Félcsoport, Csoport, Abel-csoport

Félcsoport: asszociativ miivelettel ellatott halmaz

Csoport: asszociativ miivelettel ellatott halmaz, ahol 1étezik egységelem, és minden elemnek létezik
inverze

Abel csoport: kommutativ csoport

1, Az alabbi egymiiveletes struktirak kozil melyek alkotnak félcsoportot, melyek csoportot:

a, Paros szamok halmaza a szorzas muvelettel

(Félcsoport:  zért, mert két paros szdm szorzata paros
a szorzas asszociativ
nincs egységelem, mert az egységelem az 1 lenne, de az 1 nem paros szam.
Ha nincs egység nincs értelme inverzrél beszélni)

b, R\{0} alaphalmaz az osztas mivelettel

£ a ac a

(Egyik sem mert nem asszociativ: (a/b)/c =L=-—z i a/(b/c)
c bc =

¢, R{0} a kovetkez6 miivelettel: a*xb=2ab

(Abel csoport: zart, mert a és b valés akkor a*b = 2ab is valés
asszociativ, mert (a*b)xc = 2(2ab)c = 4abc = 2a(2bc) = a*(b*c)

létezik egységelem, mert axe=a — 2ae=a — e=3

et - _ 4 1
létezik inverz, mert a*a™' =e — 2aa =1 —» al=—

4a
kommutativ, mert axb=2ab=2ba=b=*a

Gyviuri, ferdetest, test

H alaphalmazon adott két mivelet: +, *

Gyliri: H halmaz a + mivelettel Abel csoport, a * miivelettel félcsoport, €s teljesiilnek a disztributiv
szabalyok

Ferdetest: H halmaz a + miivelettel Abel csoport, a H/{+ egységeleme} halmaz a * miivelettel csoport,
(az + egységelemének nincs inverze a * miiveletre), és teljestilnek a disztributiv szabalyok

Test: olyan ferdetest, ahol a * miivelet is kommutativ

2. Az alabbi kétmiiveletes struktirak koziil melyek alkotnak gytrit, melyek ferdetestet, melyek testet?
a, 2" hatvanyhalmazadott két miivelet: A+B = AUB és A*B=ANB

(Egyik sem mert az unié miiveletre nézve nem Abel csoport, mert:
létezik egységelem AOUE=A — E=¢

de nem létezik inverz, mert ha A # ¢, akkor nem létezik A™ melyre AU A™ = ¢)



b, R alaphalmazon két miivelet: a+b=3a’>+b> a*b=2ab

Test, mert + Abel csoport:
asszoc: (a+b)+c :5\/(5\/a5 +b5)5 +c® =¥a’+b° +c® = t'{/a‘r’ +(5\/b5 +05)5 =a+(b+c)
kommutativ: a+b =+/a+b? =b’> +a2 =h+a
egység: a+e=3a’+e°=a —» e=0

. _ 1\° _
inverz: a+a1:5\/a5+(a1) —e=0 > a‘t=-a

A * miiveletre nézve az R/{0} halmaz, tehat az alaphalmaz minusz az + egységeleme, Abel csoport,
ahogy azt az 1.c feladatban lattuk.
Teljesiilnek a disztributiv szabalyok (elég az egyiket ellen6rizni, mert kommutativ * miivelet):

(a+b)*c:2-(5\/a5 +b® )-c=5\/(a5 +b°)-(2¢)° =5/((2ac) +(2bc) ) =axc+bxc

¢, alaphalmaz: pozitiv valds szamok
a+b=a*b a*b=a""® (Test)

d, alaphalmaz: H hatvanyhalmaza
A+B=(A\B) U (B\A) A*B=A N B (Komm., egysegelemes gytrii)
Halok
o Definici6 1 (algebrai struktiraként)

A (H, v, A) algebrai struktirat halonak nevezziik, ha v és A kétvaltozos milveletek H-n, amelyekre
tetsz6leges A, B, C €H elemek esetén teljesiilnek a kovetkezok:

AvB=BVA AAB=BAA , azaz mindkét miivelet kommutativ,
(AvB)vC=Av(BVvC) (AAB)AC=AA(BAC), azaz mindkét miivelet asszociativ és
AA(AVB)=A Av(AAB)=A elnyelési tulajdonsagok teljesiilnek.

e Definici6 2 (részbenrendezett halmazokkal)
Ha egy részbenrendezett halmaz barmely kételemii részhalmazanak van szuprémuma és infimuma, akkor a
halmazt halonak nevezzilk.

