Amit tudni kell, ami olvasmány
III. Euler-gráfok,Euler-utak, Hamilton-utak és Hamilton-körök
Részlet: http://www.inf.unideb.hu/oktatas/mobidiak/Turjanyi_Sandor/Bev._a_komb._es_a_grafelmeletbe/3.pdf
“
     Az út örök és tétlen 

mégis mindent végbevisz észrevétlen…”

Lao-C
e, Tao Te King, Az Út és Erény könyve, Weöres Sándor fordításában,Tericum Kiadó,1994,(37 vers)

III.1. Euler gráfok:
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1. ábra

Leonard Euler (1707-1783) nevéhez kapcsolódik az első gráfelméleti munka, mely 1736-ban jelent meg a Szentpétervári Tudományos Akadémia közleményeiben. Az értekezését Euler az ún. Königsbergi hidak problémájával kezdte. A Pregel folyó A, B szigeteit hidak kötötték össze egymással és a partokkal is. Az A szigetet két párhuzamos híd kötötte össze a jobb parttal, egy híd a B szigettel, s ugyancsak két párhuzamos híd vezetet az A-ról a bal partra is. B-t egy-egy híd kötötte össze a bal és a jobb parttal is és B-ről vezetet egy híd A-ra is , melyet az előbb már említettünk. A kérdés az volt, be lehet e járni a hidakat valamely fix C pontból oly módon, hogy minden hídon átmegyünk pontosan egyszer. Euler lényegében teljes általánosságban megoldotta a feladatot.
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2. ábra
III.1.Definíció: A 
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)-t Euler-vonalnakXE "Euler-vonal" nevezzük, ha E minden élét pontosan egyszer tartalmazza. S zárt Euler-vonalnak mondjuk, ha 
[image: image5.wmf]v

v

n

0

=

, egyébként pedig ha 
[image: image6.wmf]v

v

n

0

¹

 akkor L-t nyílt Euler-vonalnak hívjuk. 

Ha valamely gráfnak van zárt Euler-vonala szokás azt Euler-gráfXE "Euler-gráf" névvel illetni. Nyilván egy Euler-gráf összefüggő és bármely csúcspontjának a foka páros, mivel ha az Euler-vonala betér valamely csúcspontba mind annyiszor ki is megy onnan. Megjegyezzük, hogy van aki Euler-gráfnak nevez olyan gráfot, amelynek bármely csúcsfoka páros. A következő tétel lényegében Eulertől származik. 
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Zárt illetve nyílt Euler-vonal.


3. ábra
III.1. Tétel: A G gráf akkor és csak akkor Euler-gráf, ha összefüggő és bármely csúcsának a foka páros.

A tételre két különböző bizonyítást adunk. Az első egy konstruktív bizonyítás, amely lényegében algoritmust ad Euler-gráf Euler-vonalának a megkeresésére. A második bizonyítás rövid, s tömör,de csak az Euler-vonal létezését igazolja, s nem ad ötletet arra, hogyan lehet találni egy konkrét Euler-vonalat. 

