gj pontta. E miveletre
ugy hivatkozunk, hogy Osszecsipiink j élt (egy 4j ponttal).

Gyakorlat 4.2 Igazoljuk, hogy eqy 2k-élésszefiiggd grdaf k élének dsszecsipése 2k-€losszefiiggd grdfot eredményez.

Kozismert, hogy minden 2-él6sszefiigg6 graf elééllithatd egy pontbdl kiindulva | fiilek” hozzdaddsaval, ahol
a ful egy olyan ut, amelynek két vége mér meglévd pont, mig belsé pontjai (ha vannak egydltaldn) 4j pontok. A
fiilén nincsenek pont-ismétlédések, eltekintve attél, hogy két végpontja esetleg egybeeshet (amikoris a fiil egy
kor). Ebbél a jellemzésbdl rogton adddik, hogy minden 2-él6sszefiiggd graf eldllithaté egy pontbdl kiindulva két
miivelet tetszéleges sorrendben torténd egymas utani alkalmazédsaval, ahol az egyik miivelet két meglévd pont
Osszekotése 1j éllel, a masik pedig egy meglévé él felosztésa 1j ponttal. Ezen elééllitas nyiltszini altaldnositasa
a kovetkezo.

TETEL 4.1.4 Egy G = (V, E) irdnyitatlan grdf akkor és csak akkor 2k-élosszefiiggd, ha egy pontbdl kisndulva
elddllithato az aldbbi két mivelet egymds utdni ismételt alkalmazdsdval.

(A) Két létezd pontot kdssunk ossze g éllel,
(B) Csipjink dssze k meglévd élt egy 1j ponttal.

Biz. A tétel nem-trividlis részének bizonyitdsdhoz sziikségilink van az aldbbi kénnyti lemmara.

Lemma 4.1.5 Minden legaldbb két ponti, él-elhagydsra nézve minimalis K -élosszefliggd grdfnak van K-ad
foki pontja (K > 1).
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Biz. Egy él elhagyasa pontosan akkor rontja el a graf K-élosszefiiggoségét, ha létezik olyan K-foku halmaz,
amely az él egyik végpontjit tartalmazza, a mésikat nem. Legyen X olyan halmaz, amelyre d(X) = K és X
elemszdma minimalis. Készen vagyunk, ha X egyelemii. Tegyiik fel, nem ez a helyzet. Természetesen 1étezik
olyan e = ab él, amelynek mindkét vége X-ben van, mert kiilonben X minden pontja legfeljebb d(X) = K fokd
volna. Most létezik olyan Y ab-halmaz (azaz a-t tartalmazé, b-t nem tartalmazé halmaz), amelyre d(Y) = K.
Az X minimalitdsa miatt sem Y, sem V — Y nem lehet X-nek része vagyis X és Y keresztez&k. De ekkor
K+K>dX)4+d(Y)>dXNY)+dXUY) > K+ K, amib8l d(X NY) = K kovetkezik, ellentétben X
minimalitdsaval. e

A tétel bizonyitdsdhoz |E| szerinti indukciét alkalmazunk. A tétel semmitmondd, ha |V| = 1, {gy legyen
[V| > 2. A feltevés szerint G 2k-élosszefiiggd. Amennyiben létezik olyan e él, amelyre G’ := G — e is 2k-
élosszefiiggd, akkor indukcié alapjan G’-nek mar létezik kivant eléallitasa, és ezt kiegészitve az e él hozzdaddsaval,
a G keresett eléallitasat kapjuk.

Tegyiik most fel, hogy G él-elhagydsra nézve minimalis 2k-él6sszefliggé graf. A lemma szerint 1étezik egy
z pontja, amelynek a foka 2k. Alkalmazzuk a 4.1.3 tételt. A keletkezd G’ graf 2k-élosszefliggs, {gy indukcié
alapjan G'-nek mar létezik kivant el8allitdsa. EbbSl G eldallitdsat tigy kapjuk meg, hogy a G'-ben szerepls k
leemelt élre alkalmazzuk a (B) operaciét. o e

Feladat 4.3 Igazoljuk, hogy egy graf akkor és csak akkor 3-éldsszefiiggd, ha egy pontbdl elddll a fenti (A) és
az aldbbi (B’) és (C) miveletek egymds utdni alkalmazdsdval.

(B’) Osszunk fel egy meglévd élt egy dj ponttal, és az osztépontot kdssik dssze egy tetszbleges meglévd ponttal.

” oz

(C) Osszunk fel két kiilonbozd €élt egy-egy 1j ponttal és az osztdpontokat kissik dssze egy éllel.
Feladat 4.4 Igazoljuk, hogy a 4.1.5 lemmdban valdjaban két pont is létezik a kivdnt tulajdonsdggal.

Gyakorlat 4.5 Legyen K = 2k+1 és tegyiik fel, hogy G = (V, E) grdf K-élosszefiiggd. Igazoljuk, hogy a K -as
vdgasok keresztezés-mentes rendszert alkotnak.

Feladat 4.6 Igazoljuk, hogy pdratian K esetén, ha G élelhagydsra nézve minimdlis K -€élésszefiggd grdf (ame-
lynek legaldbb két pontja van), akkor van olyan e = wv éle, amely legfeljebb csak az u vagy a v csics dltal
(esetleg) meghatdrozott minimdlis vdgdsokban van benne. (Utmutatés. Legyen Z C V olyan halmaz, amelyre
|Z] > 2,d(Z) = K és |Z| minimélis. Ha nincs ilyen halmaz, barmely uv él j6 lesz, ha van, tgy barmely Z 4ltal
feszitett uv él.)

Feladat 4.7 Igazoljuk a Lovdsz tételnek egy olyan vdltozatdt, amelyben a z csucson kivil adott még eqy s csics,
(4.1) csupdn minden x,y € V — s pontpdrra van feltéve, és a leemelés utdn a M(z,y; GF) > k egyenlétlenséget
minden x,y € V — s pontpdrra kéveteljik meg.

Feladat 4.8 Igazoljuk, hogy minden (2k + 1)-€élosszefiiggd grdf egy pontbdl kisndulva elddllithatd az aldbbi
miuveletek eqgymds utani ismételt alkalmazdsdval.

(A) Két létezb pontot késsunk ossze egy éllel,

(B) Csipjink dssze k meglévd €lt egy z csucssal és huzzunk be egy Uj élt z-bdl egy meglévd csiicshoz.

(C) Csipjiink dssze k meglévd élt eqy z csicssal, a keletkezd grdfban ismét csipjiink ossze k meglévd élt egy 2’
csticssal, végiil kossiik Ossze a z és 2’ cstcsokat egy 1] éllel.

4.2 Az iranyitatlan élosszefiiggdség novelése

Tegytk most fel, hogy egy G = (V, E) irdnyitatlan graf nem k-szor élosszefliggd, és uj élek hozzdaddsaval azzd
akarjuk tenni. T6bb kérdés is megfogalmazhatd. Példaul, mennyi a sziikséges 1j élek minimalis szama, illetve
ami ezzel ekvivalens, dontsiik el, hogy adott v szamu 1j él elegendé-e? Vagy, adott fokszam-el6irds esetén
mikor 1étezik olyan novelés, amelyre az 1j élek grafjaAban minden pont foka az el6irt? Ezen utébbi kérdés
megvalaszolasaval kezdjik.

TETEL 4.2.1 Adott G = (V,E) grdf, k > 2 egész, és m : V — Z fokszdm-eléirds. Akkor és csak akkor
létezik olyan H = (V, F) grdf, amelyre du(v) = m(v) teljesil minden v € V ponira és G + H k-élosszefiiggd,
ha m(V') pdros és

F(X) > k — do(X) (43)
teljestil minden O # X C V részhalmazra, ahol m(X) := Y [m(v) : v € X].

Biz. Ha létezik a kivant H, akkor k < dg+u(X) = da(X)+du(X) < da(X)+m(X), amibdl (4.3) kévetkezik.
m(V) péarossiga trividlisan sziikséges.

Az elegenddség bizonyitdsdhoz adjunk a grafhoz egy 4j z pontot és minden v € V pontra m(v) parhuzamos
élt z és v kozott. A (4.3) feltétel szerint teljestl a 4.1.3 tétel feltétele. Igy z-nél létezik teljes leemelés, amely
k-él6sszefiiggd grafot eredményez. A leemelt élek H grifja kielégiti a tétel feltételeit. o
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Gyakorlat 4.9 Igazoljuk, hogy megforditva, a 4.2.1 tétel is implikdlja a 4.1.3 tételt.

Nézziik most meg, hogy hany él hozzavételével tehetd egy graf k-élosszefiiggévé. Nemiires diszjunkt halma-
zoknak egy rendszerét részparticiénak nevezzik.

TETEL 4.2.2 (Watanabe és Nakamura) Fgy G = (V, E) irdnyitatlan grdf akkor és csak akkor tehetd
legfeljebb v 1j él hozzdaddsdval k-€élosszefiiggévé (k > 2), ha a pontok minden {X1,..., X} részparticidjdra

2y > [k —d(X,)]. (4.4)

Masszoval, azon élek minimadlis szdma, melyeknek G-hez addsa k-élosszefiiggé grdafot eredményez, egyenld a
max[y_ (k —d(X;)/2] értékkel, ahol a mazimum a V ésszes részparticidjdra megy.

Biz. A tétel els§ alakjaval foglalkozunk. A sziikségesség bizonyitdsa egyszerti gyakorld feladat. Az elegendéséghez
legyen m : V — Z olyan fiiggvény, amelyre (4.3) fenndll, m(V) > 2v, és m(V) minim4lis.

Lemma 4.2.3 m(V) = 2v.

Biz. Tegyiik fel indirekt, hogy m(V) > 2v. Nevezziink egy X C V halmazt pontosnak, ha k — d(X) = m(X).
Az m minimalitdsa miatt minden olyan v pont benne van pontos halmazban, amelyre m(v) > 0. Minden ilyen
pontra tekintsiink egy v-t tartalmaz6 P, minimalis pontos halmazt.

Alh’tjuk, hogy az ezen halmazok altal alkotott F halmazrendszer laminéris. Valéban, ha P,, P, dtmetszdek,
akkor m(P,)+m(P,) = k—d(Py) +k—d(Py,) < k—d(Py,—Py)+k—d(P,— P,) <m(Py,—P,)+m(P,— P,) =
m(Py) + m(Py) — 2m(P, N P,) < m(P,) + m(P,), amibél az adédik, hogy m(P, N P,) =0, {gy v € P, — P,
és u € P, — P,, tovdbba a P, — P,, P, — P, halmazok pontosak, ami ellentétben all a P, és P, halmazok
minimalis valasztasival.

Legyenek Xi,...,X; az F lamininaris rendszer maximalis tagjai. Ezek tehdt paronként diszjunkt pontos
halmazok és lefedik az &sszes olyan v pontot, amelyekre m(v) pozitiv. A (4.4) feltételbdl kapjuk, hogy m(V) =
>o,m(X) =Y [k —d(X;)] < 2y, ellentétben az indirekt feltevéssel. o

Alkalmazzuk a 4.2.1 tételt. A kapott H gréfnak a lemma miatt vy éle van. e e
Gyakorlat 4.10 Mutassuk meg, hogy a tétel k = 1-re nem érvényes.

Feladat 4.11 A tort élosszefiiggdség novelési problémdban o G = (V, E) grdf élosszefiiggdségét gy akarjuk
novelni, hogy tort éleket is hasznalhatunk, (azaz minden 4j élt egy hozzdrendelt pozitiv kapacitdssal egytitt
adunk meg, és a keletkezd kapacitasos grafot akkor tekintjiik k-élosszefiiggének, ha minden végéasban az eredeti
élek szdma plusz az Uj élek kapacitdsainak Osszege legaldbb k.) A cél a felhaszndlt kapacitdsok dsszegének
minimalizaldsa. Mutassuk meg, hogy k > 1 esetén az optimdlis megoldds vdlaszthatd félegésznek, tovabbd hogy
az egészértéki novelési feladatban k > 2 esetén az optimum értéke legfeljebb féllel nagyobb, mint a tért novelési
feladat optimumdé. k = 1-re viszont az eltérés a (|V| — 1)/2 értéket is elérheti.

4.3 k-élosszefiiggo iranyitasok
A Lovész tételnek egy mésik szép alkalmazdsaként levezetjiik Nash-Williams 3.3.1 tételét.

TETEL 4.3.1 (Nash-Williams, gyenge irdnyitasi tétel) A G irdnyitatlan grdf éleit akkor és csak akkor
lehet gy irdnyitani, hogy az eredményiil kapott irdanyitott graf k-élosszefliggd legyen, ha G 2k-éldsszefliggd.

Biz. A feltétel nyilvéan sziikséges. Az elegenddség igazoldséhoz |V| + |E| szerinti indukciét haszndlunk. A
|[V| = 1,|E| = 0 alapeset trividlis. Alkalmazzuk a 4.1.4 tételt. Amennyiben G egy G’ 2k-élosszefiiggd grafbdl
all els egy 1j e él hozzdadasdval, igy vegyiik a G’'-nek indukcié alapjan 1étezd k-élosszefiiggd irdnyitdsét, és
irdnyftsuk e-t tetsz6legesen: a G {gy keletkezd irdnyitdsa k-élosszefiiggd lesz. Amennyiben G egy G’ grafbdl a
(B) operéacié segitségével 4ll el8, akkor a G'-nek egy k-élosszefiiggd irdnyitdsa természetes médon kiterjeszthetd
a G irdnyitasava, amely nyilvan k-élosszefliggd lesz. o

Igazolhaté a Nash-Williams tétel alabbi élesitése, melyet itt bizonyitas nélkiil emlitiink.
TETEL 4.3.2 Legyen G 2k-élosszefiiggd grdf és H a G-nek egy Euler-részrdfja (azaz H-ban minden pont
foka péros). Ekkor H-nak egy tetszdleges Euler-irdnyitdsdt ki lehet terjeszteni a G-nek egy k-élosszefiggd

irdnyitdsdvd.

Most a Lovasz-féle leemelést hasznalva levezethetjiik a Nash-Williams tétel egy mas irdnyu élesitését.
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TETEL 4.3.3 Egy 2k-élosszefiiggd irdnyitatlan grdfnak létezik k-éldsszefliggd kozel-Euler irdnyitdsa.

Biz. Amennyiben G-nek létezik egy z péaros fokud pontja, gy a 4.1.3 tétel miatt z-nél létezik teljes leemelés
a 2k-élosszefiiggés megdrzésével, és ekkor indukcidval készen vagyunk. Ha viszont minden pont foka paratlan,
akkor a grafbdl kihagyhaté egy alkalmas e = uv éle a 2k-élosszefliggéség megsértése nélkiil, hiszen minimalis
2k-€él0sszefliggd grafrél mar lattuk, hogy tartalmaz 2k-ad fokd pontot. Indukciéval G — e-nek van kozel-Euler
k-€élosszefiiggd iranyitdsa, és mivel G — e-ben mind az u, mind a v foka péros, az e-t tetszdlegesen iranyitva a
kozel-Eulerséget nem rontjuk el. e

2014. méjus 12.file: graf: emell
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5. Fejezet

IRANYITOTT LEEMELESEK ES
ALKALMAZASAIK

5.1 Az iranyitott élosszefiiggoség megorzése leemeléssel

Egy D digrafban az e = uz, f = zv élek leemelésén azt a miiveletet értjiik, amikor az e és f éleket kicseréljiik
egy Uj uv élre. A keletkezd digrafot Df-fel jeloljiik. Az egész fejezetben hasznosnak fognak bizonyulni az
alabbi azonossagok.
o X)+ oY) =0o(XNY)+o(XUY)+d(X,Y). (5.1)
o(X)+o(Y)=0o(X-Y)+o(Y = X)+d(X,Y)+o(XNY)=-§(XNY). (5.2)
Azt mondjuk, hogy egy D = (V, A) digréf csticsainak egy U’ részhalmazdban k-él6sszefiiggd, ha barmely
U’-beli pontbdl barmely méasik U’-beli pontba vezet k élidegen tit. Ez Menger tétele alapjan azzal ekvivalens,
hogy
0(X) > k,5(X) > k minden U’-t elvdlaszté X C V részhalmazra, (5.3)
ahol egy X halmazrél akkor mondjuk, hogy elvalasztja U’'-t, ha U' N X # 0, U’ — X # . (Természetesen
az U’ halmaz k-élosszefiigg8sége nem ugyanaz, mint az, hogy az U’ altal feszitett digraf k-élosszefiiggd.) Az
aldbbiakban egy olyan D = (U + z, A) digraffal fogunk dolgozni, amelynek z kitiintetett pontja.

TETEL 5.1.1 (W. Mader) Legyen a D = (U + z, A) digrdf U-ban k-élosszefiiggd (k > 1), és tegyik fel,
hogy o(z) = §(2). Ekkor minden e = zt élhez létezik olyan f = uz él, amelyre az {e, f} élpdr leemelésével
kapott DT digrdf is U-ban k-élésszefiggd.

Biz. Egy X C U részhalmazt nevezziink be-pontosnak, ha ¢(X) = k és ki-pontosnak, ha 6(X) = k. Az
X-t pontosnak hivjuk, ha ki-pontos vagy be-pontos.

Lemma 5.1.2 Legyen X ésY két t-t tartalmazo pontos halmaz. Ekkor X UY is pontos.

Biz. Készen vagyunk, ha X C Y vagy Y C X, igy feltehetd, hogy nem ez a helyzet. Nem lehet, hogy az egyik
halmaz ki-pontos, a mésik pedig be-pontos, mert ha példéul o(X) =k és §(Y) =k, akkoraz Y :=U + 2 —Y
és az X halmazra 2k = o(X) + o(Y) = o(X UY) + o(X NY) +d(X,Y) > 2k + 1 adédna.

Tegytk fel most, hogy X,Y ki-pontosak. (A bizonyitds analég abban az esetben, ha X,Y be-pontosak).
Nem lehet, hogy X UY = U, mert kiilonben X NY = {2z}, és ekkor felhasznilva, hogy o(z) = §(2), (5.2)
alapjén azt kapnank, hogy 2k = o(X) + o(Y) = o(X = Y) + oY — X) +d(X,Y) > k+ k + 1. Ha viszont
X UY C U, akkor (5.3) miatt 2k = §(X) +6(Y) > (X NY)+5(XUY) > k+ k, amibél a lemma kovetkezik.

Ha egyaltalan nincs -t tartalmazoé pontos halmaz, akkor e = zt-vel barmely f = uz leemelhetd. Ha van ilyen
pontos halmaz, akkor a lemma alapjan létezik egy t-t tartalmazé egyértelmii maximédlis pontos M halmaz.
Nem lehet, hogy minden z-be 1épd él M-bél jon. Ha ugyanis o(M) = k, akkor 6(U — M) = o(M + z) <
o(M) —1 = k — 1, ellentétben az (5.3) feltevéssel, ha viszont §(M) = k, akkor o(U — M) = 6(M + z) <
0(M)—p(2)+6(2) —1 < k—1, ismét ellentétben (5.3)-gyel. Létezik tehat olyan f = uz él, amelyre u € U — M
és ez e-vel leemelhets. o o

Gyakorlat 5.1 Mutassuk meg, hogy a o(z) = §(z) kovetelmény nélkil a tétel mdr k = 1-re sem igaz.
Feladat 5.2 Igazoljuk, hogy ha a D = (U + z, A) digrdf U-ban k-élosszefiiggd (k > 1) és 0(z) < o(z) < 20(z),

akkor z-nél létezik leemelhetd élpdr, amely megdrzi az U-beli k-élosszefiiggdséget.
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Feladat 5.3 Példdval igazoljuk, hogy az elébbi feladatban eldre adott zt élhez nem mindig lehet taldlni uz é€lt,
amelyek leemelése megdrzi az U-beli k-élosszefliggdséget.

Erdemes Mader tételét az aldbbi ekvivalens alakban is megfogalmazni.

TETEL 5.1.3 Legyen a D = (U + z, A) digrdf U-ban k-élosszefiiggs (k > 1), és tegyiik fel, hogy o(z) = 6(z).
Ekkor a z-be belépd és z-bdl kilépd élek pdrba dllithatok gy, hogy a pdrokat egyszerre leemelve k-élosszefiiggd
digrdfot kapunk az U csicshalmazon.

A z-vel szomszédos élek ilyen parba allitdsira és leemelésére a z csics teljes leemeléseként fogunk hi-
vatkozni. A tételt konnyen felhasznédlhatjuk gyoOkeres k-élosszefliggfségre vonatkozé analég eredmény iga-
zolaséra.

TETEL 5.1.4 Legyen D = (U + z, A) olyan digrdf, amelynek egy kijelolt s € U gyokércsicsdbdl U minden
pontjdba vezet k élidegen t, és tegyik fel, hogy op(z) > dp(z). Ekkor a z-bdl kilépd éleket pdrba lehet alkalmas
0p(z) darab z-be belépd éllel gy, hogy e pdrokat egyszerre leemelve és a fennmaradé op(z) — dp(z) z-be lépd
élt pedig kihagyva gydkeresen k-élosszefiiggd digrafot kapunk az U csicshalmazon.

Biz. A digraf minden olyan v csticsdndl (beleértve z-t is), amelynek befoka nagyobb, mint a kifoka, adjunk
a digrafhoz o(v) — 8(v) parhuzamos vs élt. Allitjuk, hogy az gy keletkezd D’ digraf U-ban k-élésszefiiggd.
Valéban, a tétel feltevése szerint egyrészt op/(X) = op(X) > k minden nemiires X C U —s halmazra. Mdasrészt
D’-ben ilyen X halmaz minden pontjinak kifoka legaldbb akkora, mint a befoka, és igy dp/(X) > op/(X) > k.
Az 5.1.3 tétel szerint D’-ben a z-nél létezik teljes leemelés, amely k-8l6sszefiiggd digrafot eredményez U-n. Ha
ebbdl kihagyjuk az s-be vezetd éleket, akkor gyokeresen k-élosszefiiggd digrafot kapunk, amely a tételben eléirt
médon keletkezett D-bdl (ahol D’-ben a leemelésnél a 2-bdl s-be vezet op(z) — dp(z) darab parhuzamos él
z-be 16pé pérjai felelnek meg a kihagyandé éleknek). o

5.1.1 Kis altalanositas

Mader fenti tétele és kovetkezménye valdjdban az aldbbi kissé dltaldnosabb alakban is érvényben marad. A
bizonyitas az eredetinél alig bonyolultabb.

