
E file anyaga képezi a 4., egyben megajánlott jegyhez szükséges vizsgazárthelyi anyagát.

Gráfelmélet 1 előadás vázlat, 2012. ápr. 17.
· gráf fogalma, éle, csúcsok, fokszám

SKATULYA ELV: ha n db skatulyába kell n+1 db tárgya elhelyezni, akkor lesz legalább egy skatulya, amleyben legalább két tárgy található. (HA „rosszul” osztjuk el őket, lehet, hogy egybe nem teszünk egy tárgyat sem, akkor egy másikba kerülhet 3 is:)

A skatulya elv egy alkalmazása: 

Tétel: Bármely egyszerű gráfban van két olyan pont, amelynek fokszáma egyenlő.

Biz: lehetséges fokszámok: 0, 1, 2, ….n-1, vagyis n db fokszám. De 0 és n-1 egyszerre nem fordulhat elő (miért?), ezért n csúcsra kell elosztani n-1 db fokszámot-> kettőnek ugyanakkora lesz a fokszáma.

Az előadáson elhangzott alábbi tételek bizonyításai ebben a könnyen érthető anyagban is benne vannak (szerzők: Bércesné Novák Ágnes-Hosszú Ferenc- Őri István- Rudas Imre ):

Ami nincs ott, azt ebben a file-ban lehet megtalálni.

http://www.banki.hu/jegyzetek/mat/szma/szma_2_felev/grafok.doc
Tétel: A fokszámok összege bármely gráfban az élek számának kétszerese

Következménye:  Gráf páratlan fokszámú pontjainak száma páros 

Gráfelmélet 2 előadás vázlat, 2012. ápr. 24.

Példa gráfokra:

http://www.enc.hu/perl/enc/ujvenc.pl?id=468
Erdős szám: 
http://www.oakland.edu/enp/thedata/
Gráfok reprezentációival részletesebben az ADATSZERKEZETEK című tárgy foglalkozik.

***************************************************************************
A legfontosabb reprezentációk (apaczai.ro/infoora/11b/II.felev/06_3GRAFELMELET3.pps):
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• Egy sor összege egyenlő az adott csomópont 

fokszámával.

• A mátrix szimmetrikus a főátlóra nézve.
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• Az adott gráfhoz hozzárendelhető egy  n sort és maximum 

n oszlopot tartalmazó kétdimenziós tömb, amelynek 

minden sorában az adott sorszámú ponttal 

szomszédos (összekötött) pontok sorozata található.


(összefüggő (ÖF) gráfok és  fák


[image: image3.emf]Gráf ábrázolása illeszkedési mátrix 

segítségével



Egy gráfhoz hozzárendelhető egy n sorból (csomópontok száma) és 

egy m oszlopból (élek száma) álló kétdimenziós tömb úgy, hogy 



a[i,j]=1 ha i ponthoz a j él illeszkedik.



a sor összege megadja a sorszámának megfelelő csomópont 

fokszámát



bármely oszlopban két 1-es található, ezek az oszlopnak megfelelő 

él által összekötött csomópontok
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1 1 0 0 1 1 0 0

2 0 0 0 0 0 1 1
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•

Egy gráfhoz hozzárendelhető egy n sorból (élek 

száma) és egy két oszlopból álló kétdimenziós tömb 

úgy, hogy minden sorban az adott sorszámú él két 

végpontját tároljuk.


(idézet vége)

********************************************************************
ÖF G: bármely csúcsból bármely csúcsba vezet út ( komponenseinek száma 1

Ha egy egyszerű gráf minden csúcsának fokszáma 2 , akkor van benne kör.

Ha egy  n csúcsú ÖF gráfban legalább n él van, akkor van benne kör.

Fa def: körmentes ÖF gráf
G gráf (n csúcsú) akkor és csak akkor FA, ha 

1. Összefüggő, de bármely élet elhagyva már nem az. 

2. körmentes, de bármely új élet behúzva már nem az. 

3. bármely két pontja között pontosan egy út van. (oda-vissza!) 

4. összefüggő és n-1 éle van. (teljes ind)

5. körmentes és n-1 éle van. (teljes ind., de nem bizomyítottuk)

Ha az öf (mi van, ha ezt nem tesszük fel??)  gráf éleinek száma n, akkor a gráfban van kör. 

Példa:  Bizonyítsa be, hogy a paraffinok (általános képletük:  CnH2n+2 (n=1,2,3,.))

molekuláris modelljei fák.

Bizonyítás: A gráf pontjainak száma = szén és hidrogén atomok száma

= n+2n+2 = 3n+2

A gráf éleinek száma = pontok fokának összegének fele

= 1/2(4n+2n+2) = 3n+1.

A gráf összefüggő, hiszen egy molekuláról van szó, és n csúcshoz n-1 él tartozik, tehát ezek fák. 