Bizonyítás I.:Az, hogy egy Euler-gráf szükségképpen összefüggő és minden csúcspontjának a foka páros, az remélhetően világos a tétel előtti sorokból. A feltétel elégséges voltához tekintsük a G gráf valamely zárt vonalát. Zárt vonala van G-nek, mivel G valamely v0 pontjából elindulva egy v0-ra illeszkedő e1 élen
 eljutunk v1-be, s v1-ből e2 mentén v2-be, és így tovább 
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, ahol a vj olyan csúcsot jelöl, amelyben már jártunk.Nem mehetünk mindig új csúcsba, mivel G-nek véges sok csúcsa van csupán. Legyen ez a létező zárt útja G-nek L1-lel jelölve. A csúcsok és élek esetleges újraindexelése után feltehetjük, hogy 
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. Ha azt L1 élsorozat tartalmazza a G gráf valamennyi élét, akkor kész vagyunk. Ha nem tartalmazza például az e' élt és u1,u2 ezen él két végpontja, akkor u1-ből indulva az előbbiekhez hasonlóan találunk egy ugyancsak u1-ben végződő L2 zárt vonalat. Természetesen ügyelnünk kell arra, hogy L1 éleit ne válasszuk be L2 élei közé. Ha u1 az L1 zárt vonal valamely élére is illeszkedett (vagy L2 valamely másik csúcspontja illeszkedett L1-re), akkor az L1,L2 zárt vonalakat lehet egyetlen zárt vonalnak tekinteni. Megtehetjük ugyanis azt, hogy az L1,L2 vonalakat valamely közös uj pontjukból járjuk végig. Elősször L1-t majd utána ugyancsak uj-ből L2-t járjuk be. Ha az L1 ill. L2 vonalaknak nem volna közös csúcspontja, akkor L2-t cseréljük ki oly módon , hogy először vezessünk u1-ből utat
 L1 valamely csúcspontjába, olyan utat, amelynek nincs közös éle L1-el, s ezt az utat egészítsük ki az L2' zárt vonallá az előbbi módon. Ha nem maradt ki él kész vagyunk, ha igen akkor megismételjük az előbbi eljárást és mivel a gráfunk véges előbb vagy utóbb az eljárásunk véget ér és megadja a G gráf egy zárt Euler-vonalát.

Reméljük a Tisztelt Olvasó felfigyelt arra, hogy az elmondott bizonyításunk lényegében algoritmust ad a G gráf Euler-vonalának meghatározására. Le lehet rövidíteni a fenti bizonyítást, de akkor elvész az algoritmikus jelleg.Nézzük most a látszólag elegánsabb, "rövidebb" bizonyítást.

Bizonyítás II.: Legyen G-nek 
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 a leghosszabb vonala. Ha L tartalmazza G minden élét kész vagyunk. L Euler-vonala G-nek. Ha L nem tartalmazza például G-nek az f élét ( ez az indirekt feltevésünk), akkor G összefüggő volta miatt feltehető, hogy f egyik végpontja mondjuk w egybeesik L valamely csúcspontjával. Az L vonal maximális voltából és abból, hogy G-nek minden csúcs foka páros következik, hogy L zárt azaz vk=v0. L zártsága miatt bejárhatjuk L éleit w-ból indulva, s mikor utoljára visszaérünk w-ba menjünk tovább f másik végpontjába. Az így kapott L' vonalnak eggyel több éle volna, mint L-nek, s ez ellentmondana L maximális vonal voltának. Az ellentmondás oka, hogy feltettük, hogy L maximális és van olyan éle G-nek amely nincs L-ben. 

III.2.Tétel: A következő állítások a 
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 összefüggő gráfra ekvivalensek:

1. A 
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 Euler gráf azaz van zárt Euler vonala.

2. 
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 minden csúcsának a foka páros.

3. 
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Bizonyítás: A bizonyítást 
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 séma alapján érdemes elvégezni.
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 Ahhoz, hogy az első állításból következik a második elegendő azt észrevenni, hogy tetszőleges L zárt vonal, tetszőleges u csúcspontjára igaz, hogy ha L bejárása során 
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 esetben kimentünk u-ból, akkor L végig járása során 
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 esetben u-ba be is tértünk. S ezért u foka 
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. Azaz G-nek valóban bármely csúcspontjának a fokszáma páros.
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. A G gráf összefüggőségéből és csúcsai fokszámának páros voltából az adódik, hogy 
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, akkor v-ből elindulva kapunk G-nek egy L zárt vonalát. Zárt vonal mindig tartalmaz legalább egy kört. Ugyanis  a zárt vonal 
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 valamely pontjából elsétálva a séta során az elsőnek megtalált ismétlődő pont 
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 kört ad. Tetszőleges kör bármely pontjának a fokszáma páros. Ha a G gráfunk valamely C körének éleit töröljük akkor G bármely csúcspontzjának a foka továbbra is páros maradt. S mindaddig találunk újabb élidegen körököt, amíg az élek törlése után megmaradó gráfnak van olyan v csúcspontja melynek foka 
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. S az eljárás miatt a körök éleinek a halmazai diszjunktak.
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 Valóban ha a G gráf összefüggő és élidegen körök uniója, akkor be lehet járni a gráf éleit oly módon, hogy minden élen csak egyszer megyünk végig. bizonyítsunk mondjuk a körök száma szerinti teljes indukcióval. Ha csak egy élidegen körből áll a gráf, akkor azaz egy kör önmagában lesz egy zárt Euler-vonal. Ha már k-1 kört bejártunk s a "k" körrel a zárt vonalunknak az u pontja közös
,akkor járjuk be a "k-1" kört alkotta zárt vonalat u-ból elindulva,majd ha már vissza tértünk u-ba folytassuk a bejárást a "k." kör éleinek a bejárásával.
III.3. Tétel: Ha a G egyszerű összefüggő gráfnak, 2k darab páratlan fokú csúcspontja van, akkor élei lefedhetők k darab nyílt vonallal.