TETEL 5.1.5 Legyen a D = (U + 2,A) digrdf és U C U, hogy a digrdafnak minden v & U’ csicsdra (igy
specidliasan z-re is) o(v) = 6(v). Tegyiik fel, hogy D az U’-ben k-élosszefiiggé (k > 1). Ekkor minden e = zt
élhez létezik olyan f = uz él, amelyre az {e, f} élpdr leemelésével kapott D digrdf U'-ben k-élésszefiggd.

Biz. Egy U'-t elvdlaszté X C U részhalmazt akkor neveztiink be-pontosnak, ha o(X) = k és ki-pontosnak,
ha §(X) = k. Egy {uz, 2t} élpar akkor és csak akkor felel meg a tétel kivdnalmainak, ha nincsen olyan pontos
halmaz, amely tartalmazza t-t és u-t.

Lemma 5.1.6 Legyen X ésY két t-t tartalmazo pontos halmaz. Ekkor X UY 1is pontos.

Biz. Nincs mit igazolni, ha X C Y vagy Y C X igy feltesssziik, hogy nem ez a helyzet. Nézziik azt az esetet,
amikor az egyik halmaz be-pontos, a mésik pedig ki-pontos, azaz o(X) = k és 6(Y) = k. Legyen Y := U+2-Y.
Tegyiik fel elészor, hogy X — Y = X NY nem vélasztja el U’'-t. Az nem lehet, hogy U’ C X — Y, mert
akkor Y nem vélasztand el U’'-t. fgy tehdt X — Y-nak semelyik pontja sincs U’-ben. Ekkor a tétel feltevése
szerint ezen pontok be- és kifoka megegyezik, amibél o(X NY) = §(X NY) adédik. Most nyilvan mind X NY,
mind X UY elvélasztja U'-t, fgy (5.2) alapjan 2k = o(X) + o(Y) = o(X = Y) + o(Y — X) + d(X,Y) >
o(XNY)+6(XUY) > k+ k. Emiatt végig egyenléségnek kell §llnia és {gy X UY ki-pontos halmaz.

fgy tehat feltehetjiik, hogy X — Y elvalasztja U'-t, és analég médon azt is, hogy Y — X =V — (X UY)
elvélasztja U'-t. Emiatt o(X —Y) >k és o(Y — X) > k és igy 2k = o(X) + o(Y) = o(X UY) 4+ o(X NY) +
d(X,Y) > 2k + 1 adédik, vagyis ez az eset nem fordulhat el6.

Nézziikk most azt az esetet, amikor X és Y ki-pontosak. (A bizonyitds analég abban az esetben, ha X,Y
be-pontosak). Nem lehet, hogy U’ C X UY, mert akkor a tétel feltevése miatt o(X NY) = §(X NY) és ekkor
(5.2) alapjan azt kapnank, hogy 2k = o(X) + o(Y) = o(X —Y) + oY — X) +d(X,Y) > k+ k + 1. Analég
médon, nem lehet, hogy U’ N (X NY) = . Igy tehat mind X UY, mind X NY elvalasztja U'-t és igy (5.1)
miatt 2k = §(X) +0(Y) > 0(X NY)+6(X UY) > k + k, amibdl adédik, hogy X UY ki-pontos, és a lemma
kovetkezik. o

Ha egyéltalan nincs ¢-t tartalmazé pontos halmaz, akkor e = zt-vel barmely f = uz él leemelhets. Ha
van ilyen pontos halmaz, akkor a lemma alapjan létezik egy M egyértelmii maximalis ¢-t tartalmazé pontos
halmaz. Azt kell kimutatnunk, hogy a grafban létezik olyan uz él, amelyre u € U — M. Tegytk fel indirekt,
hogy minden z-be 1ép8 él M-bél jon. Ha o(M) = k, akkor 6(U — M) = o(M + 2) < o(M) —1 =k — 1,
ellentétben az (5.3) feltevéssel. Ha §(M) = k, akkor o(U — M) =0(M +2) <06(M) —o(2) +(2) — 1=k —1,
ismét ellentétben (5.3)-gyel. @ ®

Megmutatjuk, hogy az 5.1.5 tétel is alkalmazhat6 gyoOkeres élosszefiiggés megorzésére is.
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TETEL 5.1.7 Legyen a D = (U, A) digrdf olyan, hogy (x) az s gyokérpontbdl egy T C U halmaz minden
pontjaba vezet k > 1 élidegen 1it, azaz

A(s,u) > k minden uw € T cstcsra. (5.4)

Tegyiik fel, hogy

minden v € U — T csicsra p(v) > §(v). (5.5)
Ha egy z € U — T csicsra o(z) > 0(2), akkor o(z) — 6(z) darab z-be lépd él kihagyhaté gy, hogy az (5.4)
tulajdonsdg fennmarad. Ha o(z) = §(z), akkor létezik z-nél olyan leemelés, amely (5.4)-t megdrzi.

Biz. A digraf minden olyan v € U pontjdra, amelyre g(v) > §(v) adjunk g(v) — d(v) darab v-b6l s-be mend
pérhuzamos élt. Ekkor a keletkezd D’ digraf minden v € U — s csicsdra fenndll, hogy ¢’ (v) < 6’(v), amibél
minden X C U halmazra §'(X) > o'(X). Allitjuk, hogy az U’ := T'+ s halmaz D’-ben k-élosszefiiggd. Valéban
a tétel feltételét haszndlva minden T-t metsz8 X C U halmazra §'(X) > o' (X) = o(X) > k.

Az 5.1.5 tétel miatt D’-ben a z-nél 16v8 bemend és kimend élek parba allithaték gy, hogy a parok koziil
akdrmennyit leemelve a keletkezd digraf U’'-ben k-élosszefiiggd. Ebbdl adddik, hogy ha o(z) = 46(z), akkor
ugyanezen leemeléseket D-ben végrehajtva (5.4) fennmarad. Ha viszont o(z) > §(z), gy o(z) — d(z) darab
z-be 1épb él parja v-bdl s-be mend (hozzdadott) él lesz, és ezért ezen z-be 1ép6 élek halmaza kitorolhetd D-bol
a (5.4) megsértése nélkil. o

5.2 Az iranyitott élosszefiiggoség novelése

Mader irdnyitott leemelési tételének segitségével megoldhatjuk az irdnyitott élosszefliggdség novelésének prob-
1émajat. Tegyiik fel, hogy egy D = (U, A) irdnyitott graf nem k-élosszefliggd, de 1j élek hozzdaddsdval sz-
eretnénk azzd tenni. Jelolje a keresett uj élek digrafjdt H = (U, F). Tobb kérdés is természetesen adddik.
H-nak a be- illetve a ki-fokaira tehetiink el6irdast, H élszamara felsé korlatot, illetve kozos altalanositasként a
be- és ki-fokokra felsé korlatot és az élszamra fels6 korlatot.

TETEL 5.2.1 Adott D = (U, A) digrdf és mpe : U — Zy, my; : U — Zy fokszdm-elSirdsok. Akkor és csak
akkor létezik olyan H = (U, F') digrdf, amelyre o (v) = mpe(v) és du(v) = myi(v) teljesil minden v € U
pontra és D + H k-élésszefiiggs, ha mpe(U) = my;(U),

T?Lbe(X) 2 k — QD(X) (56)

mii(X) >k —6p(X) (5.7)
teljesiil minden O # X C U részhalmazra.
Biz. Ha létezik a kivant H digraf, akkor k < op1u(X) = 0p(X) + 0u(X) < 0p(X) + mMpe(X), amibél (5.6)
kovetkezik. (5.7) analég médon lathaté. Mivel mind mee (U), mind my;(U) a H éleinek szdméaval egyenld, igy
Mpe(U) = mu; (U).
Az elegendéség bizonyitdsdhoz adjunk a grafthoz egy Uj z pontot és minden v € U pontra mp. (v) parhuzamos
élt 2-bdl v-be és my;(v) parhuzamos élt v-bél z-be. Az (5.6) és (5.7) feltételek szerint teljesiil az 5.1.3 Tétel

feltétele. fgy a z-be bemend és a 2-bél kijévé élek gy parba allithaték, hogy az mpe(U) darab par leemelésével
keletkez6 digraf k-élosszefiiggs. A leemelt élek H digrifja kielégiti a tétel feltételeit. o

TETEL 5.2.2 Egy D = (U, A) irdnyitott grdf akkor és csak akkor tehetd legfeljebb ~ uj €l hozzdaddsdval
k-élosszefiiggévé, ha a pontok minden {Xu,..., Xt} rész-particidjdra

v > k= o(X)] (5.8)
¥ =) k= 6(X)). (5.9)
Biz. A sziikségesség bizonyitasa egyszeri gyakorld feladat. Az elegendbséghez legyen my. : U — Z4 olyan

fiiggvény, amelyre (5.6) fennall, mpe(U) > 7 és mMpe(U) minimalis.

Lemma 5.2.3 mp.(U) = .
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Biz. Indirekt legyen my.(U) > 7. Nevezziink egy X C U halmazt be-pontosnak, ha k — o(X) = mpe(X).
Az mpe minimalitdsa miatt minden v pont, amelyre mp.(v) > 0, benne van be-pontos halmazban. Tekintsiik a
(tartalmazdsra nézve) maximalis be-pontos halmazok M := {X1,..., X;} csalddjit. Ha ennek létezik két X, Y
tagja, melyekre X UY = U, akkor (5.9)-t az {X, Y} rész-particiéra felirva (ahol X := U — X, Y :=U —Y) azt
kapjuk, hogy v > k—8(X)+k—6(Y) = k—o(X) +k—0(Y) = Mpe(X) +Mpe(Y) > mpe(U), ellentmondasban
az indirekt feltevéssel.

Kovetkezik tehdt, hogy M barmely két X, Y tagjgra X UY # U. Emiatt X N Y = @, mert kiilonben
k—mpe(X)+k—mpe(Y) =0(X)+0Y) > oXNY)+o(XUY) > k—mp(XNY)+k—mp(XUY) =
k—mpe(X)+k—mpe(Y), amibél az kovetkezik, hogy XUY is be-pontos ellentétben X vagy ¥ maximalitdsdval.

Azt kaptuk, hogy M be-pontos halmazokbdl 8116 rész-particié, amely fedi az Gsszes olyan pontot, amelyre
Mee(v) > 0. (5.8)-t haszndlva mpe(U) = > [mpe(X) : X € M] =D [k — o(X) : X € M] <, ellentmondds. e

Analég médon kaphatunk egy (5.7)-t kielégitd my; fiiggvényt, amelyre my;(U) = v. Az 5.2.1 Tétel alka-
Imazasaval a bizonyitas teljes. o o

Az élosszefiiggés novelésével kapcsolatban érdemes még megvizsgédlni a novelési feladatot, ha csak az my;
fiiggvény van eléirva (amivel nyilvdn analég az az eset, amikor csak az mpe fliggvény el6irt).

TETEL 5.2.4 Adott D = (U, A) digrdf és my; : U — Zy kifokszdm-eléirds. Akkor és csak akkor létezik olyan
H = (U, F) digrdf, amelyre du(v) = my;(v) teljesil minden v € U pontra és a D + H digrdf k-élésszefiiggd,
ha

mii (U) > Z[k — op(Xi)] (5.10)

teljesil U minden {X;} részparticidjdra és
mi(X) >k —dp(X) (5.11)
teljesiil minden O # X C U részhalmazra.

Biz. Legyen v := my;(U). Ezen +-ra alkalmazva az el8bbi tétel bizony{tdsat, most csak az my. fiiggvényt kell
megkonstrualnunk, hiszen az my; mar eleve adott. Tekintsiik tehat a minimalis myp. fliggvényt, amely teljesiti
(5.7)-t. Elég igazolni, hogy az 5.2.3 Lemma érvényben van. Ha a lemma bizonyitdsaban szereplé M-nek létezik
két X,V tagja, melyekre X UY = U, akkor (5.11) alapjan mp(X) = k — op(X) = k — p(X) < mpi(X) és
analég mpe(Y) =k —op(Y) = k—6p(Y) < mui(Y). Ezeket dsszeadva kapjuk: mpe (U) < Mpe(X) +mpe(Y) <
ﬁzkl(X) + T7L;“(Y) < my;(U) = v, ami épp a lemma 4llitasa.

Amennyiben M-ben nincs két ilyen X, Y tag, dgy (amint azt mar 1dttuk) M részparticio, és ezért (5.10)
szerint v = mi:(U) > >~ [k — op(Xi)] = Y, [Mbe(Xi)] = mue(U), tehat a lemma ekkor is fennall. o

Feladat 5.4 Igazoljuk, hogy egy digrdf akkor és csak akkor tehetd erdsen Osszefiiggévé legfeljebb ~ uj €l
hozzdvételével, ha legfeljebb v forrdskomponense van és legfeljebb v nyelékomponense van. (A forrdskomponens
egy 0 befokd, a nyel6komponens egy 0 kifoki er8sen Osszefliggd részgraf).

5.3 Gyokeresen k-élosszefiiggd digrafok eloallitasa

Lemma 5.3.1 Tegyiik fel, hogy eqy D = (V, A) digrdfban (x) egy s gyokérbél eqy U C V — s halmaz minden
pontjdba vezet k élidegen 4t. Ha valamely t € U csucsra o(t) > k, akkor az egyik t-be lépd él kihagyhatd a (x)
tulajdonsdg elrontdsa nélkil.

Biz. Tekintsiink k élidegen utat s-bél t-be és legyen e = ut egy ezen utak altal nem haszndlt t-be 1ép6 él.
Allitjuk, hogy e kihagydsa utdn () fenndll. A k it miatt ugyanis minden U-beli v pontra igaz, hogy barmely
v3-halmaz befoka G — e’-ben is legalabb k, és igy Menger tétele szerint 1étezik s-bSl v-be k élidegen tit. o

Gyakorlat 5.5 Igazoljuk, hogy egy élelhagydsra nézve minimdlis k-élosszefiggd digrdfnak legfeljebb 2k(n — 1)
éle van. Azt is mutassuk meg, hogy ez a korlat éles abban az értelemben, hogy létezik 2k(n — 1) €éld minimdlis
k-élosszefiiggd digraf.

TETEL 5.3.2 Egy D digrdf akkor és csak akkor s-bdl k-élosszefiiggé (k > 1), ha elddllithatd az s-bdl kisndulva
az aldbbi hdrom mduvelet egymds utdni ismételt alkalmazdsdval.

(Bl) Két létezd pontot kdssink dssze egy irdnyitott éllel.

(B2) Adjunk a digrdfhoz egy 1j pontot és vezessink bele k j €lt.

(B3) Csipjiink ossze j meglévd élt (0 < j < k) egy 4j z ponttal, és adjunk a digrdfhoz k — j darab z-be vezetd
(esetleg parhuzamos) j €lt.
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Biz. Konnyen latszik, hogy a megadott miiveletek gyokeresen k-élosszefiiggd digrafot eredményeznek. A meg-
forditashoz élszam szerinti indukciét hasznalunk. Amennyiben a digrafnak van olyan e éle, amelyet elhagyva a
gyOkeresen k-élosszefliggéség fennmarad, gy indukcié miatt D — e-nek mar 1étezik a kivant eléallitasa. Ennek
a végén a (B1) miivelettel az e élt visszaadva megkapjuk D keresett eldallitdsét. Feltehetjik tehdt, hogy D
minimalisan gyOkeresen k-élosszefliggd. Készen vagyunk, ha |V| =1, igy legyen |V| > 2.

Az 5.3.1 lemma szerint g(v) = k, ha v # s. A minimalitds miatt s-be nem 1ép be él, és fgy 0 = o(s) < d(s),
ezért van olyan z pont, amelyre (kK =)o(z) > 0(z). Az 5.1.4 tétel miatt a z-be mend élek koziil k — §(z)
kihagyhaté és a fennmaradé j := §(z) darab z-be 16p6 él leemelhetd tigy, hogy a létrejové D’ digraf gyokeresen
k-élosszefiiggd lesz. De ekkor az eredeti D digraf 6(z) = 0 esetén a (B2), mig §(z) > 1 esetén a (B3) miivelet
segitségével 4ll elé D’-bél, és gy indukciéval a tétel kovetkezik. o

5.3.1 Fenyok pakolasa

Nevezziink egy D = (V, A) digrafot k-fenyds-osszefiiggbnek valamely s € V gyokérpontjara nézve, ha D
tartalmaz k élidegen s-gyokerti feszit6 fenyét.

Lemma 5.3.3 Az5.3.2 tételben szerepld (B1l), (B2), (B3) mduveletek megdrzik egy digrdf k-fenyd-osszefiiggdségét.

Biz. Tegyiik fel, hogy a D' = (V' A’) digréf k-feny6-6sszefiiggd és legyenek Fi, Fo, ..., F) élidegen fesz{td s-
feny&k. A lemma éllitdsa a (B1) és a (B2) miiveletekre vonatkozolag nyilvanvald, igy csak (B3)-mal foglalkozunk.
Jelolje D = (V, A) a (B3) miivelettel D’-bél keletkez6 digrafot. Amennyiben egyik feny6 él sem kertil dsszecsipésre,
ugy a z-be belépd k darab 1j élt tetszés szerint szétoszthatjuk a k darab F; feny6k kozott. Tegyiik most fel, hogy

a k feny6 koziil az elsé o > 1 darab haszndl (B3) soran dsszecsipett élt. Mindegyik ilyen Fi-re (1 <14 < «) tek-
intsiink egy olyan e; = u;v; 6sszecsipésre keriil6 élt, amely az F;-ben a gydkérhez legkozelebb van. Mddositsuk
az Fi-t ugy, hogy e;-t helyettesitjik az u;z és zv; élekkel, az Gsszes tobbi Fj-beli Osszecsipésre keriilé uv élt
pedig helyettesitjiik az zv éllel. fly médon kapunk « élidegen feszit6 fenyét D-ben. Ekkor még fennmarad k — «
darab z-be 1ép§ él, amelyeket a fennmaradt ugyanennyi darab F; (i = a+ 1,..., k) feny6k kozott szétosztva
megkapjuk a D digraf k élidegen feszité s-fenyéjét. e

TETEL 5.3.4 (Edmonds: gyenge alak) Ha egy D = (U, A) digrdf valamely s gyokérre nézve k-élésszefiiggd,
ugy tartalmaz k élidegen s-gyokeri feszitd fenydt.

Biz. Az 5.3.2 tétel szerint D el84ll valamely D’ gyokeresen k-8l6sszefiiggd digrafbdl az ott megadott miiveletek
segitségével. Indukcié alapjan D’-ben 1étezik k élidegen feszitS fenyd, és igy a lemma alapjan D-ben is. o

Feladat 5.6 Adjuk meg az olyan irdnyitatlan grdfoknak az elézével analdg elbdllitasdt, amelyek tartalmaznak
k élidegen feszitd fdt.

Feladat 5.7 Vezesstik le Edmonds tételébdl az 5.3.2 elballitdsi tételt.

Altalanositas

Az 5.1.5 tétel segitségével megadhatjuk az Edmonds tétel gyenge alakjdnak altaldnositasét is.

TETEL 5.3.5 Tegyiik fel, hogy eqy D = (V, A) digrdf valamely s gyokérpontjdira és csicsainak egy s-t nem
tartalmazé T C 'V részhalmazdra nézve k-szor (s,T)-élosszefiiggd, azaz létezik s-b6l T minden pontjiba k-
élidegen ut. Tegyiik fel, hogy minden v € V. — T — s csicsra o(v) > §(v). Ekkor létezik k élidegen s-gyokerd
fenyd, melyek mindegyike tartalmazza az egész T'-t.

Biz. Az 5.3.1 lemma szerint feltehetjiik, hogy minden T-beli csiics befoka pontosan k, mig s befoka 0.
Abban az esetben, amikor U’ := T + s valédi része V-nek, egy z € V — U’ csticsra alkalmazhatjuk az 5.1.7
tételt, és akkor indukciéval készen vagyunk. Tegyiik fel tehat, hogy T' =V — s. o(s) = 0 < J(s) miatt van
olyan z pont, amelynek befoka nagyobb, mint a kifoka. Az els6 rész szerint 1étezik k élidegen s-fenyd, amelyek
mindegyike tartalmazza T — z minden pontjat. E feny6 kozil ha j tartalmaz z-be 1épé élt, akkor a maradék
k — j darab z-be 1ép06 élt kiosztva a maradék k — j feny6 kozott a keletkezd k feny6 mindegyike feszito lesz. o

Feladat 5.8 Példdval mutassuk meg, hogy az 5.3.5 tételben a o(v) > §(v) kévetelmény nem hagyhaté ki (mér
a k = 2 esetben sem: van példa 6t ponti digréfon!)