(Szerves kémiai rövid összefoglaló informatikusoknak jvasol olvasmány (bionikások tudják :)  
www.mezokovesd.t-online.hu/dok/tamop/fhajnalka/szerveskemia.ppt   )
PRÜFER KÓD: fák tárolására alkalmas

A fa n csúcsát az 1-n természetes számokkal (tetszőlegesen) címkézzük.

A Prüfer kód alkalmazásához: tudjuk, hogy minden legalább két csúcsú fában van legalább két csúcs, amelyek fokszáma 1. (minden fának van legalább két levele)

BIZ:: HF, pl. teljes indukcióval.

A Prüfer-kód előállítása:

Animáció:

http://digitus.itk.ppke.hu/~b_novak/dmat/Prufer_sk.ppt
Kiindulás: egy fa valamilyen formában megadva (ábra, szomszédsági lista, láncolt lista, csúcs-mátrix)

1. Sorszámozzuk meg a csúcsokat: 1, 2, …n

2. Keressük meg a legkisebb sorszámú elsőfokú csúcsot a (maradék)

fán. Hagyjuk el ezt a csúcsot a rá illeszkedő éllel együtt,  és fűzzük a lista végéhez az él másik végén található csúcs sorszámát.

3. Ismételjük a 2. pontot addig, amíg egy csúcs marad, az így kapott lista lesz a

Prüfer-kód.

A Prüfer-kódból a fa visszaállítása

Tömören (Gyenis Zalán - Rényi Intézet megfogalmazása alapján):
Az  n−2 hosszú, 1, 2, . . . n elemeket tartalmazó sorozathoz tartozó fa meghatározása):

Ha a Prüfer kód az (a1, a2, . . . an−2) számjegyekből álló sorozat; akkor  a csúcsok halmaza: 

CS:= {1, 2, . . . n}. bi a csúcsok halmazának azon eleme, amely nem szerepel az {ai+1, ai+2, . . . an−1} és a {b1, b2, . . . bi} halmazokban sem. Az élek (ai, bi), ahol i = 1, 2, . . . n – 1.

Részletesebben, de kicsit másképpen:

Segít, ha leírjuk a csúcsok halmazát, a Prüfer kódot, és a levelek (az elsőfokú csúcsok) halmazát. (Hf.:honnan tudjuk, melyek a levelek? )

1. Legyen v a Prüfer-kód, számoljuk ki n-et, ha a kód hossza n−2(. Legyen

CS = {1,2, . . . ,n} a csúcsok halmaza. Induljunk ki egy n csúcsú 0 élű gráfból.

2. Keressük meg a leveleket és írjuk fel őket növekvő sorrendben.  

3. Vegyük a lista (a Prüfer-kód) első elemét. Kössük össze ezt a sorszámú csúcsot 
a levelek listájának első elemével. A levelek listájából és a csúcsok listájából töröljük az első elemet.

4.  A következő lépésnél meg kell vizsgálni, hogy a  levélhalmazban van-e kisebb sorszámú, mint a Prüfer kódban szereplő első elem (amivel az első levelet összekötöttük). Ha van, akkor a Prüfer kód első elemét átrakhatjuk a levél lista első elemének, a kód első elemét (amit a lev listára raktunk) letöröljük. Az így kapott új levél listával, új Prüfer kóddal és új csúcshalmazzal  ismételjük meg az eljárást a 3. ponttól.

A fenti alapötlet felhasználásával (ti. a soron következő csúcs-él a kód még fel nem nem használt következő számjegyei között NEM szereplő, és a csúcslistában még fel nem használt csúcsok közül a legkisebb számozású. Ezt a számú csúcsot kötjük össze a Prüfer kódban szereplő következő számmal reprezentált csúccsal) másféle visszakódolás is lehetséges, pl. indulhatunk  a Prüfer kód eredeti sorrendjében, élenként ÉS CSÚCSONKÉNT felépítve a gráfot. Még praktikusabb, ha visszafelé építjük fel, hiszen ekkor könnyű keresztezés nélkül lerajzolni a fát.  

Prüfer kód C++-ban: http://hu.wikipedia.org/wiki/Pr%C3%BCfer-k%C3%B3d (ellenőrizni kellene!)
http://digitus.itk.ppke.hu/~b_novak/dmat/Prufer_sk.ppt
Tétel: Prüfer kód és fák közti bijekció:
Az n-2 db számból álló, 1, 2, …n számokból készített kódok és a fák között egy-egy értelmű megfeleltetés (bijekció) van. (biz. nélkül)

CAELEY tétele: feszítőfák száma n pontú teljes gráfban: n n-2
Bizonyítás: Prüfer kód segítségével: n-2 hosszú különböző sztringek száma n számjegy ismételt felhasználásával  nn-2.
Részgráfja a G’(V’, E’) a G(V, E)-nek ( jelölés: G’(V’, E’) ( G(V, E)) ha  V’ ( V és E’ (  E 

Részfa: fa részgráf

Feszítőfa, vagy faváz: G’(V’, E’) ( G(V, E) és V’=V

Pl. hálózat: üzenetek továbbítása, hóeltakarítás

Euler út/kör:

G gráfban Euler-útnak nevezünk egy olyan élsorozatot, amely G összes élét pontosan egyszer tartalmazza. Ha ez az élsorozat zárt, akkor Euler-körről beszélünk. 