1. Halé-e a (H,v,A) algebrai struktara, ha H={1,2},

v |1 2
1 (1 1
2 |1 2
A1l 2
1 (1 2
2 |2 2

MO: igen (Def 1-gyel)



2. Adott a kovetkezo rendezési relacio: H={U, V, W, X, Y, Z}

R={(U,U), (V.V), (W,W), (X,X), (Y,Y), (Z,2), (W,X), (W,Y), (W,V), (W,U), (X,V), (X,U), (Y,V),
(v,U), (V.U)}

Abréazolja Hasse diagramon, és dontse el, hogy hald-e a megadott H rendezett halmaz?

Mo.:

o
Z W

(Def 2-vel) nem halo, mert pl. {Z, Y}-nak nincs infimuma, szuprémuma.

Emlékezteto:

a)

b)

Részben-, vagy teljes rendezésrél van sz6?
MO: részben pl. X és Y nem hasonlithat6 6ssze

Hatérozza meg a maximalis, minimalis, legnagyobb, legkisebb elemet!
MO:

Maximalis: Z, U

Minimalis: Z, W

Legnagyobb: nincs

Legkisebb: nincs

Hatarozza meg a kovetkez6 részhalmazok alsé-, fels6 korlatait valamint infimumat és

szuprémumat:

Hi={W}

HZ:{W! Y}

H3:{W! V}

H.s={W, Z}

Hs={ X, Y}

He{W, X, Y}

MO: inf sup
H.={W} w w
H={W,Y} W Y
Hs={W,V} W \Y
H={W,z2} O %)
He={X,Y} W \Y
He={W, X, Y} W \Y

3. Hal6-e a pozitiv egész szamok halmaza az oszthatdsag relacioval? (N\{0}, | )

MO: Igen, (Def 2) alapjan: inf(a, b)=Inko(a, b), sup(a,b)=Ikkt(a,b)



4. Halot alkotnak-e a megadott halmazok a kovetkez6 rendezési relacioval (a,b)eR, ha alb
a) A={1, 2,3,4,6, 12}
b) B={3, 5, 6, 9, 15, 30}

5. Igazolja, hogy (2", <) halé (adja meg inf (A,B)-t és sup (A,B)-t is).

Vagy
Igazolja, hogy (2", U, M) halé (adja meg inf (A,B)-t és sup (A,B)-t is).

Elsérendii logika
1. Formalizélja az alabbi mondatokat:
a, Aki mésnak vermet &s, maga esik verembe. (Univerzum az emberek halmaza)
X3V (x,¥) = E(X))
E(x): verembe esik,  V(X,y): X vermet as y-nak
b, Van olyan makacs ember, a senki mas tanacsara nem hallgat. (Univerzum az emberek halmaza)
(M () A-3y(H(x, y) A—E(x, 1))
M(x): makacs, H(x,y): x hallgat y-ra E(x,y): x egyenl6 y
¢, Minden raciondlis szam estén létezik nala nagyobb irracionalis szam. (Univerzum: R)
vx(R(x) = 3y(1(y) AN(y. %))
R(x): raciondlis, I(y): irracionalis N(X,y): X nagyobb y
d, Barmely két racionalis szam koz6tt talalhato irracionalis szam. (Univerzum: R)
VxVY[(R(X) A R(Y) A N(y, X)) = 3z(1(z) A N(z,x) AN(y,2))]
R(x): racionalis, I(y): irracionalis N(X,y): X nagyobb y

e, Minden 2-nél nagyobb paros szam felirhatd két primszam dsszegeként. (Univerzum: R)

vx3y3z|(N(x,2) A P(x)) = (T(y) AT (2) A E(F (z,y).x))]
N(X,y): x>y;  P(x): paros;  T(x): prim; E(x,y): egyenl6ség; f(x,y): 0sszeadas
Minden lében van két kanal. (Univerzum a minden dolgok halmaza)

Van olyan kalap, ami minden zoknihoz illik. (Univerzum a minden dolgok halmaza)
Egy, csak egy legény van talpon a vidéken. (Univerzum az emberek halmaza)

Vannak repiild és futomadarak (Univerzum az ¢é161ények halmaza)