Kovetkezmény 5.3.6 Tegyiik fel, hogy a D = (V, A) digrdf élei dgy vannak megszinezve, hogy az azonos szind
élek feje megegyezik. Akkor és csak akkor létezik k élidegen feszitd s-fenyd ugy, hogy semelyik szinosztdalyt sem
haszndlhatja tobb, mint egy fenyd, ha barmely X CV — s halmazra az X-be belépd élek kozott van legaldbd k
kiilonbozd szind.
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Biz. A feltevés nyilvan sziikséges. Az elegenddség bizonyitdséhoz minden v € V — s pontra vezessiink be
> o(v) 4j pontot, ahol o(v) jeldli a v-be mend élek kiilonbozd szineinek a szdmat, helyettesitsiink minden
egyes v-be mend i szinl élt egy v;-mend éllel, ahol v; az i-dik szinnek megfelel$ 1j pont, és mindegyik v-nél
1évé 1j pontbdl vezessiink egy 1j élt v-be. Legyen T := V — s. Most minden 7" + s-n kiviili pont kifoka egy,
igy teljesil az elézd 5.3.5 tétel feltétele. Az uj digraf k élidegen T-feszité fenyOje az eredeti digrafban k olyan
fenyOnek felel meg, melyek élei mind kiilonb6z6 szintiek. o

Feladat 5.9 Legyenek {si,t;} pontpdrok egy k-élosszefiiggé D digrdfban. Bizonyitsuk be, hogy léteznek élidegen
utak $;-bbl ti-be (i =1,2,...,k).

Fiiggetlen feny6k

TETEL 5.3.7 (Huck) Legyen D = (V, A) aciklikus egyszert digrdf, melyben S = {s1,...,sx} a forrdspontok
(azaz 0 befoku pontok) halmaza U :=V — S pedig a tdbbi csicsé. Tegyik fel, hogy minden u € U pont befoka
legaldbb k. Ekkor i =1,..., k-ra léteznek s; gydkerd U + s;-t feszitd F; fenydk dgy, hogy minden w € U pontra
az eqyes F; fenydkben lévd s;u-utak az u-tdl eltekintve diszjunktak.

Biz. A tételben leirt tulajdonsiagui fenySket nevezziik fiiggetlennek.

Lemma 5.3.8 Ha egy D' = (U + s, A") egyszert aciklikus digrdfban egy s forrdsponton kivil minden pont
befoka legaldabb egy, akkor az U elemeinek létezik egy olyan sorrendje, amelyben az elére mutato élek halmaza
néhany s-bol induld éllel kiegészitve feszitd s-fenydt alkot.

Biz. Az §llitds nyilvdnvals, ha U egyelemi, {gy tegyiik fel, hogy |U| > 2. Ekkor létezik egy z nyelépont.
Indukciéval a D’ — z digrafban 1étezik az U — z-beli csticsoknak egy kivant sorrendje. Amennyiben z-be egyediil
az s-bol vezet él, ugy tegylik z-t a meglévo sorrend elé legels6 pontnak. Ha viszont U valamely pontjabdl 1ép
él z-be, akkor jeldlje u; a sorrendben legelss ilyent és illessziik z-t az u; és a rakdvetkez6 u;y1 pont kozé. Az
U igy kapott sorrendjére a lemma kivdnalma teljesiil, hiszen az egyetlen 1ij elére mené él u;z. o

A tétel k = 1-re nyilvanvald, ezért feltessziik, hogy k > 2. Alkalmazzuk a lemmat a D digraf U + s, éltal
feszitett D' = (U + sy, A’) részgréafjara. Legyen u1,...,u, az U elemeinek a lemma 4dltal biztositott sorrendje
és F} az ehhez tartozé fenyé.

Jelolje D" azt a digrafot, amely D-bél keletkezik az sj csics valamint az Fj, feny6 éleinek elhagydséval.
Indukcié miatt D”-beni = 1,...,k— 1-re léteznek a kivant Fi,. .., Fy_; fiiggetlen fenySk. Miutdn ezen feny&k
minden U-beli pontbdl indulé éle az ui,...,u, sorrendben visszafelé vezet, mig az F) feny6 élei mind el6re,
ezért minden u € U pontra az Fi-ban 16v8 siu-titnak és bdrmely Fi-ben (i = 1,...,k — 1) 16v6 s;u-titnak u
az egyediili kozos pontja. e e

Bebizonyithatd, hogy tetszéleges digrafban k = 2-re, ha azt tessziik fel, hogy az S (kételemii) halmazbdl

minden v € U csicsba vezet 2 diszjunkt 1t, akkor létezik két fiiggetlen fenys. Magasabb k-ra ugyanakkor a
megfelel§ dllitds mar nem érvényes.

5.4 Fedések és pakolasok (iranyitott) fakkal

Az Edmonds tétel egy érdekes alkalmazésa a kovetkezd. Egy irdnyitott erd6t nevezziink fenyvesnek, ha minden
pont befoka legfeljebb egy (mdsszéval az erdé mindegyik komponense feny6).

TETEL 5.4.1 A D = (V, A) digrdf élhalmaza akkor és csak akkor fedhets le k fenyvessel, ha (i) minden pont
befoka legfeljebb k, és (i) i(X) < k(|X| — 1) teljesil minden X C V halmazra, ahol i(X) jeloli az X dltal
feszitett élek szamdt.

Biz. Mindkét feltétel szlikségessége nyilvanvals. Az elegendéséget elemi konstrukciéval igazoljuk. Adjunk a
digréfhoz egy 1j s pontot és minden v pontra k — g(v) parhuzamos élt s-b6l v-be. Az 4j D’ digrafban minden
X C V halmazra fennall o' (X) = o(X) + > [k — o(v) : v € X] = o(X) — o(X) — i(X) + k| X| > k. Az 5.3.4
tétel szerint létezik k diszjunkt s-gyokert feszit6 fenyd. Ezeket az eredeti D-re megszoritva k fenyvest kapunk,
melyek fedik D éleit. o

Feladat 5.10 Igazoljuk, hogy ha egy pdrhuzamos élt és hurkot nem tartalmazé digrafban minden pont befoka
legfeljebb K, akkor az élhalmaz lefedheté K + 1 fenyvessel.

Irdnyitatlan grafokra konnyen levezethetjiikk Nash-Williams [1960] (torténetileg kordbbi) tételét.
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TETEL 5.4.2 (C.St.J.A. Nash-Williams) Egy G = (V,E) irdnyitatlan grif élhalmaza akkor és csak
akkor fedhetd le k erddvel, ha minden ) # X C V részhalmazra

ia(X) < k(| X]| - 1). (5.12)

Biz. A 2.2.7 tétel szerint G = (V, E)-nek akkor és csak akkor van olyan irdnyitdsa, amelyben minden pont
befoka legfeljebb k, ha ig(X) < k|X| teljesil minden X C V-re. Igy a tétel feltételébdl kovetkezik ilyen
irdnyitas létezése, és ezért az 5.4.1 tételt alkalmazhatjuk. e

Feladat 5.11 Igazoljuk, hogy egyszeri sikgrdf élei lefedhetdk hdrom erddvel.
Iranyitasok segitségével Edmonds tételébdl levezethetjiik Tutte diszjunkt fakra vonatkozé eredményét is.

TETEL 5.4.3 (W.T. Tutte) Egy G = (V, E) irdnyitatlan grdf akkor és csak akkor k-fadsszefiggd, ha k-
particio-osszefiiggs, mdsszoval, G-ben akkor és csak akkor létezik k élidegen feszitd fa, ha V. minden F :=
{Vi,..., Vi} particidjdra fenndll, hogy

e(F) > k(t—-1), (5.13)

ahol e(F) a részek kozott vezetd élek szdmdt jeloli (azaz e(F) =, d(V;)/2).

Az elegend8ség bizonyitasa érdekében csupan azt kell beldtnunk, hogy valamely kijeldlt s pontra létezik G-
nek s-bél k-élosszefiiggs irdnyitasa. Ebben az esetben ugyanis Edmonds tétele miatt a megirdnyitott grafban
létezik k élidegen feszité fenyd, melyek az eredeti irdnyitatlan grafban megadjék a keresett k élidegen feszit6
fat. Az 3.2.1 tétel alkalmazdsdval a v = 0 esetben Tutte tétele adédik, magasabb «-ra pedig az aldbbi tobblet.

Kovetkezmény 5.4.4 Egy G = (V, E) irdnyitatlan grdfot akkor és csak akkor lehet legfeljebb ~y j €l hozzdaddsdval
dgy kibdviteni, hogy a megnovelt grdf tartalmazzon k élidegen feszitd fdat, ha (3.4) teljesil V' minden F =
{V1,...,Vi} particidjira. Tetszdleges s € V pontra érvényes tovdbbd, hogy az ij élek mind vdlaszthatdk s
végpontinak.

Egy jaték

Befejezésiil alljon itt Tutte tételének egy kedves alkalmazdsa. Egy G = (V, E) irdnyitatlan grafon két jatékos
—vagd és koté— jatszik. Kotd egy lépésében kivélaszt egy élt és Osszehizza. Vagd egy lépésében kivdlaszt egy
élt és eltorli. Kotd nyer, ha sikeriil egy ponttda Osszehiznia a grafot, ami azzal ekvivalens, hogy sikeriilt egy
feszito fa valamenyi élét kijelolnie. Vagé nyer, ha egy vagas éleit mind kitordlte. Tegyiik fel, hogy vagd kezd.

TETEL 5.4.5 Kitének akkor és csak akkor van nyerd stratégidja, ha van két élidegen feszité fa. Vdagonak
akkor és csak akkor van nyerd stratégidja, ha a csicsoknak létezik egy olyan {Vi,...,Vi} particidja, amelyben
a keresztélek szdma legfeljebb 2t — 3.

Biz. Tutte tételét k = 2-re alkalmazva kapjuk, hogy egy grafban akkor és csak akkor van két élidegen feszit6
fa, ha a csticsoknak minden {V4,...,V;} particijidra a keresztélek szdma legaldbb 2t — 2. Tehat a kétféle
konfiguracié koziil, pontosan az egyik 1étezik.

Tegyiik fel, hogy létezik Fi, s két élidegen feszit6 fa. Ha vdgé mondjuk Fi egy e élét torli el, akkor koté
vélaszul F>-nek egy olyan élét hizza Ossze, amely az I} — e erd6 két komponense kézott vezet. Ha vag nem
F1 U Fs-beli élt torol, akkor koté barmelyik faélt Gsszehiizhatja. Mindkét esetben a keletkezett grafban van
két élidegen feszit6 fa. Tehat, ha van két élidegen feszité fa, akkor kétének valéban van nyerd stratégisja.

Tegyilik most fel, hogy létezik olyan {Vi,...,V;} particié, amelyre a keresztélek szdma legfeljebb 2t — 3.
Viégé minden 1épésében ezen keresztélek egyikét hagyja el. Az els6 1épés utan legfeljebb csak 2¢ — 4 keresztél
marad. A koté az egész jaték sordn ezen keresztéleknek legfeljebb csak a felét vélaszthatja, azaz legfeljebb
t — 2-t, vagyis a kot6 altal valasztott élhalmaz biztosan nem lesz Osszefiiggs. e

Feladat 5.12 Igazoljuk, hogy ha egy grdf felbonthatd k élidegen feszitd fa unidjdra, akkor gy is felbonthatd,
hogy a grdf egy alkalmas pontja mindegyik faban legfeljebb 2 foki.

Fentebb megmutattuk, hogy Tutte tétele miként kovetkezik egy iranyitési tétel kozbeiktatasaval Edmonds
fenyo tételébdl. Most megmutatjuk, hogy az Edmonds tétel gyenge alakja is levezetheté Tutte tételébol.

Biz. (az 5.3.4 tételben az elegenddségé) Kozismert, hogy irdnyitatlan grafban, ha adott két feszit fa és az
egyiknek egy éle, akkor a mdsiknak van olyan éle, amellyel kicserélve egymdast mindkét fabdl fat kapunk. (Ez
altaldban egy matroid két bézisdra is érvényes.) Az is vildgos, hogy

(%) ha uwv1 és uve egy fa két éle, akkor egy uvs nem-fa él legfeljebb csak az egyikiik helyére cserélhetd be gy,
hogy fat kapjunk.
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Alh’tjuk, hogy ha egy digréfban ha A(s,v) > k minden v csticsra teljesiil, de barmely élt eltorolve ez mar
nem igaz, akkor g(v) = k minden v # s csucsra. Valéban, a feltevés szerint minden él belép pontos halmazba.
Tovabba lattuk, hogy egy v pontot tartalmazé pontos halmazok P(v) metszete pontos, és igy minden v-be
1ép8 él P(v)-be is belép, amibél adédik, hogy o(v) = k.

Ennek alapjén az Edmonds tételt elég olyan digrifokra igazolni, amelyben

o(s) =0, (5.14)

o(w)=k (veV —s), (5.15)

vagyis ilyenkor az élek szdma k(n—1). A o(X) > k (X C V —s) feltételbél adédik, hogy V barmely {Vi,...,V;}
particiéjara a kereszt-élek szdma legaldbb k(t—1). Tutte tétele alapjin a digraf élhalmaza felbomlik & élidegen
feszit6 fa unidjara. A kovetkezét igazoljuk.

)3

Lemma 5.4.6 Ha egy D irdnyitott grdf felbomlik k élidegen feszité fa unidjdra, tovdbbd (5.14) és (5.15)
teljesil, akkor D felbomlik k fenyd unidjdra is.

Biz. Nyilvédn létezik olyan u pont, amelynek kifoka kisebb, mint k£ (ami a befoka). Alh’tjuk, hogy van olyan
fakra bontds, amelyben minden fa pontosan egy u-ba 1épé élt hasznal. Valéban ha az egyik F' fa két v-be 1ép6
élt haszndl, akkor a felbontds egy masik H fija egyet sem, és ekkor az I’ egyik u-be 1épd élét a H alkalmas
élével felcserélve jobb felbontast kapnéank.

Kimutatjuk, hogy 1étezik olyan fa-felbontds is, amelyben rdaddsul minden fa legfeljebb egy u-bdl kilépé élt
hasznél. Valéban, ha az egyik fa, F', haszndlnd mondjuk az uwvi és uve éleket, akkor egy masik fa, H nem
hasznélna u-bdl kilépd élt. Tekintsiik most mindkét élhez a vele kicserélhetd élt. Ez (x) miatt az egyik esetben,
mondjuk uwvi-re, biztosan nem a H-nak az u-ba l1épé egyetlen éle. fgy ezen éleket felcserélve jobb felbontast
kapunk.

Tehét van olyan fa-felbontds, amelyben minden fa az u-ndl egyetlen bemend élt és legfeljebb egy kilépd élt
hasznél. Ha most az u-ndl kihagyunk o(u) — d(u) bemend élt, a megmaradd §(u) bemend élt Ssszeparositjuk
a kimend élekkel, és mindegyik {zu,uz'} élpart helyettesitjiik az zz’ éllel (mas széval ”leemeljiik” az élpart),
akkor egy olyan digrafot kapunk a V' —u halmazon, amelyre teljesiilnek a lemma feltételei. fgy indukci6 alapjén
ez mér felbomlik k élidegen fenyére. A leemeléseket visszadllitva és a kihagyott éleket kiosztva azon feny6khoz,
amelyek nem tartalmaztak leemelt élt az eredeti digrdafnak egy fenyé felbontdsat kapjuk. e

2014. majus 12.file: graf emel2
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6. Fejezet

SZINEZESEK

6.1 Perfekt grafok

A G = (V, E) irdnyitatlan grafban a kovetkez§ jeloléseket hasznaljuk.

(@) kromatikus szdm: a legkisebb szdm, ahdny stabil részhalmazba a csicsokat fel lehet bontani,
(G): a maximalis klikk elemszdma,

(G) klikkfedési szdam: a komplementer graf kromatikus szdma,

(@):

a maximadlis stabil halmaz elemszdma (= w(G)).

Q < &€ X

Nyilvén x > w és ¥ > a. Egy G = (V, E) gréfot akkor neveziink perfektnek, ha minden feszitett G’
részgrafidban x(G') = w(G’), vagyis a kromatikus szdm egyenlé a maximalis klikk méretével. Egy paros graf
nyilvén perfekt, és a komplementere is az (a K&nig tétel fedési alakja miatt). H péros graf élgrafja is perfekt
hiszen az élgraf kromatikus szdma éppen a H graf x'(H) élszinezési szdma, mig a klikkszdma a H maximélis
A(H) fokszdma, mérpedig K&nig élszinezési tétele szerint w'(H) = A(H). A H péros graf élgrafjanak komple-
mentere is perfekt, mert egyrészt ennek egy stabil halmaza a H egy cstiicsdban végzddd élei halmazanak felel
meg, vagyis a kromatikus szdma épp H lefogd pontjainak minimélis 7(H) szdma, masrészt pedig egy klikkje a
H egy pérositasanak felel meg, marpedig Kénig tétele szerint 7(H) = v(H). Részbenrendezett halmaz gréfja
(comparability graf) is perfekt a Dilworth tétel poldrisa miatt, és a komplementer gréfja is perfekt a Dilworth
tétel miatt.

Legyen H = (S,F) olyan hipergraf, amelyben az iires halmaz nem hiperél. Valamely F' C F esetén a
H' = (S, F') hipergréfot a H részhipergrafjanak nevezziik. Egy pont foka a pontot tartalmazé hiperélek szdma.
A(H) jeldli a maxim4lis fokszdmot. A hipergraf x'(H) kromatikus indexe vagy élszinezési szdma az a
legkisebb szdm, ahdny szinnel a hiperéleket meg lehet szinezni gy, hogy az egyszini élek paronként diszjunk-
tak legyenek. Nyilvan A < x’. Egy hipergrafot A-normadlisnak neveziink, ha minden H’ részhipergréfjra
A(H") = X'(H"). A diszjunkt hiperélek maxim4lis szamat v(H) jeloli, mig a hiperéleket fedd (lefogd) pon-
tok minimélis szdmat 7(H). Nyilvdn v < 7. Egy hipergrafot 7-normadlisnak neveziink, ha minden H’
részhipergrafjara 7(H') = v(H).

Egy hipergrafrol akkor mondjuk, hogy Helly tulajdonsagi, ha paronként metszé hiperéleinek egy rend-
szerét mindig le lehet fogni egy ponttal.

Gyakorlat 6.1 Mind a A-normdlis, mind a T-normdlis hipergrdifok Helly tulajdonsdgiak.

TETEL 6.1.1 Legyen H egy A-normdlis hipergrdf. Ekkor barmely hipergrdf, amely H-bdl hiperélek elhagydsdval
és/vagy tobbszorozésével keletkezik A-normdlis.

Biz. Azt latjuk be, hogy barmely Z hiperél megkétszerezésével keletkezé H™' hipergrafra x'(H') = A(H™).
Ebbél méar a tétel teljes altaldnossdgban kovetkezik. Jeldlje Z* a Z bevett mésodpéldanyat. Két esetet
kiilonboztetiink meg.

1. eset A Z-nek létezik olyan pontja, amelynek H-beli foka A(H). Ekkor A(HY) = A(H)+ 1, ésa H
egy A(H) szinnel térténd élszinezéséhez a Z élt egy 1j szinnel hozzavéve megkapjuk H egy A(H™) szint
élszinezését.

2. eset Z-nek minden pontja legfeljebb A(H) — 1 foku H-ban. Tekintsiik H-nak egy A(H) szinnel torténd
élszinezését, amelyben a Z-vel egyez6 szinl hiperélek legyenek Z1, ..., Z;. Egy szinosztély sziikségképpen fed
minden A(H) fokd pontot, specidlisan a {Z, Z1, ..., Z;} szinosztély is, s6t mér a {Z1, ..., Z:} osztdly is, hiszen
Z-ben a feltevés szerint egyaltalan nincs A(H) fokd pont. Emiatt a Ht hipergrafbél a Zi, ..., Z; hiperélek
torlésével keletkezd H' részhipergrafban a maximélis fokszam A(H) — 1. A A-normalitds miatt H’ hiperélei
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megszinezhet8k A(H)—1 szinnel. Ehhez hozzévéve a (diszjunkt halmazokbél all6 {Z 1, Z1, ..., Z;} szinosztalyt
a H" hipergraf egy A(HT) = A(H) szinnel torténé élszinezését kapjuk. e

TETEL 6.1.2 Ha eqy H hipergrdf A-normdlis, akkor T-normdlis.

Biz. Elég beldtni, hogy 7(H) = v(H), mert részhipergréfokra ugyanigy kovetkezik az egyenldség. v szerinti
indukciét haszndlunk. Ha v(H) = 0, azaz a hipergrafnak egyaltaldn nincs éle, akkor nulla ponttal lefoghatd,
azaz 7(H) = 0. Tegyiik fel, hogy v(H) > 0. Valamely s € S ponthoz jeldlje Hs azt a részhipergréfot, amely
H-nak az s-t nem tartalmazé hiperéleibol all.

1. eset Létezik olyan s € S pont, amelyre v(Hs) < v(H) — 1. Indukcidval egyrészt 7(Hs) = v(Hs),
madsrészt a H, hiperéleinek egy 7(H,) elemii lefogdsat az s ponttal kiegészitve a H egy lefogdsit kapjuk, igy
7(H) < 7(Hs) + 1. Ezeket Osszevetve a trividlis v(H) < 7(H) egyenl6tlenséggel, azt kapjuk, hogy v(H) <
T(H) <71(Hs)+1=v(H)+ 1 < v(H), amibél végig egyenldség, igy specidlisan v(H) = 7(H) adédik.

2. eset Minden s € S ponthoz létezik eqy v(H ) pdronként diszjunkt Hs-beli halmazbdl dllé {F}, Fs, .. ., F,f(H)}
halmazrendszer. Ezeket Osszetéve egy olyan H™ hipergrafot kapunk, amely az eredeti H hipergraf bizonyos
éleinek esetleges tObbszorozésével jott 1étre, amelynek Osszesen |S|v(H) hiperéle van, és amelyben minden pont
foka legfeljebb |S| — 1. A 6.1.1 tétel miatt H* hiperélei megszinezhet6k |S| — 1 szinnel. De ekkor a legnagyobb
szinosztaly t6bb, mint v(H) hiperélt tartalmaz, ellentétben v(H) definiciéjdval. Vagyis a 2. eset nem fordulhat
elo. o

Tetszéleges G = (V, E) grathoz hozzarendelhetjik az un. klikk-hipergrafjat, melyet jeloljink Hg-vel.
Ennek cstcsai a G tartalmazasra nézve maximalis klikkjeinek felelnek meg, mig hiperélei a G csicsainak.
Egy v € V grafcsicshoz rendelt hiperél alljon mindazon hipergraf pontbdl, amelyre a hozzatartozé G-beli
maximalis klikk tartalmazza v-t.