Megjegyzés: 

Ezen definíció alapján minden Euler-kör Euler-út is. 

Általában egy Euler-kör, vagy Euler-út, nem kör vagy út, hiszen egy csúcson többször is áthaladhat. Az elnevezés csak a hagyományt követi. 

http://www.banki.hu/jegyzetek/mat/NMM_MATIII_2006/euler.gif
Euler kör keresésének algoritmusa:

( http://www1.cs.columbia.edu/~zeph/3203s04/l25/l25.ppt#19 )
Egy másik példa Euler kör keresésére:
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Königsberg hídjai, az első gráfelméleti probléma. Megoldotta EULER.

Königsberg látképe Euler korában:

[image: image6.jpg]



[image: image7.jpg]



Königsberg hídjai a Pregel folyón


 [image: image8.jpg]



A 2. Világháború után így építették újjá Königsberget, mai nevén Kalinyingrádot.A

Az űrlap teteje

Az űrlap alja



Forrás: 


http://www-history.mcs.st-andrews.ac.uk/Extras/Konigsberg.html 

(Alkalmazás: DNA read:

http://www.youtube.com/watch?v=-m7PFnSvmJM&feature=related
5 perctől
A szövegben utalás a Chinese Postman problémára, lényegében: Hamilton út/kör keresését jelenti élsúlyozott gráfban ld. alább. (lehetnek 0 súlyok is :)

Fák 
Hol kellenek a fák? (Mindenhol:)

Feszítőfa: a gráf minden csúcsát tartalmazó fa

Tétel:

Minden gráfnak van feszítőfája: a körökből hagyjunk el egy-egy élt.

Minimális feszítőfa keresése
Probléma:  Élsúlyozott  ÖFEG-ben legkisebb élsúlyösszegű feszítőfa keresése

Prim algoritmusa: a legkisebb súlyú élhez fűzzük a rá illeszkedő következő legkisebb súlyú élet, ha nem alkot kört az eddig vizsgált élekkel

Prim algoritmusával négy különböző példa: 

http://students.ceid.upatras.gr/~papagel/project/prim.htm
Kruskal algoritmus : Az éleket súlyuk szerint növekvő sorrendbe rendezzük, 

A  legkisebbtől kezdve  vesszük őket (nem feltétlenül illeszkedően ) úgy, hogy  kört ne képezzenek. Ha már van n-1 él, akkor a készen vagyunk.

http://www.math.u-szeged.hu/~hajnal/courses/grafelmelet/kruskal.htm
http://www.unf.edu/~wkloster/foundations/KruskalApplet/KruskalApplet.htm
http://students.ceid.upatras.gr/~papagel/project/kruskal.htm
Informatikusoknak egy kód: 

http://www.algorithmist.com/index.php/Kruskal's_Algorithm
Arimetikai számítások – postorder bejárás-paralell processing

Adott csúcsból legrövidebb út keresése a többi csúcsba: Dijkstra algoritmusa
2012. MÁJUS 8.

További optimalizálási feladatok 

Probléma: Nem negatív élsúlyokkal rendelkező  ÖFEG adott csúcsából másik adott csúcsába eljutni a legrövidebb (legkisebb élsúlyösszegű úton)  

MO: Dijkstra:

Az elvi algoritmust mindenkinek tudni kell, nemcsak alkalmazni, hanem leírni (adatszerkezet nélkül, „emberi” alkalmazásra)

Részletes, az előadáson elhangzott algoritmus leírás, magyarázat, példa: 

http://digitus.itk.ppke.hu/~b_novak/dmat/Dijkstra_animacio.ppt
Dijkstra algoritmusa helyes:
Ki van jelölve egy kiindulási pont. A gráf élsúlyozott. A kijelölt csúcsból kell eljutni a többi csúcsba, a legrövidebb úton.

Az előadáson ismeretetett algoritmus helyességét teljes indukcióval láttuk be, alkalmazva a 

dinamikus programozás egyik alapelvét: az optimális részstruktúra elvét. 