2. Hozza Prenex konjunktiv normal forméara, majd Skélem norméalforméra:

* IX[3y(B(x.y) A P(y) = Vy3z(G(x,y,2))]

M.o.: IX[-3y(B(x,y) A P(y))v Vy3z(G(x,y,z))]
IXvy—(B(x,y) A P(y))v ¥y32(G(x,y,2))]
IX[vy(=B(x,y)v =P(y))v vy3z(G(x.y,2))

VY nem emelhetd ki ezért 1j ismeretlenek kellenek:

X[y, (=B(x,y, ) v =P(y, ) v Vy,32(G(x,Y,,2))]
Ixvy, vy, 32[(-B(x,y, ) v =P(y,)) v (G(x, Y, ,2))]
Axvy,vy,3z[-B(x,y, )v=P(y, )v G(x,Y,,z)] Prenex KNF
Skélemizalas: X «— ¢; z « f(y1,Y2)

vy, Y, [(B(e,y, )v =Py )V (G(e,y,, T (y1.Y,))]
b, IXK(X) v =VX[(R(X) AT(X)) = QX)) = =¥y(—=Q(Y) = P(x,y))]

M.o.: IXK(X) v =VX[(=(R(X) AT (X)) v Q(X)) v =¥Y(Q(Y) v P(x, ¥))]
XK (%) v IXA(RO) AT (¥)) A=Q(X)) v Fy—~(Q(y) v P(x, )]
IXK (%) v IR AT () A =Q(X) A—Ty—=(Q(Y) v P(x, )]

3K (X) v IX[(R(X) v =T (X) v Q(X)) A YY(Q(Y) v P(x, y))]
X kiemelhet6 itt, ezér nem kell 0 ismeretlen:

IxTY[K (%) v [(=R(X) v =T () v Q(X) A (Q(Y) v P(x, y) ]I

Ez Prenex, de nem KNF, ezért disztributiv szabalyt hasznalunk:

AIXVY[(K(x) v —R(x) v =T (x) v Q(x)) A (K(X) v Q(Y) v P(x, y))] Prenex KNF
Skolemizalas: X<« ¢C

wy[(K () v —R(c) v =T (€) v Q(c)) A (K(c) v Q(y) v P(c, )]
¢ WX(EYQ(x, ¥) A (P(X) = R(X, ¥)) A=V2(P(2) = Q(z, X)))

M.o.: VX(3yQ(X, ¥) A (=P(X) v R(X, ¥)) A=Vz(=P(z) v Q(z,x)))
VX@EYQ(x, y) A (=P(X) v R(X, ¥)) A 3z~(=P(2) v Q(z, X)))
Vx@EYQ(x, ¥) A (=P(X) v R(x, ¥)) A 3z(P(z) A—Q(z, X)))
Vxay3z(Q(x, y) A (=P(X) v R(x, y)) A (P(2) A—Q(z,X)))
Vx3y3Az(Q(X, ¥) A (—P(X) v R(X, ¥)) A P(z) A—=Q(z, X)) Prenex KNF
Skolemizalés: y « f(x); z < g(x)

VX(Q(X, £ (X)) A (=P(X) v R(x, f(x))) A P(9(X)) A =Q(g(X), X))
d, Vx3IyA(x,y) = —vx(=B(x) — C(y))
VX P(X) v —ax[VyQ(X, y) v —=R(c, y)]

Vx(A(Xx) = —B(x)) = —vx3y C(x,y)



3. Rezolucié

a, lgazolja rezolucioval, hogy helyes az alabbi kovetkeztetési séma:

VX((A(X,Erng) A N(x)) — B(x))
Vx((T(x) v $(x)) > VyA(x, y))
—T (Lajos) A S(Lajos)

VX(S(X) = N(x))

= B(Lajos)

M.o.:

Minden feltételt és a kdvetkezmény negaltjat is Skélem normalformara alakitunk:
VX((A(X, Erné) A N(x)) = B(x)) = VX(—(A(X, Emd) A N(x)) v B(x)) =
= VX((—=A(X, Emag) v =N (x)) v B(X)) = VXx(-A(X, Erng) v =N (x) v B(x))

VX((T (X) v S(X)) > VYA(X, ¥)) = VX((T (x) v S(X)) v VYA(X, ¥)) =
= VX((=T(X) A =S (X)) v YYA(X, ¥)) = VXVY((=T (X) A =S(X)) v A(X, ¥)) =
= VXVY((=T(X) v A(X, ¥)) A (=S(X) v A(X, Y)))

(Vegyuk észre, hogy az utolso Iépésben a disztibutiv szabaly segitségével alakitottuk a kvantorok utéani
kifejezést konjunktiv normal formara!)