A definiciébdl kovetkezik, hogy a graf két csicsa akkor és csak akkor nem szomszédos, ha a nekik megfeleld
hiperélek diszjunktak. Valéban, ha az u és v cstucs szomszédos, akkor benne vannak egy maximalis K klikkben,
igy az u-nak és v-nek megfelel hiperélek tartalmazzak a K-nak megfelel pontot. Mig ha a két hiperélnek van
koz6s pontja, akkor az ennek megfelel6 G-beli maximélis klikk tartalmazza a két hiperélnek megfelel6 egy-egy
grafcsicsot, tehat ezek szomszédosak. Kovetkezik, hogy ha K a G egy nem-bovithet6 klikkje és s az ennek
megfelels grafpont, akkor |K| = du(s), ahol dg(s) jeloli az s pont H-beli fokat (:s-et tartalmazé hiperélek
szdmét). Emiatt

w(G) = A(Hg) és X(G) = r(He). (6.1)

Hasonléképp megfigyelhetd, hogy G stabil részhalmazai és a H¢a diszjunkt hiperélekbél 4116 részhipergrafjai
kozott egy-egy értelmii kapcsolat van, és emiatt

a(G) = v(He) és x(G) = ¥ (Ho). (6.2)

Tetsz6leges H hipergrathoz hozzdrendelhetjik a Gg élgrafjat (mdsnéven metszetgrafjit), amelyben a
csucsoknak a hipergraf élei felelnek meg: kett6 akkor szomszédos, ha a megfelel¢ hiperélek metszik egymast.
Egy-egy értelmii kapcsolat van a hipergraf paronként diszjunkt éleinek rendszerei és az élgraf stabil ponthal-
mazai kozott, emiatt

v(H) = a(G) és X'(H) = X(Gn). (6.3)

Egy H hipergréafban valamely s pontot tartalmazé hiperéleknek az élgrafban egy klikk felel meg, ame-
lynek mérete dg(v). Amennyiben H Helly tulajdonsdgi, gy a megforditds is érvényes, miszerint ha a H
néhény élének megfeleld pontok klikket alkotnak Gp-ban (azaz ezen hiperélek paronként metszdek), akkor
ezen hiperélek egy ponttal lefoghatdk. fgy Helly hipergréfra

A(H) = w(Ga) és 7(H) = ¥(Gr). (6.4)

TETEL 6.1.3 Ha egy G = (V, E) grdf perfekt, akkor a klikk-hipergrdfia A-normdlis.

Biz. Legyen H' = (S, F') a klikk-hipergraf egy részhipergrafja. Az F' tagjainak megfeleld grafcsicsok halmaza
legyen V'. Legyen G’ a V' 4ltal feszitett részgréfja G-nek. Legyen 8 := x(G') = w(G’). Tekintsiik el8szor
G’ pontjainak egy [(-szinezését. Ez definidlja a H' hiperéleinek egy (-szinezését, amelyben az azonos szinii
hiperélek paronként diszjunktak. Tehdt x'(H') < 3. Legyen tovabba K’ C V' egy 3 elemti klikk. Ez kib&vithet
a G egy (tartalmazdsra nézve) maximdlis K klikkjévé. A K-nak megfeleld H-beli pont benne van a K’
elemeinek megfeleld hiperélekben, azaz A(H') > 3, és igy A(H') > x'(H') > A(H'), tehat A(H') = x'(H'),
vagyis H valéban A-normaélis. e
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TETEL 6.1.4 (Lovasz 1. perfekt graf tétele) Egy perfekt grdf komplementere perfekt.

Biz. Elég azt beldtni, hogy x(G) = w(G), hiszen G egy V' C V ponthalmaz altal feszitett részgrafja nem maés,
mint a V' 4ltal G-ben feszitett részgraf komplementere.
Az el6z6 tétel szerint mivel G perfekt, ezért He klikk-hipergrafja A-normaélis. Igy a 6.1.2 tétel miatt Hg

7-normalis. (6.1) és (6.2) alapjan x(G) = X(G) = 7(He) = v(Hg) = a(G) = w(G).

Végiil megmutatjuk, hogy a 6.1.2 tétel megforditottja is érvényes.
TETEL 6.1.5 Ha H egy T-normalis hipergrdf, akkor A-normdlis.

Biz. Mivel H részhipergrafja is T-normdlis, igy elég beldtni, hogy A(H) = x'(H). Mivel H T-normélis, gy
a Gpg élgraf komplementere perfekt. A perfekt graf tétel miatt Gy is perfekt, és ezért x(Gu) = w(Gr).
Marpedig Gg egy klikkjének pontjai a H paronként metszé hiperéleinek felelnek meg, amelyek egy ponttal
lefoghatdk, hiszen H 7-normélis. Ezért H A(H) maximélis fokszdma egyenlé w(Gg)-val. Mésrészt egy-egy
értelmii kapcsolat van G pontszinezései és H élszinezései kozott, gy x'(H) = x(Gu), amib8l A(H) = x'(H).
[ )

Kideriilt tehét, hogy egy hipergraf akkor és csak akkor 7-normalis, ha A-normalis. Emiatt az ilyen hipergrafokat
roviden normalis hipergrafnak nevezik. Miutan lattuk, hogy normalis hipergrafbdl éltobbszorozéssel normaélis
hipergrafot kapunk, kapjuk az aldbbi eredményt.

Lemma 6.1.6 (T6bbszorozési lemma) Ha egy perfekt grdf egy v pontjdt egy klikkel helyettesitjik abban az
értelemben, hogy a klikk minden pontja a v eredeti szomszédaival van dsszekdtve, akkor perfekt grafot kapunk.

Gyakorlat 6.2 Ha egy perfekt grdf egy v pontjat egy S stabil halmazzal helyettesitjik abban az értelemben,
hogy S minden pontja a v eredeti szomszédaival van dsszekdtve, akkor perfekt grdfot kapunk.

A T6bbszorézési lemmabdl rogton adodik:

TETEL 6.1.7 Legyen w : V. — Zy a G = (V,E) perfekt grdf csiucsainak egy nemnegativ egészértéki
stlyozdsa. A maximdlis sulyd stabil halmaz a., silya egyenld azon (nem feltétlendil kilonbézd) klikkek minimdlis
Xw(G) szdmdval, melyek kozil legaldbb w(v) tartalmaz minden v csicsot. A mazimdlis silyi klikk w, silya
egyenld azon (mem feltétlendl kilonbézd) stabil halmazok minimdlis xw(G) szdmdval, melyek kézil legaldbb
w(v) tartalmaz minden v csicsot. ®

TETEL 6.1.8 (Lovasz 2. perfekt graf tétele) Egy G = (V, E) grdf akkor és csak akkor perfekt, ha min-
den G' = (V' E') feszitett részgrdfidra
V'] < a(G)w(G) (6.5)

Biz. (Gasparian) Ha G perfekt, akkor V felbonthaté w(G) darab stabil halmazra. Ezek mindegyike legfeljebb
a(G) elemt, ezért |V| < a(G)w(G) és ugyanez érvényes a G minden G’ feszitett részgrafjara is. Tehdt (6.5)
sziikséges.

A forditott irdnyhoz azt kell igazolnunk, hogy ha G imperfekt (=nem perfekt), akkor létezik (6.5)-t sérté G’
feszitett részgrafja. Ez avval ekvivalens, hogy ha G (tartalmazésra nézve) minimdlis imperfekt, akkor n > aw,
ahol n = |V|, a = a(G), w = w(G). Ezért a tétel kovetkezik az aldbbi lemmabdl.

Lemma 6.1.9 Ha G = (V, E) minimdlis imperfekt grdf, akkor n = aw + 1.

Biz. Jelsljiik az aw + 1 értéket n*-gal. Mivel egy s pontra a G’ = G — s graf perfekt, {gy n—1 < o(G"w(G’) <
aw, vagyis n < n*. Célunk tehat a forditott n* < n irdny igazoldsa.

1. Allitds Minden S # 0 stabil halmazra x(G — S) = w(G — 8) = w(G).

Biz. x(G — S) = w(G — S) kovetkezik abbdl, hogy G — S perfekt. A G — S egy szinezéséhez az S halmazt
hozzévéve a G szinezését kapjuk, amibél x(G) < x(G — S) + 1 adédik. Ha most indirekt w(G —S) + 1 < w(G)
volna, akkor x(G) < x(G—95)+1=w(G—-95)+1 < w(G), ellentmonddsban G minim4lis imperfektségével. o

2. Allitas Tetszoleges s csucsra G — s felbonthato S, ...S. stabil halmazokra. G-nek bdrmely K w-elemd
klikkje vagy (2A) nem tartalmazza s-t és mindegyik S;-t pontosan egy elemben metszi vagypedig (2B) tar-
talmazza s-t és ekkor egyetlen S;-tdl diszjunkt, a tobbit pedig pontosan egy elemben metszi. ®

Legyen Sp egy « elemszdmu stabil halmaz. A 2. allitds folytdn minden s € Sy elemre G — s felbonthaté
w darab stabil halmazra. Igy az Sp-lal egylitt nyerjik az S = {So,5S1,...,Saw} Osszesen n* = aw + 1 stabil
halmazbdl 4llé rendszert.

3. Allit4s Barmely K w-elem klikk pontosan egy S;-t6l diszjunkt.
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Biz. Ha K az So-tdl diszjunkt, akkor az So barmely s elemére alkalmazhatjuk a (2A) tulajdonsdgot. Ha
viszont K metszi So-t, akkor egyetlen s elemben metszi, és ezen s-re alkalmazhatjuk a (2B) tulajdonsigot. e

Az 1. 4llitas folytdn mindegyik S;-hez van egy téle diszjunkt K; w-elemii klikk. A 3. 4llitds miatt K; metszi
az Osszes S;-t6l kiilonbozd tagjat S-nek, éspedig mindegyiket egy pontban. Jelolje K az {gy nyert n* darab
w-klikkbdl all6 halmazrendszert.

Jelolje A azt az n* - n-es (0, 1)-es mdtrixot, amelynek i-dik sora az S; karakterisztikus vektora. Jelolje B
azt az n - n*-os (0, 1)-es métrixot, amelynek i-dik oszlopa a K; karakterisztikus vektora.

Ekkor a C = AB matrix n* - n* méretli, melynek c;; eleme az S; N K; elemszdma, vagyis C egy olyan
métrix, amelynek f6atléjaban minden elem 0, a tobbi elem pedig mind 1. A C' matrix nemszinguldris, ugyanis
ha z egy olyan vektor, amelyre Cz = 0, akkor ;cz = 0 alapjén 1z =; ¢z + 2(i) = z(¢) minden i-re, vagyis z(%)
konstans és igy 0. Ezek szerint AB rangja n*, de ekkor az A rangja is legaldbb n*, vagyis az A n* darab sora
linedrisan fliggetlen, és emiatt n* < n, amire sziikségiink volt. e e

Mivel (G') = w(G) és w(G') = a(G'), (6.5) pontosan akkor &ll fenn G’-re, ha a G komplementerre, igy
a 2. perfekt graf tétel implikalja az elsét. Tovabbi elényként megmutatjuk, hogy a perfektség co-NP-ben van,
ami azt jelenti, hogy létezik egy polinom id6ben ellenGrizhet6 bizonyiték egy graf imperfektségére. Nevezziink
egy G grafot szépen particiondlhaténak, ha léteznek o > 2 és w > 2 egészek gy, hogy G minden s csucsira
G — s felbonthaté « darab w elemi klikkre és felbonthaté w darab a elemi stabilra.

Lemma 6.1.10 Szépen particiondlhatd grdf imperfekt.

Biz. A feltevés szerint G-nek n = aw + 1 csicsa van. G-ben nem létezhet a4+ 1 elemii S stabil, mert akkor egy
s € V — S elemre V — s nem volna « darab klikkre particiondlhaté. Emiatt a(G) = o és hasonléképp adédik,
hogy w(G) = w. Ekkor viszont G megsérti a (6.5) egyenlStlenséget, és {gy G nem perfekt. o

TETEL 6.1.11 Egy G graf akkor és csak akkor imperfekt, ha van szépen particiondlhato feszitett részgrafja.

Biz. A 6.1.10 lemma szerint, ha G-nek van szépen particionalhaté feszitett részgrafja, akkor G nem perfekt.
Megforditva, legyen G imperfekt. Feltehetjiik, hogy G minimélis imperfekt. Ekkor (6.5) teljesiil minden val6di
feszitett részgréfra, de G-re magdra nem. Kovetkezik, hogy |V| = a(G)w(G) + 1, tovdbba minden s € V
csicsra a G' = G — s grifra a(G') = a(GQ) és w(G') = w(G). Mivel G’ perfekt, felbonthaté w := w(G’) darab
stabilra és ezen stabil halmazok sziikségképpen mind w elemtiek. Hasonléképp, G’ felbonthaté a := a(G’)
darab klikkre és ezen klikkek mind w elemiiek. Vagyis G valéban szépen particiondlhaté. e

Bizonyitas nélkiil emlitjik a kdvetkezd nehéz eredményt.

TETEL 6.1.12 (Er6s perfekt graf tétel) Egy grdf akkor és csak akkor perfekt, ha sem &, sem a komple-
mentere nem tartalmaz feszitett datlomentes pdratlan kort.

Lovész tétele alapjan ez azzal ekvivalens, hogy minden szépen particionalhaté graf tartalmaz feszitett
atlémentes paratlan kort vagy ennek komplementerét.

Seymour és tdrsai azt is bebizonyitottak, hogy a perfektség NP-ben van azaltal, hogy leirtak egy konstrukciét
perfekt grafok készitésére és megmutattak, hogy minden perfekt graf el6all a megadott konstrukcio segitségével.

file: graf: perfekt 2014. méajus 12.
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6.2 Listaszinezés

6.2.1 Paros grafok élszinezése

TETEL 6.2.1 (K&nig élszinezési tétele) Egy A-reguldris G = (A, B; E) pdros grdf x'(G) élszinezési szima
A.

Biz. A szin nyilvdn sziikséges, azaz A < x'(G). A nem-trividlis irdny bizonyitdsdhoz pontszdm szerinti
indukciét haszndlunk. A A = 0 eset semmitmonds, mig A > 1 esetén elég kimutatnunk, hogy létezik teljes
pérositds, mert ezt kihagyva egy (A — 1)-reguldris grafot kapunk.

Vegyiink két szomszédos s,t pontot, melyek kozott B > 0 parhuzamos él vezet. A ¢ s-t6l kiillonb6z6
szomszédainak halmazat jelolje T', mig az s t-t6l kiillonb6zé szomszédaiét S. Toroljik el az s és t pontokat,
majd adjunk a grafhoz A — 38 4j élt az S és T kozott gy, hogy a keletkezd G’ graf is A-reguldris legyen. In-
dukcié szerint G’ élhalmaza megszinezheté A szinnel 1igy, hogy minden szin egy teljes parositds. Mivel G’-ben
A — 3 < A \j él van, e parositasok egyike nem tartalmaz aj élt. Ezt egy s és t kozotti éllel kiegészitve a G egy
teljes parositasat kapjuk. e

Megjegyzés Az élszinezési tétel szokvanyos bizonyitdsdban kimutatjak, hogy a A-regularitasbdl kévetkezik
a Hall-feltétel, igy a Hall tétel alapjian létezik teljes pérositds. A fenti, R. Rizzitél szdrmaz6 bizonyitas
érdekessége, hogy nem tamaszkodik kordbbi eredményre.

Kovetkezmény 6.2.2 FEgy pdros graf élszinezési szama egyenld a A maximdlis fokszdammal.

Biz. [/Jj pontok és élek esetleges hozzavételével elérhetjiik, hogy a graf két osztdly egyforma méretii legyen és
mindegyik pont foka pontosan A, igy alkalmazhatjuk a 6.2.1 tételt. o

Tegyiik fel ezutan, hogy tovabbra is egy olyan élszinezést keresiink, amelyben minden szinosztédly parositast
alkot, de most minden él szinére el6irjuk, hogy az az élhez elére megadott szinlistabdl keriiljon kivalasztéasra.
Egy ilyen szinezést él-listaszinezésnek neveznek. Amennyiben minden élen a szinlista ugyanazt a A szint
tartalmazza, igy a listaszinezés ugyanaz, mint a A szinnel torténé élszinezés. Koénig tételének nagymérvii
altaldnositasa az alabbi.

TETEL 6.2.3 (F. Galvin) Ha G = (A, B; E) pdros grdf minden élén a szinlista legaldbb A = A(G) elemet
tartalmaz, akkor létezik listaszinezés.

Biz. A bizonyitashoz kis kitérére van sziikségiink.

Stabil parositasok

Egy G = (F, L; I) paros grafrdl azt mondjuk hogy élrendezett, ha minden csicsdnél az odafuté éleknek adott
egy linedris, ”josag” szerinti rendezése. Megengedett, hogy két parhuzamos él a két végpontjaban ellentétesen
rendezett legyen. Tekintsiink a grafnak egy M C I parositdsat. Azt mondjuk, hogy a h € I — M él M-fedett,
ha legaldbb az egyik végpontja olyan, hogy ott végzddik M-beli él és az jobb, mint h. Az M péarositist
stabilnak nevezziik, ha minden I — M-beli él M-fedett.

[Jatékos szemléltetéssel az élrendezett paros grafot gy képzelhetjiik el, mint fidknak és ldnyoknak egy
ismeretségi rendszerét, ahol minden személyhez adott az altala ismertek preferencia sorrendje. Fiik és lanyok
egy parositdsat akkor érezziik instabilnak, ha van olyan egymadst ismerd fiu és lany, akiknek vagy egyéltalan
nincs parjuk, vagy az egyiknek nincs és a mésik 6t jobbnak tartja, mint az aktudlis parjat, vagypedig mind a
ketten jobbnak tartjdk egymdst az aktudlis parjukndl. A stabil parositas fenti definici6ja ezt az érzetet titkrozi.]

TETEL 6.2.4 (Gale és Shapley) Minden G = (F, L;I) élrendezett pdros grdfban van stabil pdrositds.

Biz. Amennyiben minden F-beli csiicsra az onnan kiinduld legjobb él a masik végpontjdnal a legrosszabb,
Ugy ezen élek egy (egy F-et fedd) parositdst alkotnak, és ez stabil.

Tegytk fel tehdt, hogy van olyan e = wv él (u € F), amely u-ndl a legjobb és v-nél van néla rosszabb
f=avél. A G := G~ f élrendezett grafban indukcié miatt mar 1étezik egy M stabil parosités. Alll’tjuk, hogy
M a G-ben is stabil. Ehhez azt kell csupdn belétni, hogy az f él is M-fedett. Az e jobb a v pontban f-nél, igy
rogton kész vagyunk, ha e maga az M-hez tartozik. Ha e nincs M-ben, akkor az M G’-beli stabilitdsa miatt
létezik egy a € M él, amely az e egyik végpontjabdl indul és ott jobb, mint e. Miutdn e az u végpontjinal a
legjobbnak volt valasztva, ezért a sziikségképpen a v-nél jobb, mint e, és emiatt a itt f-nal is jobb. e

Egy élrendezett péaros graf minden e = uwv éléhez definidljuk az él értékét, mint az e-nél jobb u végil élek
szama plusz az e-nél jobb v végi élek szama plusz egy.
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Lemma 6.2.5 Tegyiik fel, hogy egy élrendezett (A, B; E) pdros grdf minden élén adott egy szinlista, amelynek
legaldabb annyi eleme van, mint az él értéke. Ekkor létezik listaszinezés.

Biz. Legyen s a listdkon szerepld egyik szin, és legyen Gs = (A, B; Es) az a részgraf, amelynek éleinek
szinlistdjan szerepel az s szin. A 6.2.4 tétel szerint Gs-nek létezik egy M stabil parositasa. Toroljik G-bol az
M elemeit valamint G minden szinlistajardl az s szint.

Allitas 6.2.1 A keletkezé G élrendezett grafra is fenndll, hogy minden élének szinlistdja annyi elemd, mint
az €l (médositott) értéke.

Biz. Mivel az M, elhagyasaval egy él értéke nem né, csak olyan f € E — M éllel lehet baj, amelynek a
szinlistdja az s szinnel csokkent, azaz f € Es — Ms. Miutan M, stabil parositds Gs-ben, igy az f él az egyik
végpontjaban biztosan rosszabb, mint az ott végz6dd Ms-beli él. De ez azt jelenti, hogy az f értéke G’-ben
kisebb, mint G-ben, vagyis az (eggyel) csokkentett szinlista legaldbb annyi elemi, mint a szintén csokkentett
élérték. e

Indukciéval G'-nek létezik listaszinezése a csokkentett listara nézve. Ehhez hozzdvéve az s-sel szinezett M,
parositast, a G-nek megkapjuk a keresett listaszinezését. o o

Galvin tételének bizonyitdsara térve a 6.2.2 kovetkezmény folytan G éleinek 1étezik A-szinezése, ahol a
szinek az 1,..., A szamok. Az A csicsaiban a szomszédos élek sorrendjét definidljuk a szinek névekvd sor-
rendjében, mig a B csicsaiban a szinek csokkend sorrendjében. Ekkor minden él értéke legfeljebb A, hiszen
egy j szinl élnél az egyik végpontjaban jobb élek és a maésik végpontjaban rosszabb élek szinei paronként
kiilénboznek. A 6.2.5 lemma szerint 1étezik listaszinezés. o o o

6.2.2 Magvas digrafok

Az él-listaszinezés analdgidjara beszélhetiink pontok listaszinezésérdl, amikor az élek helyett a csiicsokon adott
lehetséges szinek egy listdja. Azt mondjuk, hogy egy graf k-listaszinezhetd, ha a csicsain barhogy is megadva
egy k elemi szinlistat, 1étezik listaszinezés. A legkisebb ilyen k értéket nevezik a graf listaszinezési szamaénak.
A definiciébdl adédik, hogy ez legalabb akkora, mint a kromatikus szdm és Galvin tétele azt mondja ki, hogy
egy paros graf élgrafjara a két érték egybeesik. Kimutattak, hogy altaldban a kromatikus szam és a listaszinezési
szam nagyon eltérhet egymdéstol, példaul paros graf listaszinezési szama barmilyan nagy lehet.