Ez esetben ez azt jelenti, hogy a legrövidebb út bármely része is legrövidebb, ti. más csúcspontok között. (PL. legyen egy út A és B csúcsok között A, C, D, E, F, G, B. Tekintsük a C,D,E,F utat. Ha ez nem lenne legrövidebb, akkor létezne a C és F között rövidebb út, pl. C, X, F. Akkor nyilván az eredeti AB út helyett az ACXFGB utat véve, az rövidebb lenne, tehát a kiindulási út nem lehetne a legrövidebb. Ez ellentmondás.  

A háromszög egyenlőtlenség is igaz:

AB + BC > AC, hiszen, ha AB + BC <= lenne, akkor ezeket választva jutottunk volna el A-ból C-be, 

Ha egy csúcs van és egy él, nyilván az minimális. 

 d (v0)= 0

d(v1)=e(v0,v1)

Ha már elindult az alg.,akkor d(s, vk)= d(vk) +w(vk-1,v)

Animáció: 

Az alábbi animációba a gráf berajzolható, és a step gombbal az egyes lépések nyomon követhetők. Apróbb eltérések vannak, pl. az inicializálásban.  A címke a csúcsot reprezentáló körben látható. A zárthelyiben a tanult módon az egyes csúcsoknál jelölni kell az egyes lépéseket, és a javításokat, ezeket ebben a programban nem írták ki, lépésenként felülíródnak a címkék. A linkért köszönet Sallai Gergelynek: 

http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html
Gráfbejárások

Adott gráfban keresünk szisztematikusan adott tulajdonságú (pl. címkéjű) csúcsot. A szisztéma sokféle lehet, a két alap a szélességi és a mélységi keresés. 

Szélességi keresés (Breadth-First Search= BFD)

http://digitus.itk.ppke.hu/~b_novak/dmat/Breadth_First_Search.ppt
Egy szép szélességi bejárás (igaz-e, hogy az itt látható gráfnak van Hamilton-köre?): 

http://digitus.itk.ppke.hu/~b_novak/dmat/bfs.gif
Mélységi keresés (Depth-First Search =DFS, Backtracking)

http://digitus.itk.ppke.hu/~b_novak/dmat/Depth_First_Search.ppt
Olvasmány: 

Egy MI alkalmazás: n királynő probléma, n x n-es sakktáblán hogyan lehet elhelyezni 4 királynőt úgy, hogy ne üssék egymást? (A királynő (vagy vezér) a sorában, az oszlopában és átlósan is tud „ütni”)

http://students.ceid.upatras.gr/~papagel/project/kef5_8.htm
Az alábbi fekete színnek jelölt tananyag a jövő héten lesz csak a zh után. Euler által megoldott Königsbergi hidak elnevezésű probléma megoldása, valaamint a síkgráfokra vonatkozó tételek e fekete rész után találhatók.

**********************************************************************

Fabejárások (speciális gráfbejárások - GYAKORLATON

Leggyakrabban bináris fákra használjuk, de egy részük általánosítható m-aris fákra is. 

Alapgondolat: 

Megkülönböztetünk egy csúcsot, ezt gyökérnek nevezzük. A gyökér őse (szülője) a szomszédos csúcsainak, és ezek a csúcsok az ősök (szülők) utódai (gyerekei). 

Az az utód, aki  nem szülő, a fa levele (. A fában egy út nevezhető „ág”-nak is.
Bináris fa:

Minden csúcsnak legfeljebb két gyereke lehet. 

Felépítése, elem keresése, elem beszúrása, elem törlése.

Animáció:

http://www.ibr.cs.tu-bs.de/courses/ss98/audii/applets/BST/BST-Example.html
Először mutat egy példát, de ez nem biztos, hogy érthető lesz. Ugyanis a címkék csak akkor láthatók, ha a lenyíló menüben az ablak alján lévő középső textboxban a „none” alapértelmezés helyett bármi mást választunk, pl. a „fancy”-t. Sebaj, az első automatikus futás után már mindenki maga kísérletezhet…

Szerintem a legjobban akkor látható, ha az első boxot  „none”-ra a másodikat „fancy”-re állítjuk.

Preorder, inorder, postorder bejárások

Preoder/postorder: A fa gyökerét eltávolítva a keletkező baloldali/jobboldali részfát járjuk be, úgy, hogy a fa gyökerét eltávolítva a keletkező részgráfot preorder/postorder módon járjuk be.

http://www.cosc.canterbury.ac.nz/mukundan/dsal/BTree.html  

Mindhárom:

http://nova.umuc.edu/~jarc/idsv/lesson1.html
Irányított gráfok
Handshaking tétel ir. gráfokra:

( befok+(kifok=2*élek száma, illetve: 

Euler bejárási tétele irányított gráfokra: ( befok=(kifok körre, 

Útra: kezdőcsúcsra:

( befok-=(kifok+1 utolsó csúcsra: ( befok+1=(kifok, többi csúcsra: ( befok=(kifok

Erősen ÖF gráfok, gyengén ÖF gráfok, gyenge komponensek, erős komponensek

DAG (directed acyclic graphs) – fontos pl. tranzakciókezelésben, minden ütemezési problémában, ahol  egymás utáni sorrendet kell megállapítani.