—T(Lajos) A S(Lajos)
VX(S(X) > N(X)) = VX(=S(X) v N(x))
—B(Lajos)
Ertéket adunk a valtozoknak: Lajos=> x, Emé >y
Kl6zok és a rezolucio:
—|A(Lajos, Erné’) v =N (LajOS) 4 B(LajOS) —N (Lajos) v B(Lajos)
—T (Lajos) v A(Lajos, Erng)
—=S(Lajos) v A(Lajos, Erng))

—T(Lajos)

S(Lajos) N (Lajos)
—S(Lajos) v N(Lajos) H
—B(Lajos)

A(Lajos, Erng))
B(Lajos)




b, lgazolja rezoltcidval, hogy helyes az alabbi kovetkeztetési séma:

VX[P(x) = Q(f (x),x)]
P(g(b))

= 3y3zQ(y,z)

Mo.:
VX[P(x) = Q(f (x).x)] = vx[=P(x)v Q(f (x).x)]
P(g(b))

—[3y3zQ(y,z)] = ¥xvz—Q(y, 2)

EKrIt,ékaS.és: x « g(b); z — g(b); y — f(g(b))

P(b)v QA (b)ob)  —

P(g(b)) Q(f(a(b)).a(b))
~Q(1(glb).gb) T~

¢, Formalizaljuk az alabbi &llitasokat és rezolucioval mutassuk meg a kdvetkeztetés helyessegét!

. ,,Minden 2-nél nagyobb primszam paratlan.”
. ,Paratlan szam négyzete paratlan.”

. »A 7 primszdm.”

. »A 7 nagyobb mint 2.”

(U, T S S I NS I

. Kovetkeztetés: ,,A 7° paratlan.”

Mo: N(, ): nagyobb, mint; P( ): prim; PT( ): paratlan; f( ): négyzetre emelés miivelete
1. Vx[(N(x,2) A P(x)) = PT (x)]

2. VX[PT (x) = PT(f (x))]

3. P(7)

4.N(7,2)

5. PT(f(7))

Prenex KNF alakra hozas:
VX(=N (%,2) v =P(X) v PT (X)) A VY[=PT (y) v PT (f (Y))] A P(7) A N(7,2) A =PT (f (7))
VXVY[(=N (x,2) v =P(x) v PT (X)) A (=PT (y) v PT(f (y))) A P(7) AN(7,2) A =PT (f (7))]

Ez egyben SKNF alak is.
Egységesito helyettesités: X «— 7,y < 7

Rezolucio:

“N(7,2) v —P(7) v PT(7)

_PT(7)v PT(f(7)) “N(7,2) v —P(7) v PT(f (7))
P(7) “N(7,2) TPT(F(7)) ~_

N(7,2) PT(f (7))

—PT(f(7)) il ——




d, Dontse el els6rendii rezolucidval, hogy helyes-e az alabbi kdvetkeztetés!

Vx[A(X) = (B(X) A C(X)]
Vx[B(x) = (D(x) A E(x)]
VxX[E(x) = (F(x) v =C(x))]
A(Kati)

F (Kati)

'\éf['/&(x) — (B(x) AC(X)] = ¥X[-A(X) v (B(X) A C(x)]= VX[(=A(X) v B(X)) A (=A(X)v C(x))]
VX[B(X) = (D(X) A E(x)]= YX[-B(X) v (D(x) A E(x)]= VX[(=B(X)v D(X)) A (=B(x)v E(x))]
VX[E(X) = (F(X) v =C(x))] = YX[-E(X) v (F(X) v =C(x))] = YX[-E(X) v F(X) v —=C(x)]
A(Kati)

—F (Kati)

Ertékadas: Kati-> x,

—A(Kati)v B(Kati))
—.A(Katl)v C(Kati)
—B(Kati)v D(Kati)
—B(Kati)v E(Kati)
—E(Kati) v F(Kati) v —C(Kati)
A(Kati)
—F (Kati)

E(Kati)
F (Kati) v —C(Kati)
B(Kati))//
F (Kati
C(Kati) ( a')\

e, Dontse el elsérendii rezolucidval, hogy helyes-e az alabbi kdvetkeztetés!