Iranyitott grafok magjai

Megmutatjuk, hogy a Galvin tétel bizonyitdsa mogott valdjdban egy listaszinezési tételek bizonyitisara al-
kalmas &ltaldnosabb megkozelités rejlik. Egy D = (V, A) digraf pontjainak S stabil részhalmazit magnak
(kernel) nevezziik, ha S-bSl minden v € V — S pontba vezet él. A korbeirdnyitott hdromszog mutatja, hogy
nem minden digrafban van mag. Egy digrdfot nevezziink magvasnak, ha minden feszitett részgrafjdban van
mag. (Vagyis nem csupén magara a digrafra koveteljiik meg, hogy legyen benne mag).

TETEL 6.2.6 (Sands, Sauer, Woodrow) Legyen P és P> két részberendezett halmaz (poset) a kézés V
alaphalmazon. Ekkor van olyan kézos A antilanc, amely minden x € V — A elemhez tartalmaz egy olyanp € A
elemet, amely legaldbb az egyik posetben nagyobb, mint x. Ekvivalensen, ha eqy digrdf két tranzitiv, aciklikus
digrdaf unidja, akkor magvas.

Biz. Legyen A; a Pi-beli a maximalis elemek halmaza. Ez természetesen antildnc Pi-ben. Ha Po-ben is
antildnc, akkor A j6 lesz. Ha nem az, akkor 1éteznek p,y € A; elemek, melyekre p nagyobb a Ps-ben, mint y.
Indukciéval, az y kihagyésa utdn van A’ kdzos antildnc a kivant tulajdonsiggal. Ha ebben p benne van, akkor
A’ eredetileg is j6. Ha nincs benne p, akkor A’-ben van egy p’, amely az egyik posetben nagyobb, mint p. De
az A; vélasztésa folytdn ez csak P»-ben lehet, és akkor a tranzitivitds miatt p’ az y-ndl is nagyobb Ps-ben. o

Figyeljiik meg, hogy a Gale-Shapley tétel specidlis esete a 6.2.6 tételnek: a G péaros graf élgréfjan a G
mindkét pontosztilydndl adott élrendezés egy-egy (specidlis) részbenrendezést definidl (amelyek diszjunkt
lancokbdl éllanak). Egy masik specidlis eset a kovetkez6.

TETEL 6.2.7 Irdnyitott pdros grdf magvas.

Biz. Az egyik irdnyba irdnyitott élek egy aciklikus, tranzitiv digrafot alkotnak, igy alkalmazhatjuk a 6.2.6
tételt. o

Valdjaban ennél t6bb is igaz, bar e tébbletre csak abban a masik specialis esetében lesz sziikségiink, amikor
D aciklikus.
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TETEL 6.2.8 Ha egy D = (V, A) digrdf minden erdsen ésszefiiggé komponense magvas, akkor D is az.

Biz. Nincs mit bizonyitani, ha D maga er6sen erdsen Osszefiiggd, igy feltessziik, hogy nem az. A tételt pontszam
szerinti indukciéval bizonyitjuk. Figyeljiik meg, hogy D minden D’ feszitett részgrafjara is igaz, hogy az erésen
Osszefiiggd komponensei magvasak, hiszen D’ egy erdsen Osszefiiggd komponense az eredeti D egy erdsen
Osszefiiggd komponensének feszitett részgrifja.

Tekintsiik D-nek egy C forrds-komponensét (azaz egy olyan erdsen Osszefiiggd komponenst, amelybe nem
megy él). A feltevés szerint a C' altal feszitett részgrafban van K¢ mag. Toroljik ki D-b6l Kc-t valamint azon
pontokat, amelyekbe vezet él Kc-bdl. A keletkezd D' = (V') A’) feszitett részgrafban indukcié miatt van K’
mag. Ekkor K := K¢ U K’ magja D-nek, hiszen egyrészt stabil, mert C-be nem 1ép be él és C-bal nem 1ét él
V’-be, mésrészt a konstrukcié miatt K-bsl V — K minden pontjiba 1ép él. e

TETEL 6.2.9 (Richardson) Ha egy D = (V,A) irdnyitott grdfban nincs pdratlan egyirdnyid kéor, akkor
magvas.

Biz. Egy digréfot réviden parosnak fogunk nevezni, ha irdnyitatlan értelemben péaros.

Allitas 6.2.2 Egy D' erésen ésszefiiggd digrdf pontosan akkor mem tartalmaz pdratlan egyirdnyi kért, ha
pdros.

Biz. A feltétel nyilvan sziikséges. Az elegenddséghez tegylik fel, hogy nincs paratlan egyirdanyu kor. Elszam
szerinti indukcié. A fiilfelbontdsi tétel miatt D’ eléall egy D" erésen osszefiiggd digrafbdl egy P egyirdny fiil
hozzdadéasaval. Legyen a P (esetleg egybeesd) két végpontja u és v. Indukcié miatt D irdnyitatlan értelemben
péros graf. Jelolje ennek két pont osztdlydt S és T. Amennyiben u = v, azaz P egy dikor, ugy |P| paros, és
ezért D' = D" + P is irdnyitatlan értelemben péros graf.

Tegyiik most fel, hogy u # v és legyen R egy egyiranyi vu-tit D”'-ben. Ekkor C' := P + R egy egyiranyui
kor, igy |C| pdros, vagyis P és R ugyanolyan paritdsi. Ha |R| péros, akkor u és v a D"-nek ugyanahhoz a
pontosztalydhoz tartozik és ezért D' = D" + P is paros graf. Hasonléképp, ha |R| paratlan, akkor u és v a
D" -nek kiilénb6z6 pontosztalydhoz tartozik és ezért D' = D" + P is péaros graf. e

A 6.2.7 tétel miatt D minden erésen sszefliggd komponense magvas, igy a 6.2.8 tétel folytdn D is magvas.
LN

6.2.3 Grafok cstcsainak listaszinezése

zinlista. Ha G-nek

Lemma 6.2.10 Legyen adott G = (V, E) irdnyitatlan grdf minden v csicsin egy L(v) s
v)| > o(v) + 1, akkor G

létezik egy olyan D = (V,E) magvas irdnyitdsa, amelyben minden v csicsra |L(
csucsainak létezik listaszinezése.

Biz. Legyen s egy el6forduld szin és tekintsiik azon csiicsok Vs halmazat, melyek szinlistdja tartalmazza s-et. A
Vi, altal feszitett részgratban a feltevés szerint 1étezik egy K mag. Toroljik a D digraf pontjai koziil K, elemeit
tovdbbd minden szinlistardl az s szint. A keletkezé D’ digrafra és L' listdkra érvényes, hogy |L'(v)| > o'(v) +1,
hiszen ha egy v € V — K, csucsnak csokkent a szinlistdja, akkor v € V; és igy K, mag volta miatt D-ben
1étezik él Ks-bdl v-be, vagyis o' (v) is kisebb, mint o(v), marpedig feltettiik, hogy |L(v)| > o(v) + 1. @

Mikor létezik egy gréafnak olyan magvas irdnyitdsa, amelyben minden befok megadott korldt alatt van?
Tekintstink példdul egy G = (S, T; F') élrendezett péaros grafot. Készitsiik el ennek az Lg élgrafjat, amelyben
minden e élnek megfelel egy ve pont és a v. és vy pontok kozott akkor vezet él, ha e-nek és f-nek van kozos
végpontja G-ben. Amennyiben e és f parhuzamos élek, azaz mindkét végpontjuk kozos, akkor a ve ds vy kozott
két parhuzamos élt vezetiink. A G egy élrendezésének az élgraf egy olyan Lc irdnyitasa felel meg, amelyben
ve-bOl vezet él vy-be, ha e jobb, mint f. (Speciélisan, ha e és f pdrhuzamosak és az egyik kozos végiiknél e a
jobb, a masikndl pedig f, akkor ve és vy koz6tt két ellentétesen irdnyitott parhuzamos él vezet).

Ezen a nyelven egy élrendezett paros graf stabil parositdsa pontosan az Lo digraf egy magjanak felel
meg, és ezért Gale és Shapley tétele épp azt jelenti, hogy az Lo digrafban van mag. Mivel az élgraf egy
feszitett részgrafja az eredeti G egy részgrafjanak élgrafja, ezért Le valdjaban magvas. Tovabbd a Galvin tétel
bizonyitasdban hasznalt megfigyelés miszerint egy paros graf éleinek létezik egy olyan élrendezése, amelyben
minden él értéke legfeljebb A azt jelenti, hogy az élgraf ehhez tartozé (magvas) La irdnyitasaban minden pont
befoka legfeljebb A — 1 és igy a lemma szerint létezik listaszinezés. (A Galvin tétel bizonyitdsdban valdjaban
erre a specialis esetre 14ttuk be a lemmat).

Bemutatunk két tovabbi esetet, amikor ez a megkozelités eredményes.

61



Paros grafok listaszinezése

Bar egy péaros graf listaszinezési szdma barmilyen nagy lehet, ha a graf ”élslirlisége” nem til nagy, akkor a
listaszinezési szam is feliilr6l korlatozhaté. Ez azon fog milni, hogy egy péros graf barmely irdnyitdsa magvas.

TETEL 6.2.11 Ha egy G pdros grdafnak létezik olyan irdnyitisa, amelyben minden pont befoka legfeljebb k
(vagyis az irdnyitdsi lemma szerint G pontjainak minden Z részhalmaza legfeljebb k|Z| élt feszit), akkor G
listaszinezési szama legfeljebb k + 1.

Biz. A 6.2.7 tétel és a 6.2.10 lemma Osszetevésébdl a tétel rogton adodik. e

Sikbarajzolhaté péros grafban az Euler formula biztositja a ritkasdgot, amibdl a kovetkezé eredményre
jutunk.

TETEL 6.2.12 (Alon és Tarsi) Sikbarajzolhats pdros G grdf listaszinezési szama legfeljebb 3.

Biz. Feltehet§, hogy G egyszerii. Jelolje n a csicsok szamét, m pedig az élekét. Mivel egyszerti paros sikgrafban
minden tartomdnyt legaldbb 4 él hatdrol, ezért a tartoményok t szdma legfeljebb m/2. Az Euler formula
szerint t +n = m + 2, igy m/2 +n > m + 2, vagyis az m < 2n — 4. Mivel G minden részgrafja is paros és
sikbarajzolhatd, kovetkezik, hogy G csicsainak barmely nemiires Z részhalmaza legfeljebb 2|Z| — 4 élt feszit.
Emiatt G-nek létezik olyan D irdnyitdsa, amelyben minden pont befoka legfeljebb kett. A 6.2.11 tétel szerint
a (G 3-listaszinezhetd. o

A tételben a sikbarajzolhatéségi feltevés nem hagyhaté ki. Tekintsiik ugyanis a K33 teljes paros gréfot.
Legyen {a,b,c} egy pdrositds. Az a végpontjainak a listdja {1,2}, a b végpontjainak a listdja {2,3}, a ¢
végpontjainak a listdja {2,3}. Egyszerii esetszétvilasztds mutatja, hogy ilyenkor a kivént listaszinezés nem
1étezik.

Aciklikus iranyitasok

TETEL 6.2.13 Ha o G = (V, E) irdnyitatlan grdf minden feszitett részgrdfjdban van legfeljebb k-ad foki
pont, akkor G (k + 1)-listaszinezhetd.

Biz. A grafnak létezik egy v, legfeljebb k-ad fokd pontja, G — v,-ben létezik egy legfeljebb k-ad fokd vn—1
pont, majd ezt igy folytatva a pontokat gy sorbarendezhetjiik, hogy minden v; legfeljebb k kiseb indeyii
ponttal szomszédos. Ha most az éleket mind a nagyobb indexl végpontja felé iranyitjuk, akkor egy olyan
aciklikus iranyitast kapunk, amelyben minden pont befoka legfeljebb k. Miutan acikikus digraf magvas, a
6.2.10 lemmabdl adédik, hogy G (k + 1)-listaszinezhetd. o

Eredetileg Szekeres és Wilf igazolta, hogy ha egy G iranyitatlan graf minden feszitett részgrafjdban van
legfeljebb k-ad foku pont, akkor G (k + 1)-szinezhetd.

Mivel egy egyszeri sikgrafban mindig van legfeljebb 5-6d foku pont, adddik, hogy minden sikgraf 6 szinnel
listaszinezhet6. C. Thomassen igazolta, hogy minden sikgraf listaszinezési szama valdjaban legfeljebb 5.

Merevkori grafok listaszinezése

Egy G = (V, E) irdnyftatlan graf merevkorii (chordal), ha minden legaldbb négy éli korének van hirja. (Egy
zy élt akkor mondunk a C koér hirjanak, ha x és y nem koveti egymdst a C' mentén.) Konnyen ellendrizhetd,
hogy intervallum rendszer metszetgrafja merevkorii, sét dltalanosabban egy fa részfa-rendszerének élgréfja is
az. (Itt a részfdkat a ponthalmazai definidljdk. Megjegyzendd, hogy ha a részfikat élhalmazoknak tekintjiik,
akkor az élgraf dltaldban nem merevkort: 14sd példdul az {ab, ac, ad, ae} alapfan az {ab, ac}, {ac, ad}, {ad, ae},
{ae, ab} fdkat.) Ismeretes, hogy minden merevkor( graf perfekt, és {gy a kromatikus szdma egyenld a maximadlis
méret{i klikk w(G) elemszadméaval.

Emlékeztetiink a max-vissza sorrend fogalméra. Ezt ugy kapjuk meg, hogy tetszéleges pontot valasztunk
els6 pont gyanant, és ha mar az elsé ¢ pontot kivdlasztottuk, akkor ¢ + 1-diknek a maradékbdl azt valasztjuk,
amelybdl a kivélasztott pontok halmazaba a lehetd legtobb él vezet. Bizonyitds nélkiil kozoljiikk az aldbbi
eredményt.

Lemma 6.2.14 (Yannakakis és Tarjan) Merevkord grdf minden v pontjdra a v azon szomszédai klikket
alkotnak, melyek a maz-vissza sorrendben megeldzik. ®

TETEL 6.2.15 Merevkort graf listaszinezezési szama egyenld a maximdlis klikk w(G) elemszdmdval (és igy
a kromatikus szdmmal).
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Biz. Irdnyitsuk a graf éleit a max-vissza sorrend szerint elére (azaz a kés6bbi végpont felé). Ekkor mindenesetre
aciklikus digrafot kapunk, amelyben rdaddsul minden cstics befoka kisebb lesz, mint w(G), hiszen ha valamelyik
v csucs befoka legaldbb w(G) volna, akkor v és az 6t megel6z6 szomszédjai egy w(G)-nél nagyobb klikket
alkotndnak. A 6.2.10 lemma szerint G listaszinezési szdma w(G). e

file: graf: szinez 2014. m&jus 12.
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6.3 Grafok élszinezése

Kénig élszinezési tétele kimondta, hogy péros grafok x'(G) élszinezési szdma (mdsnéven kromatikus indexe) a
maximalis A fokszdmmal egyenld. Természetesen A minden grafban alsé korldt x'(G)-re és a hdromszég mu-
tatja, hogy x'(G) lehet nagyobb, mint A. Erdekes megfigyelés, hogy a négyszintétel azzal ekvivalens, hogy min-
den egyszerl, 2-0sszefliggd és 3-reguldris sikgraf élszinezési szdma 3. Ugyanakkor kimutattak, hogy altalanos
graf esetén a kromatikus index meghatarozasa mar abban a nagyon specidlis esetben is NP-teljes, amikor a
graf egyszerti és 3-reguldris. Ennek nyomén x’(G) pontos meghatdrozdsa nem realis célkit(izés, egyszerti grafok
esetén azonban x'(G) jél behatdrolhaté.

TETEL 6.3.1 (Vizing) Ha a G egyszeri, grifban a mazimdlis fokszdm A, akkor A < x'(G) < A + 1.
A Vizing tétel nem-trividlis x'(G) < A + 1 része azonnal kovetkezik az aldbbi élesebb eredménybdl.

TETEL 6.3.2 (Faber) Ha a G egyszeri grdfban minden pont foka legfeljebb k és a k-ad fokid pontok erddt
feszitenek, akkor x'(G) < k.

Biz. A G egy részleges élszinezésében egy szinezetlen élt révidebben szintelennek hivunk, és azt mondjuk,
hogy az a szin szabad a szintelen uv élen, ha o nem szerepel sem az u-ban, sem a v-ben végzddé élek szinei
kozott. Pontszam szerinti indukciét fogunk haszndalni és ennek lesz 1ényegi része az alabbi lemma.

Lemma 6.3.3 (Javité lemma) Legyen z a grdf egy kijelolt csicsa. Tegyiik fel, hogy G-nek létezik egy olyan
részleges k-élszinezése, amelyben (x) minden szintelen €l z-ben végzddik, ezek egyikén van szabad szin, mig
a tobbi szintelen élen van legaldbb két szabad szin. Ha van szintelen él, akkor G-nek létezik olyan részleges
k-élszinezése, amelyben kevesebb szintelen él van és amelyre (x) tovdbbra is teljestil.

Biz. Legyenek a z-ben végzéd6 élek ey = zx1,...,en = zxp, ahol h a z fokszdma. A G egyszeriisége folytan
az i, ...,xn pontok kiilonbozoek. Tegylik fel, hogy ezen h él koziil az elsé j a szintelen, az e; élen a piros szin
szabad, mig az e; éleken (i =1,...,5 — 1) az «; és a 3; szin szabad. A szintelen éleken lehetnek egyéb szabad
szinek is, de mi most ezzel a 2j — 1 tagu L listaval dolgozunk.

A lemma bizonyitdsa véget is ér, ha van olyan szin, amely az L-ben pontosan egyszer szerepel, mondjuk az
e élnél, mert ekkor az e-t ezzel megszinezve a (x) tulajdonsdg fennmarad.

Feltehetjiik tehat, hogy minden L-ben eléforduldé szin legaldbb kétszer szerepel L-ben. De ekkor L-ben
legfeljebb csak j —1 kiilénb6z6 szin fordulhat el6. Mivel z-nél h—j < k — j megszinezett él van, a rendelkezésre
allé k szin egyike, mondjuk a kék, olyan, amely sem a z-nél 1év6 szinek kozott, sem az L listdn nem szerepel.
Legyen most P egy x;-ben kezd6d6 maximalis kék-piros alterndl6 it, melynek mésik végpontjat jelolje y. Lehet,
hogy P az egyetlen z; pontbdl all, azaz y = z;, de y bizonyosan nem z. Cseréljiik fel P mentén a szineket,
majd szinezziik meg az e; élt kékkel. Ekkor G-nek egy olyan részleges k-élszinezését kapjuk, amelyben kevesebb
szintelen él van, mint eredetileg. Ha egy x; pont (i = 1,---, 5 — 1) kiilénbozik y-tdl, akkor a; és 3; tovabbra is
szabad szinek maradnak e;-n. Ha viszont y egyenl6 valamelyik x;-vel, akkor a; és 3; koziil legalabb az egyik
szabad szin marad e;-n, vagyis (%) tovdbbra is fenndll. e

A tétel bizonyitdsira térve, a feltevésbdl kapjuk, hogy van olyan z pont, amelynek a szomszédai kozott
legfeljebb egy k-ad fokd pont van. Indukciéval G — z éleinek 1étezik k-szinezése, azaz G éleinek létezik egy
olyan részleges k-szinezése, ahol minden z-végi él szintelen. Miutan a z szomszédai kozott legfeljebb egy k-ad
foku van, a (x) feltétel teljesil, igy a Javité lemma ismételt alkalmazdsival a G egy k-élszinezését nyerjik. o o

file: graf: faber 2014. m&djus 12.
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7. Fejezet

A KIKERESZTEZESI ELJARAS

A leemelési miivelet alkalmazédsainak megismerése utdn egy mdsik bizonyitasi technikat mutatunk be, a ki-
keresztezési eljarast.

7.1 Iranyitott vagasok lefogasa

Legyen adott a D = (V, A) (irdnyitatlanul osszefliggd) irdnyitott graf és @ C X C V egy olyan részhalmaza a
pontoknak, amelybdl nem 1ép ki él. Az X-be belépé élek halmazdat iranyitott vagdsnak nevezziik, mig X-t
az irdnyitott vigds magjdnak. Két irdnyitott vigas keresztezd, ha magjaik keresztezdek. Irdnyitott vagdsok
egy rendszerét akkor nevezziik keresztezés-mentesnek, ha magjaik keresztezés-mentesek.

Lemma 7.1.1 Legyen adott a D = (V, A) (irdnyitatlanul osszefiiggd) irdnyitott grdf ponthalmazdn irdnyitott
vdgasoknak egy olyan J keresztezés-mentes rendszere, amelyre D minden éle J -nek legfeljebb csak k tagjdban
van benne. Ekkor J-bél kivdlaszthatd legaldbb [|T|/k] élidegen irdnyitott vdgds.