Topologikus (sorba) rendezés: ha nincsen a gráfban kör
MÁJUS 3.

SÍKBA RAJZOLHATÓ GRÁFOK 

EULER  síkgráfokra vonatkozó tétele: élek száma, csúcsok száma, tartományok száma közti öszefüggést állapít meg.

Tétel:  

A G összefüggő, egyszerű síkgráf esetében, ha p= gráf pontjainak (csúcsainak száma), e=gráf éleinek száma, t= a sík gráf által létrehozott területeinek száma, a végtelen területet is számolva, akkor:

p-e+t=2  (házi kedvencek száma 2:) :) 

(+-+=+)
Biz.: a(z adott síkgráfot)gráfot lépésenként építjük fel: 

1.lépés: 1 csúcs: igaz az állítás

2. lépés: 2 csúcs: igaz az állítás

n.lépés kétféle lehet: 

a.) vagy meglévő csúcsokat kötünk össze egy új éllel,: ekkor élek száma eggyel, területek száma eggyel növekszik, pontok szám a változatlan: igaz-e az állítás? 

b.) egy új csúcsot jelölünk meg a hozzátartozó éllel: ekkor a csúcsok száma eggyel nő, élek száma eggyel nő, területek száma változatlan: igaz-e az állítás? 

Euler tétel következményei: 

1. Ha az összefüggő, egyszerű sík gráf pontjainak száma legalább 3, akkor e(3p-6

Biz.: A bizonyítás a területek fokszámán alapul. Területek fokszáma= határoló élek száma 

( ha a határ bejárásához egy élen 2x kell áthaladni, akkor azt az élt kétszer számoljuk, pl. elvágó élek a végtelem terület határán)

Mivel egyszerű gráfról van szó, ezért minden területnek legalább 3 a fokszáma (2 akkor lehetne, ha többszörös éleket is megengednénk). 

Mi az összefüggés a területek fokszámának összege és az élek száma között? 

A területek fokszámának összege pontosan az élek számának kétszerese, hiszen minden területet határoló él két területhez tartozik, így kétszer számoljuk őket össze. 

Vagyis: 2e(3t, hiszen ha MINDEGYIK terület háromszög lenne, akkor lenne a fokszáma 3. Így  t(2/3e

p-e+t=2-ből e-t kifejezve: e=p+t-2(p+2/3e-2, ebből e(3p-6

 KÖV: K5 nem sík gráf: 5 csúcsa, 10éle van, és 10(3.5-6=9

2. Ha az összefüggő, egyszerű sík gráf pontjainak száma legalább 3, és nincsen 3 hosszú köre, akkor e(2p-4

Biz.: A bizonyítás a területek fokszámán alapul. A feltételek miatt most minden terüket fokszáma legalább 4, tehát: 2e(4t, vagyis   e(2t,  1/2e(t. 

p-e+t=2-ből e-t kifejezve:   e=p+t-2(p+1/2e-2, ebből: e(2p-4

KÖV.: K3,3 nem lehet sík gráf: pontok száma =6, éleinek száma=9, és 9(2.6-4=8

KURATOWSKI: Valamely gráf akkor és csak akkor sík gráf, ha nem tartalmaz K5-tel vagy K3,3-mal izomorf részgráfot. 

KURATOWSKI: Valamely gráf akkor és csak akkor sík gráf, ha nem tartalmaz K5-tel vagy K3,3-mal homeomorf részgráfot. 

Homeomorf: élre szabad pontot beiktatni. Ha a gráfnak van olyan részgráfja, amelyben minden pont foka kettő, de nem kör, ezeket a pontokat szabad törölni: uv élből  uw, wv élek keletkezhetnek, és fordítva (u,  v, w pontok)

Fáry-Wagner tétel:  Ha G egyszerű síkba rajzolható gráf, van olyan rajza, hogy az élek egyenes szakaszok.

Tétel: A G gráf akkor és csak akkor síkba rajzolható, ha gömbre rajzolható.

Biz.:  sztereografikus projekció (bijekció)

http://www.youtube.com/watch?v=6JgGKViQzbc
A Föld szeterografikus projekciója:

http://www.youtube.com/watch?v=Utj1qsrBLdE&feature=related
Tétel 
Ha G (n csúcsú) egyszerű síkbarajzolható gráf, akkor a minimális fokszáma legfeljebb 5. (megkeressük a legkisebb fokszámú csúcso(ka)t, akkor ez(ek) fokszáma nem lehet nagyobb 5-nél, tehát egy adott gráfnál az csak az 1, 2, 3,4 , 5 számok valamelyike lehet)

Bizonyítás: 
Ha ez a legkisebb fokszám 6 lenne, akkor a gráf éleinek száma 6n/2=3n lenne.  A fokszámok összege az élek számának kétszerese, így 
6n(2e(=a fokszámok összege) ( 2(3n-6)=6n-12 (a fenti, Euler poliéder tétel 1.  következményt használtuk) 
MÁJUS 8. Folyamok 

Hálózat fogalma, folyam fogalma, vágás fogalma. 