H

vx[R(x) = 3yP(x,y)]

vz[R(h(c))v A(h(c))v -D(z)]

vy[A(y)— D(b)]
Jy3zP(y,z)
M.o.:
vx[R(x) = 3yP(x,y)]= wx[=R(x) v 3yP(x, y)] = ¥x3y[-R(x) v P(x,y)]= vx[-R(x)v P(xa)]

JyP
vz[R(h(c))v Ah(c))v -D(z)]
vy[A(y) > D(b)]= vy[-A(y)v D(b)]

(b
—(3y3zP(y,2)) = vyvz—P(y, )

Ertékadas utan a kl6zok:
—R(h(c))v P(h(c),a)
R(h(c))v A(h(c))v-D(b)
—A(h(c))v D(b)
—P(h(c),a)



e WX[(T(X) v F(x) = RX)]
o WX[C(X) = (-O(x)A F(x))]
o C(Gabor)

a, Fogalmazza meg a mondatok jelentését, ha az univerzum a goték halmaza, és adottak a kovetkezok:

T(x) = Tuskés

F(x) = Tud futydlni

R(X) = Szereti a répatortat
C(x) = Csikos

O(x) = Okos

b, Rezoluciod segitségével bizonyitsa be, hogy Gabor a géte szereti a répatortat!

d o WX[Z(X) = (=L(x)A P(x))]

o WX(P(X) vT(x)—>M(x)]
o Z(Dumbd)

a, Fogalmazza meg a mondatok jelentését, ha az univerzum az elefantok halmaza, és adottak a
kovetkezok:

Z(x) = Z6ld

L(x) = Lila fulu

P(x) = Pottyos fulu

T(x) = Latott mér zebréat
M(X) = Szereti Mozartot

b, Rezollci6 segitségével bizonyitsa be, hogy Dumbé a kiselefant szereti Mozartot!

Extra Feladat: Adottak a kovetkez6 axiomak:

1. Minden kutya egész éjszaka Uvolt.
2. Azoknal, akinek van valamilyen macskajuk, nincsenek egerek.
3. A nyugodtan alvéknak nincs semmilyik, ami éjszaka Uvolt.

4. Janosnak kutyaja vagy macskaja van.

5. Konkl(zi6: ha Janos nyugodtan alvo, akkor Janosndl nincsenek egerek.
Bizonyitsa rezollcidval a kdvetkeztetést!

1.1épés: formalizalas
1. wx(Kutya(x) — Ovélt(x))
2. vxvy([Rendelkezik(x,y) A Macska('y)] — —3z[Rendelkezik(x,z) A Egér(z)))
3. Wx(A(x) > —3y(Rendelkezik(x, y) A Uvolt(y)))
4.3x(Rendelkezik(Janos,x) A [Macska(x)v Kutya(x)])
5. A(Janos) — —3z(Rendelkezik (Janos,z) A Egér(z))



2.1épés: atalakités
1L.vx(K(x) > U(x)) =wx(=K(x)vU(x))
2.Yxy([R(x,y) A M(y)] = =3z[R(x, z)/\ E(z)])
vxvy([R(x,y) A M(y)] = Vz—[R(x,2)
vxvyVz(—[R(x,y) A M(y)]v —[R(x,z) A E(z
VxVyVz[-R(x,y)v =M (y)v =R(x,z)v =E(z)]
3. vx(A(x) > =3y(R(x,y) A U(y))
VX(A(xX) > vy=(R(x,y) AU(y)))
Vxvy(A(x) > =R(xy)v =U(y))
Vxy(A(x) > ~R(x,y)v =0 (y))
=A(x)v =R(xy)v=0(y)
4.3x(R(Janos,x) A [M (x) v K(x)])
Skodlemizalas: x € a: R(Janos,a)A[M(a)v K(a)]
5. A(Janos) — =3z(R(Janos,z) A E(2))
—[-A(Janos)v =3z(R(Janos,z) A E(2))]
A(Janos) A 3z(R(Janos,z) A E(2))
Skolemizalas: z € b: A(Janos) A R(Janos,b) A E(b)

m m

N
N

Ertékadas utan a klozok: (A kiilonboz6 formulakban a véltozok értékei kiilonbozdek lehetnek, ugy kell
megvalasztani 6ket, hogy a rezoltcio soran ellentmondasra jussunk)