Biz. Tekintsiik 7 magjainak a 1.4.6 tételben leirt irdnyitott fa-reprezentaciéjat. A D egy élének most a fa
egy utja felel meg, amely rdadasul iranyitott tt, hiszen az J tagjai irdnyitott vagasok, és az ut legfeljebb k
é1bél all a lemma feltevése alapjan. A 1.4.3 lemma szerint a fa élei, és igy J tagjai, egyenletesen k-szinezhet&k.
De ekkor a fa egy legfeljebb k éli utjanak minden éle kiilonb6zé szint kap, ami éppen azt jelenti, hogy az
eredeti D digraf minden éle kiilonb6zé szind irdnyitott vagasokhoz tartozik. Magyaran az egyszint tagjai
J-nek élidegenek. Mivel az egyik szinosztdly legaldbb [|J|/k] tagbdl &ll, a lemma kovetkezik. o

Ennyi el6készités utan bebizonyitjuk C. Lucchesi és D. Younger tételét. A dolog érdekessége, hogy ez egy
olyan min-max tétel, amely nem fogalmazhat6 meg a TU-matrixokra vonatkozé eredmények kovetkezményeként,
a bizonyitdsdban azonban a fenti lemma alapveto.

A D digréf egy e = uv élének forditva torténé (vagy az wv forditottjanak) behizasan azt értjuk, hogy a
digrafhoz hozzdvesszik a vu élt (az uv véltozatlanul hagydsdval). A keletkezd digrafot az aldbbiakban D.-vel
jeloljiik. Nevezziik éleknek egy F' részhalmazat kGtésnek, ha F' elemeinek forditva torténé behuzédsaval erdsen
Osszefiiggd digrafot kapunk. Ez azzal ekvivalens, hogy F elemeit 6sszehuzva erésen Osszefiiggd digrafot kapunk,
vagy még azzal is, hogy F' minden irdnyitott vigdsnak tartalmazza legaldbb egy elemét. Amennyiben D nem
tartalmaz elvagé élt, ugy a 2.6 feladat alapjan F' pontosan akkor kotés, ha elemeinek irdnyitdsat megforditva
er6sen Osszefliggd digréfot kapunk.

TETEL 7.1.2 (Lucchesi és Younger) Legyen D = (V, A) (irdnyitatlanul Osszefliggd) irdnyitott grdf. Az
élidegen irdnyitott vdgdsok mazimdlis v = v(D) szdma egyenld a minimdlis kétés 7 = 7(D) elemszdmdval.

Biz. A v < 7 egyenl6tlenség vildgos, igy csak a forditott irdny bizonyitdsaval foglalkozunk. v szerinti indukcidt
alkalmazunk. Ha ez a szdm nulla, akkor nincs irdnyftott vdgds D-ben (D er6sen osszefiiggd), és igy 7 is nulla.
Tegytk most fel, hogy v(D) > 0. Mivel a tétel egyéli digrafra nyilvanvaléan fenndll, azt is feltehetjiik, hogy
|A] > 1.

1. Eset Létezik a digrafnak olyan e éle, amelyre v(D.) < v(D). Az indukcids feltevést v(D.)-re felhasznélva és
a trividlis 7(D) < 7(D.)+1 egyenlStlenséget megfigyelve nyerjuk, hogy 7(D) < 7(De)+1 = v(D.)+1 < v(D),
amibdl a kivant 7(D) < v(D) egyenlStlenség adddik.

2. Eset A digraf minden e élére v(D.) = v(D). Azaz létezik D-ben élidegen irdnyitott viagdsoknak egy olyan
v(D) elemszamu Z. részrendszere, amely tagjainak egyikében sincs benne az e él. Legyen ezen halmazrendsz-
erek egyesitése J' (ligy értve, hogy egy X vdgds annyi példdnyban fordul el J'-ben, ahdny olyan e él van
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D-ben, amelyre X € Z..) Ekkor J'-nek |A|v(D) tagja van és
D minden éle legfeljebb k := |A| — 1 tagban van benne. (%)

Alkalmazzuk a kovetkezd kikeresztezési eljarast. Ha J'-nek van két keresztezd tagja, akkor helyettesitsiik Sket
a magjaik metszetéhez és unidjdhoz tartozd irdnyitott vdgasokkal. Egy ilyen cserénél (x) érvényes marad.
Miutdn egy kikeresztezés sordn a magok elemszamaéanak négyzetosszege né, legfeljebb véges sok 1épés utan egy
olyan keresztezés-mentes J rendszert kapunk, amely |A|v(D) (nem feltétlenil kiilonb6z8) irdnyitott végasbol
all és amelyre () fenndll. A 7.1.1 lemma szerint J tartalmaz [|J|/k] = [|A|v(D)/(JA| —1)] > v(D) élidegen
irdnyitott vagast, ellentmonddsban v(D) jelentésével. A 2. eset tehdt nem fordulhat elb. o

7.2 Iranyitott grafok osszefiiggéségének novelése eggyel

Azt mondjuk, hogy X = (Xk, Xp) parhalmazt alkot, ha Xg C Xx C V. A parhalmaz trividlis, ha Xg = ()
vagy Xrx = V. Xk a pdrhalmaz kiils6 tagja, Xp pedig a belsé. Egy él fedi (lefogja ) X-t vagy belép X-be,
ha mind a kiils6, mind a belsé tagjaba belép.

Tegylik fel, hogy a D = (V, A) digréf (k — 1)-szer Osszefiiggd, de k-szor mar nem. Ekkor van olyan X =
(XK, XpB) nemtrividlis parhalmaz, amelyre |Xxg — Xg| = k — 1 és D-beli él nem lép be X-be. Nevezziik
az ilyen parhalmazokat hidnyosnak és legyen L£p a hidnyos parhalmazok csalddja. Definidljunk L£p-n egy
részbenrendezést a természetes médon: X <Y, ha Xp C Yp és Xk C Yr. Azt mondjuk, hogy az X, Y € Lp
parok keresztezbek, ha e részbenrendezésben nem Osszehasonlithatok tovdbbd XpNYs # 0 és Xxk UYk £ V.
A péarhalmazok egy L részhalmazardl azt mondtuk, hogy keresztez6, ha £ barmely két keresztezd tagjaval
egylitt azok metszete és unidja is L£-ben van. Az Lp két tagjit nevezziik fiiggetlennek, ha a belsé halmazaik
diszjunktak vagy a kiils§ halmazaik ko-diszjunktak (azaz egyesitésiik fedi V-t). Ami azzal ekvivalens, hogy
nem fedhetk le egyetlen éllel. Az Lp két tagjanak a viszonya tehat haromféle lehet: a részbenrendezésben
Osszehasonlithatdk, keresztezok, fliggetlenek. Definidljuk az X,Y € Lp hidnyos parhalmazok metszetét és
unidjit a természetes médon: X AY := (Xg NYx, X NYB), X VY = (Xxk UYx,XpUYB).

Lemma 7.2.1 Keresztezd X,Y € Lp pdrhalmazok esetén mind X ANY, mind X VY tagja Lp-nek.

Biz. Konnyen latszik, hogy D-beli él sem X AY-t, sem X VY-t nem fedi le. fgy a D (k — 1)-0sszefliggbsége
folytdn | Xx NYx|—|XNYs| > k—16és | Xx UYk|—|XpUYR| > k— 1. Miutdn azonban (k—1)+ (k—1) =
| Xk —XB|+|Yk —YB| = (X NYk|—|XBNYB|)+ (| XK UYK| — | XBUYB|) > (k—1) + (k— 1), igy minden
becslés egyenléséggel teljesiil, tehat valéban X VY, X AY € Lp. e

TETEL 7.2.2 Egy (k — 1)-szer osszefiiggd D = (V, A) digrdf k-iosszefiiggévé tevéséhez sziikséges ij élek
minimdlis T = 7(D) szdma egyenld a figgetlen hidnyos pdrhalmazok mazimdlis v = v(D) szdmdval. (Més
szoval, D akkor és csak akkor teheté legfeljebb ~ 1j él hozzdadasdval k-Osszefliggévé, ha nem létezik ~-nal
tobb fiiggetlen hidnyos parhalmaz).

Biz. Uj éleknek egy F' halmazat D-hez adva pontosan akkor kapunk k-osszefiiggd digrafot, ha F' minden
hidnyos parhalmazt lefog. Miutan két fliggetlen parhalmaz egy éllel nem fedhetd, ezért v < 7. Jelolje A™ az
A-ban nem szerepl6 élek halmazat és legyen m := A™.

Lemma 7.2.3 Ha Lp nem tres, akkor létezik olyan e € A* €l, amelyre v(D +e) < v(D).

Biz. Legyen m := |A*|. Tegyiik fel indirekt, hogy minden e € A* élre v(D + e) = v(D). Mésszéval minden e
élre 1étezik egy parhalmazokbdl all6 Z. C Lp fiiggetlen halmaz, amelyre |Z.| = v(D) és e nem fedi Z. egyik
tagjat sem. Legyen ezek egyesitése J', igy értve, hogy egy X € Lp tag annyi példdnyban fordul elé J'-ben,
ahdny darab Z.-ben benne van (e € A*). Ekkor |J’'| = mv(D) és

minden él legfeljebb m — 1 parhalmazba 1ép be. (7.1)

Alkalmazzuk J'-re a kikeresztezési eljarast: amig csak lehet, vegyiink két keresztezd tagot, és helyettesitsiik
Sket a metszetiikkel és az unidjukkal. Egy ilyen cserénél (7.1) fennmarad és tovdbbra is az £ (nem feltétleniil
kiilénbozd) tagjaibdl allé6 parhalmazok egy rendszerét kapjuk. Miutdn egy kikeresztezési 1épésnél a szerepld
hidnyos parhalmazok kiils6 és bels6 halmazai méretének négyzetosszege szigorian né, véges sok kikeresztezési
1épés utén olyan keresztezés-mentes J rendszert kapunk, amely az £-nek my(D) (nem feltétlentl kiilonbozd)
tagjat tartalmazza, és amelyre (7.1) fenndll. Minden X € J-re jelolje s(X) azt a szdmot, ahdnyszor X eléfordul
J-ben. Ezen s-értékek dsszege | 7| = my(D). Allitjuk, hogy a J-n definialt részbenrendezésben minden ldnc
s-silya legfeljebb m — 1. Valéban, ha volna legaldbb m sulyt lanc, akkor [7-ben volna m tag, melyek paronként
Osszehasonlithat6ak, és mivel ezek egy ldnc tagjai (esetleg t&bb példanyban), igy, amint lattuk, van olyan él,
amely mind az m tagot lefogja, ellentétben a (7.1) tulajdonsiggal.
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A 2.1.3 stlyozott Mirsky tétel szerint (mazimdlis sulyd ldnc silya egyenld a sulyokat fedd antildncok
minimdlis szamdval) J felbonthaté legfeljebb m — 1 antildncra. Miutdn J &ssz-sulya mv (D), az egyik an-
tildnc bizonyosan legaldbb v(D) + 1 tagbdl all. De ezen tagok pdronként fiiggetlenek, ami ellentmond a v(D)
definicigjanak, bizonyitvan a lemmat. e

A tétel nemtrividlis v > 7 irdnydnak igazoldsdhoz v(D) szerinti indukciét haszndlunk. Ha e szdm nulla,
akkor Lp lres, azaz D maga k-Osszefiiggd, és igy 7(D) = 0. Tegyiik fel, v(D) > 0. A fenti lemma szerint
van olyan e € A* él, amelyre v(D + e) < v(D). Az indukcids feltevést v(D + e)-re felhaszndlva nyerjiik, hogy
7(D)<7(D+e)+1=v(D+e)+1<v(D), amibél a kivant 7(D) < v(D) egyenlétlenség adédik. e e

Megjegyezziik, hogy nem igaz az, hogy ¢ fliggetlen hidnyos parhalmaz 1étezése esetén gy is kivalaszthaté
q fiiggetlen hidnyos parhalmaz, hogy vagy a parhalmazok belsé halmazai paronként diszjunktak, vagy a
parhalmazok kiils6 halmazai paronként ko-diszjunktak.

7.3 k-élosszefiiggd digrafok eloallitasa

A kikeresztezési eljaras egy masirdnyd alkalmazdsaként megadjuk a k-élosszefiiggd digrafok konstruktiv eléallitasi
tételét. Ehhez szilikségiink lesz Mader leemelési tételére valamint az alabbi tételre.

TETEL 7.3.1 (W. Mader) Legyen D = (V, A) olyan legaldbb két ponti k-élésszefiggd digrdf, amelybdl
barmely €lt elhagyva megsziinik a k-élosszefiiggdség. Ekkor D-nek van olyan v pontja, amelyre o(v) = 6(v) = k.

Biz. Nevezziink egy X C V halmazt be-pontosnak, ha o(X) = k és ki-pontosnak, ha §(X) = k. A
feltevés szerint minden él belép be-pontos halmazba. Legyen £ be-pontos halmazoknak egy olyan csalddja,
hogy minden él belelép az egyik tagjaba, |£| minimalis és ezen beliil Y [|Z|> : Z € L] maxim4lis. Ekkor
allitjuk, hogy L keresztezés mentés. Ha ugyanis két tagja, X és Y keresztezd volna, akkor k + k = o(X) +
oY) = o(XNY)+o(XUY)+d(X,Y) > k+ k+ 0, amibdl az adédik, hogy a metszetiik és az uniéjuk
is be-pontos és hogy d(X,Y) = 0. De ekkor L-ben az X-t és Y-t a metszettel és az uniéval kicserélve a
keletkez8 £’ be-pontos halmazokbdl &llna, amelyre igaz, hogy minden él belelép egy tagjdba, |L'| = |L| és
SzP?:z e £']> Y [|Z° : Z € L], ellentmondésban £ vélasztdsaval.

Legyen s a V-nek tetsz6leges eleme. Legyen Fpe := {X CV — s, X € L} és legyen Fy; :={V — X : s €
X € L}. Ekkor F := Fpe U Fi; olyan lamindris halmaz-csaldd, hogy a digraf minden éle

vagy belép egy be-pontos tagjaba vagy kilép egy ki-pontos tagjabdl. (7.2)
Tegyiik fel, hogy F ilyen tulajdonségy, és hogy Y [|Z] : Z € F] minimalis.

1. eset. F minden tagja egyelemii. Készen vagyunk, ha van olyan z csics, amelyre az egyelemii {z} halmaz
Fre-ben és Fi;-ben is benne van, mert ez azt jelentené, hogy o(z) = k = d(z). Egy s-bél kilépé él biztosan
belép F egy be-pontos tagjéba, ezért Z := {v : {v} € Fie} nem-iires, de ekkor egy Z-bél kilép6 él megsérti
(7.2)-t.

2. eset F-nek létezik nem egyelem tagja. Legyen Z minimélis ilyen, és jelolje Zy. a Z-ben 1év6 egyponti Fipe-
beli halmazok uniéjit, mig Z; a Z-ben 1év6 egyponti Fy;-beli halmazok uniéjat. Szimmetria miatt feltehetjiik,
hogy Z be-pontos. Természetesen készen vagyunk, ha Zpe N Zx; # 0, igy tegytk fel, hogy Zpe N Zr; = 0.

Azt allitjuk, hogy Z erésen Osszefliggt részgrafot feszit. Ha ugyanis nem ez a helyzet, akkor létezik Z-nek
egy olyan X valddi nem-iires része, amelybe nem vezet él Z — X-bdl. De ekkor k < o(X) < o(Z) = k, amibél
o(X) =k és igy F — Z + {X} is j6 rendszer, ellentétben Y [|Z|: Z € F| minimalitdsdval.

Nem lehet Zpe = Z, mert ekkor Z-t ki lehetne hagyni F-bol. Valgjaban a Zp. halmaz iires, mert kiilonben
az erdsen Osszefiiggéség miatt 1ép él a Zpe halmazbdl a Z — Z,. halmazba, de ez az él sziikségképpen megsérti
(7.2)-t.

Minden u € Z pontnak Zi;-ben kell lennie, mert kiilonben egy uv él, v € Z, megsérti (7.2)-t. Tehdt Zy, = Z.
De ekkor k = o(Z) = > _, 0(v) —i(Z) > k|Z| —i(Z) =3, ., 0(v) —i(Z) = 6(Z) > k, vagyis mindegyik
egyenlétlenség egyenléséggel teljesiil és igy Z minden pontjira o(v) = 6(v) = k. (Itt ¢(Z) a Z altal feszitett
élek szadmat jeloli). e

Feladat 7.1 Igazoljuk, hogy az el6zd tétel feltételei mellett két pont is létezik a kivdnt tulajdonsdggal.

Térjlink ra a k-élosszefiiggd digrafok eléallitasara. Két kézenfekvo miivelet kindlkozik arra, hogy egy meglévo
k-élsszefliggé digrafbdl egy nagyobbat allitsunk el6:

(A1) Két létez6 pontot kossiink Gssze egy irdnyitott éllel,
(A2) Csipjiink 6ssze k meglévs élt egy 1j ponttal, azaz a k él mindegyikét osszuk fel egy-egy ponttal, és
egyesitsiik a k osztds-pontot egyetlen uj pontta.

Nyilvdnvald, hogy az (A1) miivelet megérzi a k-6losszefiiggéséget.
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Gyakorlat 7.2 Igazoljuk, hogy az (A2) mdvelet megdrzi a digrdf k-élosszefiiggéségét.
Ennél még érdekesebb, hogy érvényes az aldbbi megforditas:

TETEL 7.3.2 (W. Mader) Egy D = (V,A) irdnyitott grdf akkor és csak akkor k-élosszefiiggd, ha egy
pontbdl kiindulva elddllithaté az elébbi (A1) és (A2) mduveletek segitségével.

Biz. A tétel nem-trividlis irdnydnak bizonyitdsdhoz |A| szerinti indukciét alkalmazunk. Az allitds semmit-
mondé, ha |V| = 1, {gy legyen |V| > 2. A feltevés szerint D k-élosszefiiggd. Amennyiben 1étezik olyan e él,
amelyre D' := D — e is k élosszefiiggd, akkor indukcié alapjan D’-nek mér 1étezik kivant el6éllitdsa, és ezt
kiegészitve az e él hozzdadasaval, a D keresett elGallitasat kapjuk.

Tegyiik most fel, hogy D él-elhagydsra nézve minimélis k-élosszefiiggd digraf. A 7.3.1 tétel szerint létezik
egy z pontja, amelyre 6(z) = o(z) = k. Mader 5.3.4 irdnyitott leemelési tétele szerint a z-be bemend és kimend
élek parba allithatdk gy, hogy a parokat leemelve keletkezd D’ digraf k-élosszefiiggd. Indukcié alapjan D’-
nek mér létezik kivant eléallitdsa. Ebbél D elbéllitasat gy kapjuk meg, hogy a D’-ben szerepld k leemelt élre
alkalmazzuk az (A2) operdciét. e

graf ly 2014. m&jus 12.
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8. Fejezet

DISZJUNKT UTAK

8.1 Az élidegen 1t probléma

Az élidegen utak problémadja a kovetkezd. Adott G irdnyitott vagy irdnyitatlan graf és a pontjaibdl alkotott
k darab pontpér: (s1,t1), (s2,t2),..., (sk,tx). Keressiink k paronként élidegen utat gy, hogy az i-dik it s;-bdl
ti-be vezessen. Hasznos ezen 6sszekotendd pontparokat egy tin. igényéllel megjeldlni. Az irdnyitott esetben az
igényél is irdnyitott lesz, épedig ¢;-bdl s;-be. Az igényélek altal alkotott H = (U, F) (di)gréfot igénygrafnak
nevezziik, mig az eredeti (di)graf a teljesité graf. Az élidegen utak problémédja avval ekvivalens, hogy G + H-
ben keressiink |F'| élidegen (irdnyitott) kort, melyek mindegyike pontosan egy igényélt tartalmaz. Az ilyen
koroket nevezziikk F-j6é kornek vagy réviden jonak.

Az irdnyitatlan élidegen utak probléméja NP-teljes mér akkor is, ha G + H Euler féle (azaz dg(v) + da(v)
minden v csicsra péaros), vagy ha G + H sikbeli. Ugyanakkor polinom idében megoldhaté, ha G + H Euler ES
sikbeli: a megoldds Seymour egy tételén és a pérositdas elméleten alapul. Akkor is megoldhatd, ha k = 2 (ez
messze nem trividlis), és dltaldnosabban, létezik polinomidlis algoritmus rogzitett k esetére (ami tehdt a graf
méretében polinomidlis, de k értékében nem).

Az irdnyitott élidegen 1t probléma mér a k = 2 esetben is NP-teljes. Aciklikus digrafokra a feladat tetszoges
k-ra NP-teljes, ugyanakkor rogzitett k-ra ismeretes (dinamikus programozason alapuld) polinomidlis futasidejii
algoritmus.

Mind az irdnyitott, mind az irdnyitatlan esetben adddik egy természetes sziikséges feltétel:

irdnyitatlan végds-egyenlétlenség: da(X) > du(X), (8.1)

irdnyitott vdgas-egyenl6tlenség: os5(X) > 65(X). (8.2)

Az (irdnyitott) vagdasfeltétel (vagy kritérium) az (irdnyitott) vagds-egyenlStlenséget koveteli meg minden

X C V-re. Ezen feltételek altalaban nem elegenddek, vannak azonban érdekes speciilis esetek, amikor igen.

Példaul Menger tételének irdnyitott illetve iranyitatlan él-valtozata szerint ez a helyzet, amikor s;1 = ... = si,

és t1 = ... = ti. Egyszerl elemi konstrukciéval kévetkezik, hogy a vagasfeltétel elegendé még akkor is, ha
csupan az s; pontok egybeesését koveteljiik meg.

8.1.1 Egy elegendo feltétel

El6szor egy elégséges feltételt mutatunk be az élidegen irdnyitott dtprobléma megoldhatdsigéra.