Bizonyítás: Egészítsük ki a G gráfot k darab éllel G'-vé, oly módon, hogy G' minden csúcsának a foka páros legyen, ez nyilván megtehető, ha ügyelünk arra, hogy az új élekkel mindig páratlan fokú csúcsokat kössünk össze. G'-re ekkor teljesedni fog az III.I.E1 tétel feltétele, s ezért lesz egy zárt Euler-vonala is, mely triviálisan tartalmazza az "új" k darab élt is. Ha a k darab új élt töröljük k darab nyílt vonalat kapunk. (Miért nem kaphatunk kevesebbet k-nál?), s a bizonyítás ezzel kész.

III.2. Hamilton-körök,Hamilton utak

Sir Villiam Rovan Hamilton
 (1805-1865) 1859-ben egy olyan játékot hozott forgalomba, melynek a lényege az volt, hogy egy előre megadott gráf csúcspontjait kellett bejárni, oly módon, hogy bármely csúcsban pontosan egyszer kellett járni. Állítólag a játéknak nem volt átütő sikere Hamilton kortársai között.

III.2. Definíció: A 
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 csúcsok mind különbözők és e csúcspontokon kívül más csúcspontja nincs G-nek.

III.3. Definíció: A 
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 gráf K körét Hamilton-körnekXE "Hamilton-kör" mondjuk, ha K tartalmazza G minden csúcspontját is.

Látszólag nagyon hasonló probléma, hogy valamely gráfnak az éleit járjuk be pontosan egyszer, vagy a csúcspontjait. Az utóbbi azonban jóval nehezebb. S az általános esetben Hamilton-utak illetve Hamilton-körök keresésére ma sem ismert igazán jó algoritmus. Operációkutatás területéhez tartozik az utazó ügynök problémája. Az utazó ügynök problémájaXE "utazó ügynök" azt jelenti, hogy a kereskedelmi utazónak adott városokat kell bejárnia, oly módon, hogy minden városba csak egyszer megy el, és végül visszatér a cégének a székhelyére. Ez esetben a gráf csúcspontjai az utazó által meglátogatandó városok, az élek pedig a városokat összekötő útvonalak. Természetesen egy-egy útnak jól meghatározott utiköltsége is van, s több út esetén célszerű azt az utat választani, melynek a költsége minimális. Ha valamely G gráf éleihez valós számokat rendelünk, akkor hálózatokról, folyamokról beszélünk. S nagyon természetesen vetődik fel minimális költségű ill. maximális nyereségű utak esetleg körök keresése. Az előbb említett feladatok a kombinatorikus optimalizálásXE "kombinatorikus optimalizálás" tárgykörébe tartoznak. A következő tétel megfogalmazása előtt említjük meg, hogy egy kör ill. út hosszán a bennük szereplő élek számát értjük. 