Példa és alapfogalmak:

Animáció:

http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
http://rs1.sze.hu/~hajbat/folyamsegitseg.pdf
http://rs1.sze.hu/~hajbat/folyamok.pdf
Tétel (bizonyítással volt): A folyam értéke (forrásból induló élek súlyöszzege)=vágás ÉRTÉKE (vágás kimenő élein lévő súlyok összege-bemenő élek súlyösszege)

Tétel (bizonyítással volt): Bármely folyam értéke legfeljebb akkora, mint a legkisebb vágás kapacitása (vágás kimenő éleinek kapacitás összege).  

Ford-Fulkerson tétel: a maximális folyam értéke (a folyam függvény értékeinek összege az s-ből induló éleken) = a minimális vágás értékével (ez a vágást képező élek kapacitásainak összege)

Biz.:

1. akkor és csak akkor max egy folyam, ha nincsen javító út (biz. vágással: egyik halmaz s és azok a csúcsok, melyekbe van  javító út. Ebből a halmazból a másik maradék halmazba mutató élek telítettek!)

2. 1. miatt minden folyam érték legfeljebb minimális vágás értékű ld. fenti tétel. Másrészt minden vágáson áthaladó folyam fgv érték összeg = folyamérték, erről meg 1-ben láttuk, hogy egyenlő egy vágással – ez a min. kell legyen

Briefly, in English: max flow=min cut
2012. Máj. 16:

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör

Teljes gráf:

Páros gráf, teljes páros gráf: 

Hamilton kör: Minden csúcson áthaladó kör
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Hamilton kör 

Forrás: (http://www.math.klte.hur/~tujanyi/Komb_j/K_Win_Doc/g0603.doc
)
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Sir William Rovan Hamilton
 (1805-1865) 1859-ben egy olyan játékot hozott forgalomba, melynek a lényege az volt, hogy egy előre megadott gráf csúcspontjait kellett bejárni, oly módon, hogy bármely csúcsban pontosan egyszer kellett járni. Állítólag a játéknak nem volt átütő sikere Hamilton kortársai között. //(25 !)

Sir William Rovan Hamilton (1805-1865) Dublinban született, családja Skóciából származik. Nyelvi és matematika tehetsége nagyon korán megmutatkozott. 15 éves korában már Newton és Laplace írásait olvasta.Saját maga a kvaterniók felfedezését tartotta legfontosabb eredményének. Ma e véleményével kevesen értenek egyet. 

III.2. Definíció: A 
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 csúcsok mind különbözők és e csúcspontokon kívül más csúcspontja nincs G-nek.

III.3. Definíció: A 
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 gráf K körét Hamilton-körnekXE "Hamilton-kör" mondjuk, ha K tartalmazza G minden csúcspontját is.

Látszólag nagyon hasonló probléma, hogy valamely gráfnak az éleit járjuk be pontosan egyszer, vagy a csúcspontjait. Az utóbbi azonban jóval nehezebb. S az általános esetben Hamilton-utak illetve Hamilton-körök keresésére ma sem ismert igazán jó algoritmus. 

Operációkutatás területéhez tartozik az utazó ügynök problémája. Az utazó ügynök problémájaXE "utazó ügynök" azt jelenti, hogy a kereskedelmi utazónak adott városokat kell bejárnia, oly módon, hogy minden városba csak egyszer megy el, és végül visszatér a cégének a székhelyére. Ez esetben a gráf csúcspontjai az utazó által meglátogatandó városok, az élek pedig a városokat összekötő útvonalak. Természetesen egy-egy útnak jól meghatározott útiköltsége is van, s több út esetén célszerű azt az utat választani, melynek a költsége minimális. Ha valamely G gráf éleihez valós számokat rendelünk, akkor hálózatokról, folyamokról beszélünk. S nagyon természetesen vetődik fel minimális költségű ill. maximális nyereségű utak esetleg körök keresése. Az előbb említett feladatok a kombinatorikus optimalizálásXE "kombinatorikus optimalizálás" tárgykörébe tartoznak. A következő tétel megfogalmazása előtt említjük meg, hogy egy kör ill. út hosszán a bennük szereplő élek számát értjük. 