TETEL 8.1.1 Legyenek {s;, t;} pontpdrok egy k-élosszefiiggd D digrdfban (i = 1,2,...,k). Ekkor léteznek
élidegen utak s;-bdl t; be.

Biz. Bévitsiik ki a digréfot egy s gyokérponttal és egy ss; éllel minden ¢ = 1,..., k-ra. Alkalmazhatjuk
Edmonds diszjunkt fenyd tételét (5.3.4 tétel). Mivel pontosan k él 1ép ki az s gyokérpontbdl, ezek mindegyike
més fenyében van, és e fenyék tartalmazzak a keresett élidegen utakat s;-bél t;-be.

8.1.2 Két terminal par

Alljon most H két csomag parhuzamos élb6l &ll, azaz H-nak k; éle van t;-bél s;-be (i = 1,2). Ez az egyik
legkisebb olyan igénygréf, amely a Menger tétellel nem kezelheté. (A mdsik az, amikor az igényélek egy
hdromszoget alkotnak).

Egy irdnyitott grafot akkor neveztiink Euler-félének, ha minden pontban a befok egyenlé a kifokkal,
irdnyitatlan graf esetén pedig akkor, ha minden pont befoka paros.
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TETEL 8.1.2 Irdnyitott esetben, ha a H igénygrdf két csomag (egy irdnyba mend) pdrhuzamos €élbdl dll és
G + H Euler-féle, akkor az irdnyitott vdgasfeltétel az élidegen utak létezésének sziikséges és elegendd feltétele.

Biz. Az irdnyitott vagdsfeltételt csak a t1-bdl si-be vezetd ki igényélre alkalmazva, a Menger tétel alapjdn
létezik G-ben ki élidegen irdnyitott ut s1-bdl t1-be. Ezen ki utat és ki igényélt G 4+ H-bdl kihagyva irdnyitott
Euler grafot kapunk, amely élidegen kordk unidjara bomlik, igy ezek tartalmaznak k2 jé kort. e

TETEL 8.1.3 (Rothschild and Whinston) Irdnyitatlan esetben, ha a H igénygrdf két csomag pdrhuzamos
€lbol dll és G+ H Euler-féle, akkor a vdgdsfeltétel az élidegen utak létezésének sziikséges és elegendd feltétele.

Biz. A tétel bizonyitdsdhoz el6szor irdnyitsuk a k; darab s;t;-igényélt ¢;-t6l s; felé (i = 1,2). Menger tétele
szerint G-ben létezik ki +k2 darab élidegen irdnyitatlan it az S := {s1, s2} halmazbdl a T := {¢1, t2} halmazba.
Ezen utak éleit elére, a kimaradé élek Euler-grafjat pedig Euler médon megiranyitva a G + H-nak egy G+H
Euler irdnyitasat kapjuk, amib6l minden X C V-re

Irjuk a (8.1) irdnyitatlan végas-egyenlétlenséget az ekvivalens
06(X)+05(X) 2 05(X) +65(X) (8.4)

alakba. Ezt (8.3)-hoz adva (8.2) kétszeresét kapjuk, vagyis G + H-ra teljesiil az irdnyftott vagasfeltétel, és igy
alkalmazhatjuk a 8.1.2 tételt. o

Gyakorlat 8.1 Tegyik fel, hogy G + H irdanyitatlan grdf, melyre a vdgds feltétel teljesil. Legyen HaH
tetszdleges irdnyitdsa. Ekkor G irdnyithaté gy, hogy G + H FEuler-féle.

Feladat 8.2 Legyenek G és H irdnyitatlan grdfok gy, hogy G + H FEuler-féle. Legyen G+ H egy Euler
irdnyitisa G + H -nak. Igazoljuk, hogy az irdnyitatlan vdgas feltétel akkor és csak akkor teljesil G + H-ra, ha
az irdnyitott teljesil G + H-ra.

B. Rothschild és A. Whinston tétele T.C. Hu egy kordbbi eredményének élesitése, amely szerint ha H két
csomag parhuzamos él, de G + H nem feltétleniil Euler, igy a vagésfeltétel sziikséges és elegendd az élidegen
ut probléma azon relaxdcidjanak megoldasahoz, amelyben az utakat valaszthatjuk fél kapacitassal. Példaul
ha G egy négyélli kor az si, s2,t1,t2 csucsokon és az igénygraf az sit; valamint az sate élekbdl &ll, akkor a
vagasfeltétel teljesiil, de a keresett két élidegen 1t nem létezik. Ugyanakkor s és t1 kozott az si,s2,t1 és
az si1,t2,t1 utakat félszer vélasztva valamint s és to kOzOtt az sq2, s1,t2 és az so,t1,ts utakat szintén félszer
vélasztva egy félegész értékii megoldast kapunk.

8.1.3 Aciklikus sikgrafok

Amint mar emlitettiik, az iranyitott élidegen utak problémaéja még aciklikus digraf esetén is NP-teljes. Sikgrafokra
azonban jobb a helyzet.

FEDESI FELTETEL Az F -j6 koroket nem lehet k-nél kevesebb AU F-beli éllel lefogni. Ekvivalens alakban:
Barmely k' (1 < k' < k) termindl-parra az s;-bél t;-be vezeté utakat nem lehet k'-nél kevesebb D-beli éllel
lefogni.

A feltétel nyilvan sziikséges a k élidegen F-j6 kor, azaz a k élidegen 1t 1étezéséhez.
Gyakorlat 8.3 Igazoljuk, hogy ha az irdnyitott vdgdsfeltétel megséril, akkor a fedési feltétel is.

TETEL 8.1.4 Amennyiben D aciklikus és D+ H sikgrdf, igy a fedési feltétel sziikséges és elegendd az élidegen
utak létezéséhez.

Biz. Tekintsiik a D + H graf sikbeli dudlisat, D’ + H'-t. Alh’tjuk, hogy ebben létezik k élidegen iranyitott
végas. Ha nem ez volna a helyzet, akkor a Lucchesi-Younger tétel alapjan 1étezne legfeljebb k& — 1 él, amely
az Osszes iranyitott vagast lefogja. Ez éppen azt jelentené, hogy az eredeti D + H grafban az Gsszes irdnyitott
kort le lehetne fogni k-nél kevesebb éllel, ellentétben a fedési feltétellel.

Tehat D'+ H’-ben van k élidegen irdnyitott vagasunk, azaz az eredeti D + H-ban van k élidegen irdnyitott
koriink. Mivel a feltevés szerint D aciklikus, ezen korok mindegyike tartalmaz legaldbb egy igényélt. Masrészt
k igényél van, igy a k kor mindegyike pontosan egy igényélt tartalmaz, vagyis ezen korok F-jé korck. e

2014. majus 12. file : dutak
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8.2 Elidegen utak sikgrafban

Vizsgaljuk meg az élidegen 1t problémat iranyitatlan sikgrafokban. Sziikségiink lesz az alabbi megfigyelésekre.

Lemma 8.2.1 (a) Ha G minden elemi vdgdsa teljesiti a vdgds egyenlbtlenséget, akkor minden vdgdsa teljesiti.
(b) Ha Z egy tartalmazdsra nézve minimdlis pontos st-halmaz, akkor a [Z,V — Z] vdgds elemi.

Biz. (a) Elészor igazoljuk a vdgds egyenltlenséget az olyan [X,V — X| vdgdsokra, melyekre X osszefliggd
grafot feszit. Legyenek a V — X altal feszitett graf komponensei K1, ..., K;. Ekkor a G — K, Osszefiiggd, azaz
a [Ki,V — K] végés elemi, és ezért dg(K;) > du(K;). De ekkor da(X) = >, da(Ki) > Y du(K;i) > du(X).

Legyen most [X,V — X] tetszOleges végds és legyenek a V — X dltal feszitett graf komponensei K1, ..., K;
(I > 2). Az els6 részben lattuk, hogy azok a vdgdsok, melyeknek egyik partja G-nek &sszefliggé részgrafjat fesziti
teljesitik a vagds egyenlétlenséget. Igy specidlisan a [Ki,V — K;] végésok is, és ezért dg(X) = ZZ da(K;) >
> du(Ki) > du(X).

A (b) rész igazoldsdhoz figyeljik meg, hogy ha X pontos halmaz, gy a fenti egyenlStlenségek mind
egyenlOséggel teljesiilnek, és ezért mind az X, mind a V — X A&ltal feszitett részgraf komponensei is pon-
tosak. Ebbdl kapjuk, hogy ha Z tartalmazdsra nézve minimalis pontos st-halmaz, igy Z osszefiiggd részgrafot
feszit. o

Lemma 8.2.2 (a) Ha A, B pontosak és du (A, B) = 0, akkor mind ANB, mind AUB pontos és dc(A, B) = 0.
(b) Ha A, B pontosak és du(A, B) =0, akkor mind A — B, mind B — A pontos és da(A, B) = 0.

Biz. dH(A) + dH(B) = dG(A) + dG(B) = dg(A N B) + dg(A U B) + QdG(A7 B) > dH(A n B) + dH(A U B) +
2dg(A,B) =du(A) +du(B)+2(da(A, B) — du (A, B)), amibdl az (a) rész kovetkezik. A (b) részt megkapjuk
(a)-bdl, ha azt B helyén és V — B-re alkalmazzuk. e

TETEL 8.2.3 (H. Okamura és P.D. Seymour) Legyen G = (V,E) sikgrdf és a H = (V,F) igénygrdf
olyan, hogy G + H Euler és minden termindlpont G egy tartomdnydnak hatdrdn helyezkedik el. Ekkor a vdgds
feltétel sziikséges és elegendd az élidegen ut probléma megolddsdhoz.

Biz. G élszdma szerinti indukciét haszndlunk. Az elegendéséget elég a G komponenseire kiilén bizonyitani, igy
feltehetjiik, hogy G &sszefiigg. Még az is feltehetd, hogy G 2-Gsszefiiggd (miért?). Ekkor G minden tartoményét
kor hatérolja. Jelolje C' a végtelen tartomanyt hatarol6 kort, és tegyiik fel, hogy C pontjai ciklikus sorrendben
v1,...,vn. Feltehetjik, hogy a terminal pontok C-n vannak.

Legyen e a C egy olyan éle, amely benne van pontos vagasban, illetve, ha nincs pontos vigas, akkor C'
bérmelyik éle megteszi. Az indexek esetleges dtszamozasaval feltehetd, hogy e = vpv1. Legyen A C V minimélis
pontos halmaz, amely vi-t tartalmazza, de vip-t nem. A 8.2.1 lemma szerint A Osszefliggd részgrafjat fesziti
G-nek, igy G sikbelisége miatt az A halmaz a C kort két ivre bontja; az egyik benne van, a masik kiviile.
Valasszunk egy olyan f = vv; (i < j) igényélt, amelyre v; € A, v; € A és j a lehetd legnagyobb. (Ha
egyéltaldn nincs pontos halmaz, igy barmely igényél j6 lesz.)

Toroljiik el G-bél az e élt és cseréljiik ki az f igényélt a viv; és vjvy, igényélekre. A kapott G’ graf és H'
igénygraf olyan, hogy G’ + H' Euler és a termindlok G’ egy tartomdnydnak hatdrdn vannak. Belatjuk, hogy
a vagas feltétel is teljesiil. Ebb6l a tétel mar kovetkezik majd, hiszen indukcié miatt G’-ben az élidegen 1t
problémanak mar van megoldésa, és ha ebben a v; és v; k6zott valamint a v; és vy, kozott vezetd utakat az e
él segitségével Osszeragasztjuk, igy egy v; és v; kozotti utat kapunk.

Ha a vagds feltétel indirekt megsériilne G'-re és H’'-re nézve, akkor G + H Eulersége miatt 1étezik egy
G + H-ra nézve pontos halmaz, amely a v1, v;, vj, vn pontok kozil pontosan vagy (i) vi-t tartalmazza, vagy
(i1) vp-t, vagypedig (i) vi-t és vp-t.

Az f vélasztdsa folytdn mindegyik esetben dm(A,B) = 0, igy alkalmazhatjuk a ?? lemmadt, amelybdl
adédéan mind A N B, mind A U B szoros és dg(A,B) = 0. Az (i) és (iii) esetekben A N B szorossdga
ellentmond A minim4lis vélasztdsanak. Az (i7) esetben pedig az e él miatt da (A, B) = 0 egyenldséggel keriiliink
ellentmondasba. e

Bizonyitas nélkiil kozoljiik az Okamura-Seymour tétel alabbi kiterjesztését.

TETEL 8.2.4 (Okamura) A vdgds feltétel még abban az esetben is elegendd, amikor G sikgrdf, G+ H Euler
és G-nek van két tartomdnya gy, hogy minden igény €l vagy az egyik tartomdny hatdrdndk két pontjat koti
0ssze vagy a masikét.

Kis példa, amikor G sikgraf, G + H Euler és a vagas feltétel nem elegendd a kovetkezd: Legyen G + H
a teljes 6tpontu graf, amelynek 10 éle koziil egy hdromszog és az ettdl diszjunkt él alkossa az igényéleket, a
tobbi 6 él pedig a G grafot.

graf: os, 2014. m&ajus 12.
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8.3 Diszjunkt T-utak
8.3.1 Elidegen T-utak

Az alédbbi feladatban nincsenek eldirva az tuttal 6sszekdtendd pontparok, hanem csak egy termindl halmaz
adott. Legyen T a G = (V, E) irdnyitatlan graf csicsainak egy részhalmaza. Egy utat T-ttnak neveziink,
ha végpontjai T-ben vannak, belsé pontjai viszont nem. A Menger tétel iranyitatlan élvaltozata két elemi T’
esetén megmondja, hogy mennyi az élidegen T-utak maximélis szdma. Az dltaldnos eset jéval nehezebb, most
csak arra az esetre szoritkozunk, amikor minden 7T-n kiviili pont paros foku.

TETEL 8.3.1 (Lovasz, Cherkasskij) Legyen G = (V, E) irdnyitott grdf, T a pontok egy olyan halmaza,
hogy minden T-n kivili pont foka pdros. Az élidegen T -utak mazimdlis szdma egyenld az L := ZUET A, T —
v)/2 értékkel, vagy ekvivalens alakban, létezik élidegen T-utaknak egy olyan rendszere, amelyben minden v € T
pontbdl AM(v, T — v) 4t indul ki.

Biz. A bizonyitasban a A(v,T — v) értéket réviden A(v)-vel fogjuk jeldlni. Elidegen T-utak egy rendszerében
v-bél legfeljebb A(v) it indul ki, igy az élidegen T-utak maximalis szdma legfeljebb a ) e AN(v) Osszeg fele,
azaz L.

Az egyenlGség igazoldsdhoz élszdm szerinti indukciét haszndlunk. A tétel semmitmondd, ha a gréfnak nincs
éle. Feltehets, hogy a graf Osszefliggd. Feltehetd tovabba, hogy T nem feszit élt, mert egy ilyen e élt kihagyva
L értéke eggyel csokken, a maradékban indukciéval van L — 1 élidegen T-ut, amihez hozzdvéve az egyetlen e
élbdl allé T-utat, megkapjuk G-ben a kivant L darab élidegen T-utat.

Két esetet kiilonboztetiink meg. ElGszor tételezziik fel, hogy 1étezik olyan ¢t € T' elem és X nem egyelemi
részhalmaz, melyekre X NT = {t} és A\(t) = d(X). Hizzuk 6ssze az X halmazt egy ponttd, melyet jeloljon ¢'.
Az 8sszehtizott graf legyen G’ és T' := T —t +t'. Legyen u € T'-re X' (u) := A\(u, T" — u; G').

Allitas 8.3.1 X (') = A(t) és minden u € T — t-re X (u) = A(u).

Biz. Miutdn 6sszehtzéssal csak meglévéd vagasok szlinnek meg és 1jak nem keletkeznek, a A\ értékek biztosan
nem csokkennek. A X' (t') < d'(t') = d(X) = A\(t) egyenlStlenségbdl kivetkezik az 4llitas elsd része.

Legyen most u € T —t. A Menger tétel alapjan van egy olyan U olyan halmaz, amelyre U N'T = {u} és
Au) = d(U). Ekkor A(u)+A(t) = d(U)+d(X) > d(U—-X)+d(X —U) > A(u)+A(t), amibél végig egyenlSség,
és igy Mu) =d(U — X) =d' (U — X) > XN(u) > A(u) kovetkezik. o

Indukciéval kovetkezik, hogy G'-ben van L' = L darab élidegen T'-1itbdl 4ll6 F’ titrendszer. Ennek G-ben
megfelel egy F tutrendszer. Tekintsiink most G-ben A(v) = d(X) darab élidegen utat u-bdl T' — u-ba, illetve
ezeknek csak azon kezddszeleteit, melyeknek utolsd élei az X és V — X kozott vezetd élek. Ezen utakat és
az F-beli utak kozil az X-ben végzodbket Osszeillesztve, megkapjuk G-nek egy L utbdl all6 élidegen T-ut
rendszerét.

Masodiknak vizsgdljuk meg azt az esetet, amikor semelyik ¢ € T" pontra sincs olyan legalabb két elemt X
halmaz, amelyre X NT = {t} és d(X) = A(t). Ez azt jelenti, hogy X NT = {t}, |X| > 2 esetén d(X) > A(t).
A paritési feltevés miatt d(X) és d(t) = A(t) megegyezd paritdsu, ezért d(X) > A(t) + 2. Tekintsiink most egy
tetszlleges e = tz élt és egy z-ben végzddo miésik f = zv élt. Helyettesitsiik az e és f éleket egy Uj h = tv éllel
(mésszéval emeljiik le az e, f éleket). A 1étrejové G” grafban is minden T-n kiviili pont péros fokd. Miutén a
leemeléssel egy halmaz foka legfeljebb kett6vel csokkenhet, d(X) > A(t) + 2 miatt a A(¢) értékek véltozatlanok
maradnak, azaz L” = L. Indukciéval 1étezik G”-ben L darab élidegen T-1it. De ekkor G-ben is 1étezik, hiszen
ha az egyik it hasznélja h-t, akkor h-t e-re és f-re cserélve G-beli utat kapunk. e e

Gyakorlat 8.4 Példan mutassuk meg, hogy a Lovasz-Cherkasskij tételben a paritdsi feltevés nem hagyhatd el.

8.3.2 Pontidegen T-utak

A maximaélis pérositds elemszdméra vonatkozé Berge-Tutte formuldnak szép altaldanositdsa Gallai aldbbi
eredménye. Emlékeztetiink, hogy egy T-ut a T halmaz két kiilléonb6z6 pontjat koti Ossze és bels§ pontjai
nem 7T-beliek.

TETEL 8.3.2 (Gallai) Legyen T a G = (V, E) irdnyitatlan grdf pontjainak egy nemiires részhalmaza. A
(teljesen) diszjunkt T-utak mazimdlis vr szdma egyenld a

pr = min{|X| + ZHK nNT|/2]: X CV} (8.5)

értékkel, ahol az 0sszegzés a G — X részgrdaf K komponenseire megy.
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Biz. Tegylik fel el0szor, hogy 1étezik k pontidegen T-1ut, melyek koziil k1 metszi X-et, ko := k — k1 pedig nem.
Egy X-et nem metsz6 T-ut sziikségképpen teljesen a G — X valamelyik K komponensében fekszik. Marpedig
K-ban legfeljebb ||K NT|/2] diszjunkt T-it létezhet. Ennek megfelelen k = ki + k2 < [X|+ > [|[KNT|/2]
és vr < ur kovetkezik.

A forditott egyenlétlenséghez |V — T'| szerinti indukciét haszndlunk. Amennyiben ez a szdm 0, azaz T =V,
gy vr a G-ben fekvd parositdsok maximélis v(G) elemszdmaval egyenld. Mérpedig a Berge-Tutte formula
szerint

v(G) = mind|V] = qv (X) + |X]} /2 (3.6)

ahol qv (X)) jeloli az X elhagydsdval keletkezd paratlan pontszdmu komponensek szdmat. Egyszer(i szdmolds
mutatja, hogy

(VI=qv(X)+[X])/2 = X|+ > _LIK|/2],
K
ahol az Gsszegzés a G — X részgraf K komponenseire megy, hiszen 2, ||K|/2] = |V — X| — qv (X). Vagyis,

v(G) = min{|X|+ > [|K|/2] : X CV}. (8.7)

Tegyiik most fel, hogy V — T nemiires és z € V —T. Dupldzzuk meg a z pontot abban az értelemben, hogy
felvesziink egy 1j 2z’ pontot, amit Gsszekotiink z-vel valamint z eredeti szomszédaival. Jelolje G’ = (V', E’) az
igy kapott grafot és legyen T" := T'U {2, 2'}. Figyeljiik meg, hogy G’-ben z és 2’ szerepe szimmetrikus.

Allités 8.3.2 pup < ppr — 1.

Biz. Legyen X' C V' egy G'-re vonatkozé (8.5)-t minimalizdlé halmaz, amely minimalis elemszdmu. Ekkor
nem lehet, hogy X’ a z és 2’ pontok koziil pontosan az egyiket tartalmazza, mert ha mondjuk z-t tartalmazza
és z'-t nem, akkor a z és 2z’ szimmetridja miatt z minden szomszédja vagy X’-ben van vagy a z’-t tartalmazé
komponensben, és emiatt X’ — z is minimaliz4lé halmaz volna, ellentmonddsban X’ minim4lis valasztdséval.
Az sem lehetséges, hogy a z és 2’ pontok a G’ — X’ kiilénb6z8 komponenseihez tartoznak, hiszen z és 2’ kozott
van él. Tehat z és 2z’ mindegyike vagy X’-ben van vagy G’ — X’-nek ugyanabban a komponensében. Mindkét
esetben egyszerti megfontolds utan kapjuk, hogy az X := X' — 2’ egy olyan halmaz G-ben, amelyre

X[+ UK NTI/2] = (X[ + ) _[IK' nT'|/2) -1,

K’

amibél pur < ppr — 1 adédik.
Allitds 8.3.3 vy > vy — 1.