III.4. Tétel: Ha a G egyszerű gráfban bármely csúcspont foka legalább k (
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4. ábra
Bizonyítás: Legyen a G gráfnak az L út a leghosszabb útja. S ezen út csúcspontjait a kezdő ponttól indulva jelölje rendre 
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. Az, hogy v0 foka legalább k azt jelenti, hogy a v0-t v1-el összekötő e1 élen kívül még legalább k-1 él indul ki v0-ból. Ezen élek másik végpontjai szükségszerűen szerepelnek L csúcspontjai között, mert ellenkező esetben összeütközésbe kerülnénk azzal, hogy az L út a leghosszabb. Legyen e2' másik végpontja mondjuk v2, e3' végpontja v3 és végül ek' végpontja vk. Ekkor az L útnak a v0-tól vk-ig tartó rész útjának két végpontját köti össze ek' , ezért egy kört kapunk, melyben legalább k+1 él van, s ezzel a bizonyítás kész. 

III.5. Tétel: Ha a 
[image: image36.wmf](

)

G

E

V

=

,

,

j

 egyszerű gráf bármely v csúcsának fokára teljesül, hogy 
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, akkor G összefüggő.

Bizonyítás: Legyen u és v két különböző csúcsa G-nek. A feltétel szerint u-val és v-vel is legalább n/2, n/2 pont van összekötve az u-ból illetve v-ből induló élek által, a fokszám feltétel miatt. Az előbb említett u-val, illetve v-vel közvetlenül összekötött pontok között van olyan, mely u-val is v-vel is össze van kötve, (ha nem lenne ilyen akkor G csúcsainak a száma nagyobb egyenlő volna, mint [n/2+n/2+2]) azaz u és v között vezet út.

Ha adott a 
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 gráf, a csúcsainak a számát 
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 szokás G rendXE "rend"jének mondani, s éleinek számát 
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 a G gráf méreténekXE "gráf mérete" mondani. Ha az u-t az e él összeköti a v csúcssal, akkor u-t ill. v-t az e él vég pontjainak nevezzük és u-t ill. v-t szomszédosXE "szomszédos"nak mondjuk. Az u csúcsponttal szomszédos csúcsok halmazát N(u)-val jelöljük.

III.6.Tétel(O.Ore
 (1960.)): Ha a G gráfra teljesül, hogy rendje n
3 és bármely két nem szomszédos u,v csúcspont fokának az összege nagyobb egyenlő G rendjénél (), akkor G-nek van Hamilton-köre.

Bizonyítás: Indirekt bizonyítunk. Azon gráfok közül, melyekre a tétel feltételei teljesednek, de az állítás nem, tekintsük valamelyiket azon G' gráfok közül, melynek az éleinek a száma maximális. Maximális abban az értelemben, hogy ha G'-hez hozzá vesszünk egy olyan e élt, mely a nem szomszédos u és v éleket köti össze, akkor az így kapott G gráf már tartalmazni fog Hamilton-kört. G' minden Hamilton köre tartalmazza az e élt, ezért van olyan L Hamilton-útja G'-nek, mely u-t és v-t köti össze, legyen ez az út  megadva 
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 csúcspontokkal kapcsolatban vegyük észre, hogy ha vk+1 szomszédos u-val azaz vk+1 eleme N(u)-nak, akkor vk  nem eleme N(v)-nek. 
[image: image45]
5. ábra

Ellenkező esetben a 
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 Hamilton-köre volna G'-nek. Tehát a V-{v} pontok közül az u-val szomszédos pontok nem  szomszédosak v-vel, ezért 
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  s ez utóbbi egyenlőtlenség ellentmond a tétel feltételeinek. Ore tételének speciális esete Dirac tétele.

Következmény(G.A. Dirac (1952)): Ha az n=2k csúcspontú egyszerű G gráf bármely pontjának a foka legalább k, akkor van G-nek Hamilton-köre. 