III.4. Tétel: Ha a G egyszerű gráfban bármely csúcspont foka legalább k (
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), akkor van a gráfban egy legalább k+1 hosszúságú kör. 
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4. ábra
Bizonyítás: Legyen a G gráfnak az L út a leghosszabb útja. S ezen út csúcspontjait a kezdő ponttól indulva jelölje rendre 
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. Az, hogy v0 foka legalább k azt jelenti, hogy a v0-t v1-el összekötő e1 élen kívül még legalább k-1 él indul ki v0-ból. Ezen élek másik végpontjai szükségszerűen szerepelnek L csúcspontjai között, mert ellenkező esetben összeütközésbe kerülnénk azzal, hogy az L út a leghosszabb. Legyen e2' másik végpontja mondjuk v2, e3' végpontja v3 és végül ek' végpontja vk. Ekkor az L útnak a v0-tól vk-ig tartó rész útjának két végpontját köti össze ek' , ezért egy kört kapunk, melyben legalább k+1 él van, s ezzel a bizonyítás kész. 

III.5. Tétel: Ha a 
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 egyszerű gráf bármely v csúcsának fokára teljesül, hogy 
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, akkor G összefügg.(Hamilton köre is van, ld.Dirac tételét!)

Bizonyítás: Legyen u és v két különböző csúcsa G-nek. A feltétel szerint u-val és v-vel is legalább n/2, n/2 pont van összekötve az u-ból illetve v-ből induló élek által, a fokszám feltétel miatt. Az előbb említett u-val, illetve v-vel közvetlenül összekötött pontok között van olyan, mely u-val is v-vel is össze van kötve, (ha nem lenne ilyen akkor G csúcsainak a száma nagyobb egyenlő volna, mint [n/2+n/2+2]) azaz u és v között vezet út.

Ha adott a 
[image: image20.wmf](

)

G

E

V

=

,

,

j

 gráf, a csúcsainak a számát 
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 szokás G rendXE "rend"jének mondani, s éleinek számát 
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 a G gráf méreténekXE "gráf mérete" mondani. Ha az u-t az e él összeköti a v csúccsal, akkor u-t ill. v-t az e él vég pontjainak nevezzük és u-t ill. v-t szomszédosXE "szomszédos"nak mondjuk. 

III.6.Tétel(O.Ore
 (1960.)): Ha a G gráfra teljesül, hogy rendje n
3 és bármely két nem szomszédos u,v csúcspont fokának az összege nagyobb egyenlő G rendjénél (), akkor G-nek van Hamilton-köre.


 


1899.X.7. Kristiania-ban a ( a mai Oslo-ban Norvégiában ) született és ott is halt meg 1968.VIII:13. Fiatal korában algebrai számelmélettel foglalkozott, később hálóelmélettel,gráfelmélettel.1927.-ben professori kinevezést kapott a Yale egyetemre, 1931.-ben a Yale egyetem kítűnő professzora címet kapta, s 37 évvel később 1968.-ban onnan is ment nyugdíjba. Több könyvet írt különböző a matematika különböző területeiről, számelméletről, négyszínsejtésről, gráfelméletről.

Bizonyítás: Indirekt bizonyítunk. Azon gráfok közül, melyekre a tétel feltételei teljesülnek, de az állítás nem, tekintsük valamelyiket azon G' gráfok közül, melyben az élek a száma maximális abban az értelemben, hogy ha G'-hez hozzá vesszünk egy olyan e élt, mely a nem szomszédos u és v éleket köti össze, akkor az így kapott G gráf már tartalmazni fog Hamilton-kört. 

Ilyen gráfot könnyű konstruálni élek hozzáadásával(törlésével).

Rajzoljunk:a,b,c,d,e,f,g csúcsokkal és ab, be, ed, dc,cf élekkel gráfot. Bővítsük rendre a köv, csúccsal/élle, s közben figyeljük,  hogyan van-e H-útja/körre:

· fd

· új csúcs: g, új él fg

· új él gd

Bizonyítás folytatása:

G' minden Hamilton köre tartalmazza az e élt, ezért van olyan L Hamilton-útja G'-nek, mely u-t és v-t összeköti. Legyen ez a következő csúcsokat valamely éleken át összekötő út: 

L: 
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. Az az állítás, hogy e Hamilton útban, ha egy csúcs szomszédja u-nak,  pl. az ábrán vk+1 , akkor ennek szomszédja, pl. vk nem lehet szomszédja v-nek. Az ábra ezt a nem megengedett helyzetet szemlélteti: 
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5. ábra

Ugyanis, ha ez az eset előfrodulna, akkor az 
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 Hamilton-köre volna G'-nek, pedig ez nem lehetséges,  hiszen pontosan az uv él hiányzott a Hamiton körhöz. Tehát a V-{v} pontok közül az u-val szomszédos pontok nem  szomszédosak v-vel (ezek nincsenek u-val összekötve). Vagyis: 
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  s ez utóbbi egyenlőtlenség ellentmond a tétel feltételeinek. 