Biz. Legyen P’ a G’-ben pontidegen T'-utaknak egy vy tagi rendszere. Ha z sem és 2z’ sem végpontja ezen
utaknak, azaz P’ T-utakbdl &ll, és igy vr > vp.

Ha P’ tartalmaz egy P zz'-utat vagy pedig ha z és 2’ koziil csak az egyikben végzddik egy P € P’ 1t,
akkor P-t kihagyva P’-bél a G-ben kapunk |P’| — 1 = vy — 1 darab T-utat.

Végiil, ha P’-ben van egy P, zt-iit és van egy P, 2't'-ut is (t,t' € T), Ugy a P, és P,/ Osszeflizésével egy
G-beli T-utat nyeriink ¢ és t' kdzott, és {gy P'-ben a P, és P, utakat P-re cserélve G-ben [P'| — 1 =vq — 1
darab pontidegen T-utat kapunk. e

A mar bizonyitott trividlis vr < pr irdnyt, a két allitdst, valamint a G’-re vonatkozé indukcids feltevést
hasznélva kapjuk, hogy vr > vy — 1 = ppr — 1 > pr > vr, amibdl a kivant vy = pur kovetkezik. o o

8.3.3 Belsodleg pontidegen T-utak

Gallai T-utas tétele dltalanositja ugyan a Berge-Tutte formulat, de hidnyossaga, hogy a Menger tétel iranyitat-
lan pontdiszjunkt véltozata nem fér bele. A |T'| = 2 esetben ugyanis a Gallai tétel csupén arra ad vélaszt,
hogy két pont kozott mikor létezik ut. Mader aldbbi eredménye a Menger tétel és a Gallai tétel kozos
altaldnositasanak tekinthetd. Mader tételét egy ekvivalens alakjaban fogjuk bizonyitani és ebbdl vezetjiik
majd le az eredeti alakot.

A G = (V,E) irdnyitatlan grafban adott termindl pontoknak egy 7" C V halmaza és T-nek egy 7 =
{T1,...,Tx} dgynevezett termindl-particiéja. Egy utat 7-ttnak hivunk, ha két kiilonbozé T; részt kot Ossze
és csak a két végpontja van T-ben. Jelolje a diszjunkt 7-utak maximalis szamét vr.

Legyen F = {Uo, VA1, ...,Vq} a V csiicshalmaznak egy olyan particidja, amelyben csak Uy lehet tires. Az F
particié akkor fed egy P utat, ha az Uy ponthalmaz és az U[I(V;) : i = 1,..., k] élhalmaz egytitt lefogja P-t,
ahol I(X) az X altal feszitett élek halmazét jeloli. Azt mondjuk, hogy F 7-j6, ha fed minden 7-utat. Egy F
T-j6 particié pur(F) értékén a kovetkezb szdmot értjiik.
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q
pr(F) = [Uol + Y _LIBil/2),
i=1
ahol B; azon Vi-beli pontok halmazat jeloli, melyek vagy T-ben vannak vagy van szomszédjuk V — (Up U V;)-
ben. Figyeljik meg, hogy itt helyesebb volna p7-t frni, de valéjéban a ur(F) érték adott G esetén csak a T
termindl halmaztdl fiigg, de nem fiigg a 7 termindl-particiétol. (Az F T-jésdga fiigg a termindl-particiétol.)
Igaz tovabbd, ur T-ben monoton nové, azaz T C T esetén pr(F) < pp: (F).

TETEL 8.3.3 (Mader) A diszjunkt T -utak mazimdlis vr szdma egyenld a T-jo particidk minimdlis pr
értékével.

Biz. (Schrijver) Tekintstink diszjunkt 7-utaknak egy h tagui halmazit és egy F T -j6 particiét. Jeldlje ho azon
utak szdmadt, melyek hasznédlnak Up-beli pontot, h; (i = 1,...,q) pedig azokét, melyek haszndlnak V; &ltal
feszitett élt. Mivel F T7-j6, h < ho + Z[hl :i=1,...,q|. Egy V;-beli élt hasznélé it legaldbb 2 pontot hasznal
B;-bél, ezért h; < ||B;|/2], amibdl h < |Ug| + Zle [|Bi|/2], és gy a max < min irdny kovetkezik.

A forditott max > min irdnyt elegend6 arra a specidlis esetre igazolni, amikor mindegyik T; stabil. Ugyanis
a T;-k altal feszitett éleket kihagyva egyrészt a 7-utak halmaza nem valtozik és emiatt a v sem. Mésrészt
nem valtozik egy particié 7T-jésaga és értéke sem, és emiatt a torlés a ur értéket sem befolydsolja. Feltessziik
tehat, hogy mindegyik T; stabil.

Indirekt tegyiik fel, hogy v < pur és az adott G-re valasszuk a 7 termindl-particiét olyannak, amelyre a

P(T)=> (TlITy]:1<i<j<k)

kisér6 érték maximalis.
Ha mindegyik T; egyelemi, akkor Gallai 8.3.2 tétele szerint

vr = pr = min{| X| —I—ZHKHTVQJ : X C VY
K

ahol az Gsszegzés a G — X K komponenseire megy. E komponenseket rendre Vi, ..., Vy-val jelolve az F =
{X,V1,...,V,} particié6 7-j6 és B; = V; N T, amib8l pr < pr adédik, ellentmondésban az indirekt v < pr
feltevéssel. Kovetkezik, hogy legaldbb az egyik T;, mondjuk 771, legaldbb 2-elemii.

Legyen t € Ty és legyen 7' := {{t},Th — t,T>,...,Tk}. Mivel p(T') > ©(T), ezért (G,7’) mir nem
ellenpélda, azaz v’ = ', ahol v’ := v/ és p' := pgs. Legyen F' egy optimalis 7'-j6 particié, amelynek értéke
tehdt p'. Mivel minden 7-tt egyittal 7't is, az F’ particié 7-jé particié, amib8l p <y, ahol p := ur.
Létezik tehdt diszjunkt 7'-utaknak egy u titbdl 4116 P rendszere. Nem lehet ezen utak mindegyike 7 -1t, hiszen
akkor (G,7) nem lenne ellenpélda, ezért P-ben van egy Py st-ut, ahol s € T1.

Legyen u a Py 1t s uténi elsé pontja. Nem lehet u = t, hiszen T} stabil. Tekintsiik most a 7" := {T} +
u, T, ..., Ty} termindl-particiét. Mivel o(7") > ¢(T), ezért (G,7") mér nem ellenpélda, azaz v = p”, ahol
V' i=wvgn bs p = g

Allitjuk, hogy egy F T"-j6 particié T-j6 is. Ha ugyanis nem fedne egy P 7T-utat, akkor P nem 7"-it,
ezért biztosan dtmegy u-n. Mivel a P egyik, z-szel jelolt végpontja nem lehet Ti-ben, a P Ut = és u kozotti
Plu, z] részitja egy olyan 7"-it lenne, amelyet " nem fed, a feltevésiinkkel ellentmonddsban. Miutén a
T'-hoz tartozé T’ := T + u termindl halmaz b&vebb, mint T, ezért pp: (F") > pr(F") és emiatt p < p”.

Létezik tehat diszjunkt 7”-utaknak egy u titbdl 4116 Q rendszere. Valasszuk ezt olyannak, amely

a legkevesebb P-szabad élt hasznélja, (*)

ahol egy él P-szabad, ha nincs benne P-beli utban. Nem lehet ezen utak mindegyike 7-1t, hiszen akkor (G, 7))
nem lenne ellenpélda. Ezért 1étezik egy Qo € Q 1t, amelynek egyik vége u.

Allitds 8.3.4 P, mindkét végpontjdat fedi Q-beli 1t.

Biz. Az s-ben végzédik Q-tt, mert kilonben Qo utat az su-val kib&vitve, Q@ — {Qo} U {Qo + su} u darab
diszjunkt 7-utat alkotna.

Jelolje w a Py els6 olyan pontjat a t felél indulva, amely benne van egy @ € Q dtban. Nem lehet Q = Qo,
mert akkor a Qo Ut u és w kozotti szakaszdt a Polt, w] részitra cserélve a keletkezd Qp 1t olyan lenne, hogy
9 —{Qo} + {Q4} n darab diszjunkt 7-utat alkotna.

Alh’tjuk, hogy t = w. Tegyiik fel, hogy t # w. Jeldlje = és y a @ Ut két végpontjat, melyek kozil x nem T;-
ben van. Legyen Q) az az dt, amelyet Q-bdl kapunk a Q[w, y| szakaszanak Pylw, t]-re torténd cseréjével. Ekkor
Q —{Qo} + {Q)} egy mésik u-tagi diszjunkt 7"t rendszer volna, amely kevesebb P-szabad élt haszndlna,
ellentmonddsban a (x) feltevéssel. o
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Mivel |P| = |Q| és u-ban nem végzddik P-beli it (merthogy u ¢ T'), de végzédik Q-beli 1it, igy kell olyan
r € T pontnak léteznie, amelyben végzédik egy P € P 1ut, de nem végzédik Q-beli ut. A 8.3.4 4llitds miatt
P # Py. Legyen P masik végpontja z.

A P biztosan metsz Q-beli utat, mert kiilonben Q — {Qo} + {P} p diszjunkt T-utat alkotna. Jelolje w
a P els6 pontjat r feldl indulva, amely benne van egy @ € Q tutban. Jeldlje = és y a Q ut két végpontjat,
melyek koziil £ nem az r-et tartalmazé T;-ben van. Nem lehet a Plz, w] részit teljesen @Q-ban, mert akkor
Q — {Q} + {P} egy mésik p-tagt diszjunkt 7"-it rendszer volna, amely kevesebb P-szabad élt haszndlna,
mint Q, ellentmondésban a (x) feltevéssel.

Legyen Q' az az dt, amelyet Q-bdl kapunk azdltal, hogy Q[w, y] szakaszt lecseréljiik a Plw, r] résziitra. Ekkor
O —{Q}+{Q} egy méasik u-tagt diszjunkt 7" -t rendszer volna, amely kevesebb P-szabad élt hasznél, mint
Q, ellentmondésban a (x) feltevéssel. o o

TETEL 8.3.4 (Mader) Legyen T a G = (V, E) irdnyitatlan grdf pontjainak egy nemiires stabil részhalmaza.
A belséleg (azaz a végpontoktdl eltekintve) diszjunkt T-utak mazimdlis szdma egyenld a

q
min{|Uo| + Y _[|Ba-v, (Vi)l/2)}
i=1
értékkel, ahol Ba—u,(X) jeloli az X azon pontjainak halmazdt melyeknek van szomszédja G — Ug-ban, és ahol
a minimum a 'V —T olyan {Us, Vi, ..., V4} particidira megy, melyekben csak Vo lehet ires, minden T-it vagy
haszndl pontot az Ug-bdl vagy haszndl egy Vi dltal feszitett €lt valamelyik V;-re.

Biz. Feltehetjiik, hogy nem létezik 2-éli T-ut, mert ha egy v € V — T pontnak van két kiilénbozé T-beli
szomszédja, akkor a v kihagyédsaval a tételbeli minimum és maximum is eggyel csokken.

Legyen T' = {t1,t2,...,tr} és jelolje T; a t; szomszédainak halmazat. Ekkor a T; halmazok diszjunktak, és
a 8.3.3 tételt a G — T grafban a {T1,..., T} termindl-particiéra alkalmazva épp a 8.3.4 tételt kapjuk. e
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9. Fejezet

PAROSITASOK STRUKTURAJA

9.1 Maximalis parositasok

Valamely G irdnyitatlan grafra jelolje v = v(G) a fiiggetlen élek maximdlis szdmdt vagyis a legnagyobb
parositas elemszamat. Konig tétele szerint péaros grafban ez egyenlé a pontokat lefogé élek minimadlis 7
szaméaval. Nem péaros grafokban a v = 7 min-max reldcié mar nem feltétleniil igaz, amint ezt a haromszog
példdja mutatja. Itt v = 1,7 = 2. Altaldnos grafokra vonatkozik az aldbbi jellemzés.

TETEL 9.1.1 (Berge-Tutte formula) G-ben a figgetlen élek mazimdlis v(G) szdmdra érvényes:

G) = min{|V|—q(X X|} /2 9.1
v(G) = mind|V] - g(X) +|X1} /2 (9.1)
ahol q(X) jeloli az X elhagydsdval keletkezd pdratlan pontszdmi komponensek szdmdt.

Ezt a tételt mar kordbban levezettiik Tutte tételébol, most egy kozvetlen bizonyitast is adunk. Egy
Osszefiiggd grafot nevezziink faktorkritikusnak vagy roviden kritikusnak, ha barmely pontjat elkeriili maximalis
elemszamu parositas.

Lemma 9.1.2 (Gallai) G kritikus grdfban a mazimdlis pdrositds egyetlen pontot hagy fedetleniil.

Biz. A definiciébdl kapjuk, hogy G-nek nincs teljes parositdsa. Tegyiik fel indirekt, hogy egy M maximaélis
parositas legaldbb két pontot nem fed. Véalasszuk M-t és a fedetleniil maradé s és ¢t pontokat gy, hogy az s és
t G-beli tavolsaga a leheto legkisebb legyen. Persze ez a tavolsag nem egy, azaz s és t nem szomszédos, mert
akkor az st élt M-hez lehetne venni, ellentétben M maximalis voltdaval. Legyen P egy legrovidebb tut s és t
kozott, és legyen z ennek egy belsé pontja. Mivel G kritikus, 1étezik egy z-t elkeriilé maximélis elemszamu M.,
pérositds. Az M, s, t valasztdsa miatt M fedi a P it minden belsd pontjat, igy z-t is. Tekintsiik a z-bdl induléd
M — M ,-alternal6 utat, amelynek elsé éle M-beli, igy utolsé zy éle az M, maximalitdsa miatt sziikségképpen
M-beli. Az y pontot tehat nem fedi M, és értelemszertien y kiilonbozik s és t egyikétél, mondjuk s-t6l. Ekkor
az alternal6 Ut mentén cserélve egy olyan parositast kapunk M-bdl, amelynek elemszama megegyezik M-ével,
azaz, amelyik maximalis, tovibbd szabadon hagyja z-t és s-t, ellentmondasban az M, s,t vilasztiasaval. e

Térjiink ré a Berge-Tutte formula bizonyitasara. Tetszéleges M péarositas és X C V halmaz esetén legaldbb
q(X)—|X| pont marad fedetlen, azaz M legfeljebb |V |—(¢(X)—|X|) pontot fed, igy az M elemszdma legfeljebb
(V] = ¢(X) + |X])/2. [gy a formuldban a v(G) < min irany kovetkezik.

A forditott egyenl8tlenség bizonyitdsdhoz V elemszdma szerinti indukciét alkalmazunk. Ha |V| = 0, akkor
(9.1) mindkét oldala 0. Tegytik fel tehét, hogy |[V| > 1 és azt, hogy a (9.1) formula érvényes minden kisebb
grafra. Nyilvén feltehetd, hogy G osszefiiggd. Azt kell kimutatnunk, hogy létezik egy olyan Xo C V halmaz,
amelyre

v(G) = ([V] = q(Xo) + | Xol)/2. (92)
1. eset G nem kritikus, azaz van olyan v pontja, amelyet elhagyva a keletkez6 G’ grafra v(G') < v(G) — 1.
Legyen V' := V — v. Indukciét hasznalva kapjuk, hogy létezik olyan X; C V — v, amelyre v(G') = (|[V'| —
q (Xg) + 1X5])/2, ahol ¢'(X)) a G’ — X(-ben jeloli a pdratlan komponensek szamét. Legyen Xo := X + v.
Nyilvén ¢(Xo) = ¢'(X(). Ezeket dsszevetve kapjuk: v(G) — 1 > v(G') = (V| — ¢'(Xp) + | Xol)/2 = (V] —
q(Xo) + | Xo| — 2)/2, ami éppen (9.2).

2. eset G kritikus. A Gallai lemma alapjén v(G) = (V]| — 1)/2. Tehdt Xo := 0 vdlasztdssal v(G) =
(IVI=1)/2 = (V| — ¢(Xo) + | X0])/2, azaz (9.2) fenndll. e e
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Nevezziink gétnak egy olyan X halmazt, amelyre a minimum a Berge-Tutte formuldban felvétetik. A
Berge-Tutte formuldbdl kiolvashatd, hogy tetszbleges M maximédlis parositds esetén egy X halmaz akkor és
csak akkor gét, ha

(a) Az X elhagydsdval keletkezd bdarmely C' komponensre az M-nek a C-be esd része legfeljebb egy pont hijdin
fedi C-t. (b) X nem feszit M-beli élt. (c) M fedi X minden pontjdt.

A Berge-Tutte formula valdjdban azzal ekvivalens, hogy létezik olyan M pérositds és pontoknak olyan X
részhalmaza, melyekre (a), (b) és (c) fennall.

TETEL 9.1.3 (Lovasz) Egy osszefiiggd grdf akkor és csak akkor kritikus, ha felépithetd bdrmely pontjdbdl
kiindulva pdratlan élszdmd filek egymds utdni hozzdvételével (ahol egy fil vagy egy egyszerii ut, amelynek
csak a két végpontja kozos a meglévé graffal, vagypedig egy kor, amelynek egyetlen pontja kozos a meglévd
graffal.)

Biz. A Gallai lemma nyomén a kritikussdgnak azt az ekvivalens definiciéjat hasznéljuk, hogy barmely pontot
kihagyva létezik teljes parositas. Egyszerii ellenOrizni, hogy a felépitési miivelet kritikus grafot eredményez.

A forditott irdnyhoz legyen r a graf egy tetszéleges pontja és M, a G — r egy teljes péarositasa. Azt fogjuk
belatni, hogy G felépithet6 M-ben altrnalé fiilek felhasznédlasaval. Mivel ezek els6 és utolsé éle nem M-beli,
egy M-alterndld fiil mindig paratlan élszamu.

Tegyiik fel, hogy r-bdl kiindulva maéar felépitettiink G-nek egy részgrafjat a megadott mdédon. Jeldlje a
részgraf ponthalmazat T. (A kezdetben T az egyetlen r pontbdl 4ll.) Készen vagyunk, ha T = V, ekkor
ugyanis a még G-bél esetleg hidnyzd éleket egyélii M-alterndlé utakként bevéve, megkapjuk G-t. Ha még
T # V, akkor G Gsszefiiggbsége miatt 1étezik olyan wv él, amelyre u € T,v € T. A graf kritikus, igy v-bdl
létezik -be vezetd paros M-alternals 1t. Legyen ennek p az elsd T-be es6 pontja és jeldlje P’ az dtnak v-bél
p-be vezetd szegmensét. Most az uv él a P’-vel egyiitt egy M-alterndlé utat vagy kort alkot, amellyel T' tovabb
épithetd. o

Most igazolni fogjuk, hogy a Berge-Tutte formuldban szerepl6 gatak kozott van egy ”kanonikus”.

TETEL 9.1.4 (Gallai és Edmonds) A G = (V, E) grdfban jeldlje D(G) azon pontok halmazit, amelyeket
G-nek valamely mazimdlis pdrositdsa nem fed le. Alljon A(G) a V — D(G) azon pontjaibdl, melyeknek van
D(G)-beli szomszédja, és legyen C(G) a maradék pontok halmaza. Ekkor A(G) gdtja G-nek, éspedig éppen
az a gdt, amelynek elhagydsdvdl keletkezd pdratlan komponensek unidja a lehetd legszitkebb. D(G) a V —
A(G) pdratlan komponenseinek egyesitése, C(G) pedig a V — A(G) pdros komponenseinek egyesitése. D(QG)
komponensei kritikus grdfok. Végil, ha eltordljik C(G)-t valamint az A dltal feszitett éleket, és a pdratlan
komponensek mindegyikét eqy-egy pontra hizzuk dssze, akkor olyan pdros grifot kapunk, amelyben az A minden
X nemiires részhalmazdnak legaldbb | X |+ 1 szomszédja van.

Biz. Tetsz6leges A’ gathoz jeldlje D' a G — A’ paratlan komponenseinek uniéjat, C’ pedig a parosakét.
Tetszbleges maximalis M’ parositds esetén az M’ lefedi a X'-t és C'-t. Ezért D(G) biztosan része D'-nek.

Legyen most A’ egy olyan gat, amelyre D’ minimdlis. Ekkor D’ komponensei kritikusak, mert ha mondjuk
az egyik K komponens nem volna az, akkor a K 4ltal feszitett G[K] grafnak 1étezne nemiires X’ gatja, amelyet
A’-héz véve a G-nek egy olyan gatjat kapndnk, ahol a paratlan komponensek uniéja valédi része volna D’-nek.

Ervényes tovébb4, hogy ha eltordljiik C'-t az A’-ban 1évé éleket, és a D’-beli paratlan komponensek
mindegyikét egy-egy pontra hizzuk, akkor olyan paros grafot kapunk, amelyben az A’ minden X nemiires
részhalmazdnak legaldbb |X| + 1 szomszédja van. Valéban, ha volna egy hibds X halmaz, akkor A" — X is gdt
lenne G-ben, amelynek elhagydsdval keletkezd paratlan komponensek unidja valédi része lenne D'-nek. Ebbél
kapjuk, hogy D’ barmely K péaratlan komponenséhez létezik maximélis parositds, amely nem tartalmaz K-ba
16p6 élt, és igy K kritikussdga miatt K barmely pontjdhoz 1étezik 6t elkeriillé maximadlis parositdas. Vagyis
D’ = D(G). Mivel A’, gét, igy minden pontjabdl vezet él D’-be, ugyanakkor C’ semelyik pontjabdl nem vezet
él D’'-be. Tehat A’ = A(G), és emiatt C' = C(G). o
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