 Az időrendben való jobb tájékozódás végett egységes jelölés mellett felsoroljuk a Hamilton-körökre vonatkozó érdekesebb eredményeket. Jelölje a G(E,
,V) gráf csúcspontjainak fokszámait rendre  ( =n).
V
III.7. Tétel: Ha a G(E,,V) egyszerű gráfra (2<n) a következő feltételek valamelyike teljesedik, akkor van G.-nek Hamilton-köre:

1; G.A. Dirac (1952) 
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2; O.Ore (1961) 
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3; Pósa Lajos(1962)
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4; J.A.Bondy (1969) j<k,
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5;V. Chvátal (1972) 
[image: image53.wmf]d

k

k

£

<
[image: image54.wmf]1

2

n

d

n

k

n

k

Þ

³

-

-

.

Valóban G-ben létezik Hamilton-kör, mivel a következmény feltételei lényegében szigorúbbak, mint a (H3) tétel feltételei.

III.4.Definició: A G gráf G' részgráfját G k-adfokú faktor XE "k-adfokú faktor" ának mondjuk, ha 

(i) G' csúcsainak halmaza megegyezik G csúcsainak halmazával,

(ii) G' bármely csúcsa azonos k fokszámú.

A definícióból látható, hogy valamely G gráfnak a K Hamilton-köre egyben másodfokú faktoraXE "másodfokú faktor" G-nek.

[image: image55.wmf]
6. ábra

 A 6. ábrán látható gráfnak vastag, szaggatott, illetve vékony vonallal jelöltük egy-egy elsőfokú faktorát. Ellenőrizze le a Kedves Olvasó, hogy a három elsőfokú faktor közül bármely kettő "szorzata" az ábrán látható gráfnak egy-egy másodfokú faktorát adja, de a gráfnak nincs Hamilton-köre, de  a keletkező körök természetesen lefedik G csúcsait. 

III.8. Tétel: Ha a G egyszerű összefüggő gráfnak van olyan k csúcsa, melyek törlése után k+1 komponensére esik szét, akkor G-nek nincs Hamilton-köre.

Bizonyitás: Indirekt bizonyitunk. Elegendő arra gondolni, hogy egy kör k darab pontjának törlése után legfeljebb k részre eshet szét

III.9.Tétel: Ha a G egyszerű osszefüggő gráfnak van olyan k pontja melyek törlése után k+2 komponensre esik szét, akkor G-nek nincs Hamilton-útja ( s persze még kevésbé van Hamilton köre).
Bizonyitás: Indirekt bizonyitunk tegyük fel hogy G-nek az L Hamilton-útja, azaz L-re illeszkedik G minden csúcs pontja. Bármely út, igy persze L is k darab pontjának a törlésével legfeljebb k+1 részre bomlik, s ez ellentmond  a tétel feltevésének , mely szerint legalább  k+2 részre kellene bomolnia. 

III.5.Definició: Legyen a G gráfnak 
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-ad fokú faktorai, ha 

(i) ha bármely i,j esetén Gi-nek ill, Gj-nek nincs közös éle,

(ii) a 
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 részgráfok együttvéve tartalmazzák G összes élét, akkor G ezen k számú faktor szorzatának mondjuk.

III. 3. Az utazó ügynök problémája XE "utazó ügynök problémája" .

Nem negatív élsúlyozott 
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 Kn teljes gráfban keresünk minimális súlyú CH Hamilton kört, azaz 
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A „legközelebbi szomszéd” algoritmus:

1; válasszuk ki Kn tetszőleges x csúcsát. S az x csúcsra illeszkedő élek közül válasszuk egy "e" minimális súlyút. 

2; A kiválasztott "e" él másik csúcspontja legyen y jelöljük meg y-t is kiválasztott pontnak. Az y-ra illeszkedő azon élek közül amelyek nem illeszkednek korábban kiválasztott pontra (ill.pontokra) válasszuk egy minimális súlyú e' élt. 

3;Ha már minden pontját megjelöltük Kn -nek az algoritmus véget ér Kn – egy súlyozott CH Hamilton körének megadásával.

 A CH kör függ az x kezdőpont megválasztásától. Az 
[image: image61.wmf](

)

(

)

(

)

å

=

Î

H

C

E

e

H

e

C

S

w

 szám egy felső korlátot ad az utazó ügynök problémára.