Ore tételének speciális esete Dirac tétele.

Következmény(G.A. Dirac (1952)): Ha az n=2k csúcspontú egyszerű G gráf bármely pontjának a foka legalább k, akkor van G-nek Hamilton-köre. 

Valóban G-ben létezik Hamilton-kör, mivel a következmény feltételei lényegében szigorúbbak, mint az Ore tétel feltételei.

 Az időrendben való jobb tájékozódás végett egységes jelölés mellett felsoroljuk a Hamilton-körökre vonatkozó érdekesebb eredményeket. Jelölje a G(E,
,V) gráf csúcspontjainak fokszámait rendre  ( =n).
V
III.7. Tétel: Ha a G(E,,V) egyszerű gráfra (2<n) a következő feltételek valamelyike teljesedik, akkor van G.-nek Hamilton-köre:

1; G.A. Dirac (1952) 
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2; O.Ore (1961) 
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3; Pósa Lajos(1962)
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4; J.A.Bondy (1969) j<k,
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5;V. Chvátal (1972) 
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SZÍNEZÉS:
Tétel 
Ha G (n csúcsú) egyszerű síkbarajzolható gráf, akkor a minimális fokszáma legfeljebb 5. (megkeressük a legkisebb fokszámú csúcso(ka)t, akkor ez(ek) fokszáma nem lehet nagyobb 5-nél, tehát lehet 1, 2, 3,4 , 5)

Bizonyítás: 
Ha ez a legkisebb fokszám 6 lenne, akkor a gráf éleinek száma 6n/2=3n lenne.  A fokszámok összege az élek számának kétszerese, így 
6n(2n(fokszámok összege) ( 2(3n-6)=6n-12 (a fenti, Euler poliéder tétel 2.  következményt használtuk) 
http://digitus.itk.ppke.hu/~b_novak/dmat/szinezes_2008.ppt
Reguláris 5 gráf színezése 4 színnel – Juhász, PPKE ITK, 2007:

http://digitus.itk.ppke.hu/~b_novak/dmat/Juhasz_5_foku_graf.bm
NP

Nagyságrendek, függvények növekedése, csökkenése:
http://digitus.itk.ppke.hu/~b_novak/dmat/nagy_ordo.ppt
ÁLTALÁNOS GRÁF JEGYZET:
thiqaruni.org/thi.../530-graph-theory.html

http://www.clear.rice.edu/comp280/10spring/class/08/GraphsT.pdf
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Példa az algoritmus működésére:   

C1:abca, C2:bdefb, =>C3:abdefbca. C4:eijhcge. C3+C4=>abdeijhcgefbca
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Gráf ábrázolása szomszédsági listával

		1		3		4		5		

		2		4		5				

		3		1		5				

		4		1		2				

								5		

		5		1		2		3		4



1

3

2

5

4

e1

e3

e4

e6

e7

e5

e2

 Az adott gráfhoz hozzárendelhető egy  n sort és maximum n oszlopot tartalmazó kétdimenziós tömb, amelynek minden sorában az adott sorszámú ponttal szomszédos (összekötött) pontok sorozata található.





















! Gréf sbrézolésa szomszédsagilstéval
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Gráf ábrázolása illeszkedési mátrix segítségével

Egy gráfhoz hozzárendelhető egy n sorból (csomópontok száma) és egy m oszlopból (élek száma) álló kétdimenziós tömb úgy, hogy 

a[i,j]=1 ha i ponthoz a j él illeszkedik.

a sor összege megadja a sorszámának megfelelő csomópont fokszámát

bármely oszlopban két 1-es található, ezek az oszlopnak megfelelő él által összekötött csomópontok
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				1		2		3		4		5		6		7

		1		1		0		0		1		1		0		0

		2		0		0		0		0		0		1		1

		3		1		1		1		0		0		0		0

		4		0		1		0		0		1		1		0

		5		0		0		1		1		0		0		1
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Gráfok ábrázolása éllistával
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 Egy gráfhoz hozzárendelhető egy n sorból (élek száma) és egy két oszlopból álló kétdimenziós tömb úgy, hogy minden sorban az adott sorszámú él két végpontját tároljuk.
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n csomópontú irányítatlan gráf ábrázolása szomszédsági mátrixszal

				1		2		3		4		5

		1		0		0		1		1		1

		2		0		0		0		1		1

		3		1		0		0		1		1

		4		1		1		1		0		0

		5		1		1		1		0		0



Jelölje E a szomszédsági mátrixot. 

n csomópont  => n sor és oszlop lesz.

E(i,j)=1

Létezik i kiindulópontú és j végpontú él
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 Egy sor összege egyenlő az adott csomópont fokszámával.

 A mátrix szimmetrikus a főátlóra nézve.
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