A rendezett élek algoritmusa:

Feltesszük, hogy a Kn élsúlyozott teljes gráf élei súlyúk növekvő sorendje szerint rendezve vannak.

1; Válasszunk 
[image: image62.wmf](
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2; A ki nem választott élek közül válasszuk  
[image: image63.wmf](
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-t minimális súlyúnak ügyelve arra, hogy egyik végpontja se illeszkedjen olyan pontra,aamelyre már korábban kiválasztott élek közül már kettő illeszkedik és ne alkossanak a kiválasztott élek n csúcspontnál kevesebb pontból álló kört.

3; Ha kiválasztott élek száma n , akkor megkaptuk Kn egy súlyozott CH Hamilton körét.

Alsó korlátot oly módon nyerhetünk az utazó ügynök problémára, ha észrevesszük, hogy Kn egy minimális súlyú CH Hamilton körének tetszőleges x pontját törölve a Kn-x gráfnak egy súlyozott feszítőfáját kapjuk. 

Keressünk a Kn-x gráfban egy minimális súlyú T feszítőfát (például a Kruskal algoritmussal). T élei súlyának az összegét jelölje S(T), azaz 
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. S az x-re illeszkedő élek közül a két legkisebb súlyú legyen e1,e2, ekkor 
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. Ez azt jelenti, hogy az 
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 egy alsó korlát az utazó ügynök problémára. 

 
[image: image67]
7. ábra

A 7.ábra él-súlyozott G gráfjának AB,BD,BC élei megadják egy minimális súlyú feszítőfáját, s az alsó korlát ekkor k=110+100+120=330. A gráf B csúcsából indulva a legközelebbi szomszéd algoritmus rendre a BD,AD,AC,BC éleket adja, s nyerjük a K=100+130+170+120=520 felső korlátot
Részlet: Tarjányi:
u=u0
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� A v0 csúcs foka � EMBED Equation.3  ���,egyrészt G összefüggősége miatt � EMBED Equation.3  ���, másrészt a csúcsok fokszámainak páros volta miatt � EMBED Equation.3  ���, s ezért létezik legalább egy e1 él, mely illeszkedik v0-ra.


� A G összefüggősége miatt u1-ből L1 bármely pontjába vezet út.


� Vegye észre a Kedves Olvasó, s még jobb ha meg is indokolja,hogy ha a G összefüggő gráf éleit valamely u pontból végig lehetet járni egy zárt vonal mentén,oly módon hogy minden élen csupán egyszer ment végig ,s végül u-ba futott be, akkor a gráf bármely másik v pontjából elindulva is végig járhatja G éleit (s mindegyik élen csak egyszer menve végig) oly módon, hogy a bejárást v-ben fejezi be.


� �Sir Villiam Rovan Hamilton (1805-1865) Dublinban született, családja Skóciából származik. Nyelvi és matematika tehetsége nagyon korán megmutatkozott. 15 éves korában már Newton és Laplace írásait olvasta.Saját maga a kvaterniók felfedezését tartotta legfontosabb eredményének. Ma e véleményével kevesen értenek egyet. 


� � HYPERLINK "http://www-history.mcs.st-and.ac.uk/history/PictDisplay/Ore.html" \t "_blank" ��INCLUDEPICTURE "http://www.math.klte.hu/~turjanyi/Komb_j/jul6pendriv/g2005/kepek05vii/Ore_elemei/Ore.jpg" \* MERGEFORMATINET ����1899.X.7. Kristiania-ban a ( a mai Oslo-ban Norvégiában ) született és ott is halt meg 1968.VIII:13. Fiatal korában algebrai számelmélettel foglalkozott, később hálóelmélettel,gráfelmélettel.1927.-ben professori kinevezést kapott a Yale egyetemre, 1931.-ben a Yale egyetem kítűnő professzora címet kapta, s 37 évvel később 1968.-ban onnan is ment nyugdíjba. Több könyvet írt különböző a matematika különböző területeiről, számelméletről, négyszínsejtésről, gráfelméletről.
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