1.-K(a)vU(a)

2.-R(Janos,a)v —=M (a)v —R(Janos,b)v —E(b)
3.-A(Janos)v —R(Janos,a)v -U(a)
4.R(Janos,a)

5.M(a)v K(a)

6. A(Janos)

7.R(Janos,b)

8.E(b)

Nagysagrendek

1, Az alabbi allitdsokrol dontse el, és igazolja, hogy igazak-e vagy sem!

a, 5x° +7=0(x%) b, 5x° + 7 = Q(x?) ¢, 5x* +7=0(x°%)

d, 5x° +7 = O(x?) e, 5x® +7 =0Q(x?) f, 5x° +7 = O(x?%)

g, x> +7x+3=0(x") h, x> + 7x+3=Q(x*) i, x> +7x+3=0(x")
j, X2 +7x+3=0(x%) k, x> +7x+3=Q(x?) I, X +7x+3=0(x%)
m, x* =0(3x") n, x* =Q(3x") 0, X* =O(3x")

p, X> = O(X?* +4x+1) g, X* =Q(x* +4x+1) r, x> =0O(x* +4x+1)
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Szamossagok

Az orai anyag a legjobb alap amire ennél a résznél épitkezhetsz, el6szor azt tanuld meg!!

1.a, Hany olyan egység sugaru kor rajzolhat6 a sikra, aminek a kdzéppontjanak koordinatai egész szamok?
(' metszhetik egymast a korok)

b, Hany olyan kor rajzolhaté a sikra, aminek a kdzéppontjanak koordinatai, és a sugara is egész szam?
(metszhetik egymast a korok)

¢, Mennyi az origd kdzéppontu egység sugaru kor belsé pontjainak szamossaga? A bizonyitashoz add meg
a megfeleld bijektiv fliggvényt!

d, Hany origé kozéppontu korvonallal fedhetd le a sik? A bizonyitashoz itt is add meg a megfelel6 bijektiv
flggvényt!

Mo.:

a, A kérdés valdjaban annyi, hogy hany olyan pont van a sikon amelynek mindkét koordinataja egész
szam! Ez ilyen pontok szamossaga megszamlalhatoan végtelen, egy lehetséges felsorolas: elsé helyen
az origo all, aztan csigavonalban sorban a tébbi!

b, A sik egész koordinataju pontjait az 1,a, feladat szerint felsorolhatjuk, és minden egyes ponthoz
tartozik a 0,1,2,3,... sugart korok megszamlalhatoan végtelen halmaza! Megszamlalhat6an
végtelenszer megszamlalhatéan végtelen is megszamlalhato, példaul a tablazatba rendezés
modszerrel!

c, A kort felvetithetjuk egy félgombre, a félgdmbot a gdmb k6zéppontjabol ravetithetjiik a sikra, a sik
pedig kontinuum szamossag! Mas lehet6ség: polar koordinatakkal!

d, Az 0sszes origo kozéppontu korvonalra sziikség van! Mindenkorhoz a sugarat hozzéarendelve,

megadtunk egy bijektiv fuggvényt a korok és a [O, oo) intervallum kozott ha ez még nem elég akkor

pl: Inx bijektiv fiiggvény a (0,00) és a (—oo,00) kozott, tehat kontinuum sok egyenesre van
szilségunk!

2. Adja meg az alabbi halmazok szdmossagat:

a, A pératlan természetes szdmok halmaza

Mo: Megszamlalhatd, mert az elemeit sorba rendezhetjlik és igy megadhatunk egy bijekciot a természetes
szamok és a halmaz elemei kozétt: A={1,35,7,...}

b, A={harommal nem oszthatd egész szamok}.
Rendezziik sorba A elemeit igy: 1,-1,2,-2,4,-4,5,-5,... . Ez egy bijekcidt definial A és N koz6tt, tehat A
szamossaga megszamlalhatéan végtelen

¢, Hany olyan pont van a sikon, amelynek mindkét koordinataja racionalis szam?
Tablazatba rendezve az 6ran tanult médon a Q x Q racionalis szamparokat cikk cakk mddszerrel
rendezhetdek és belathatd, hogy szdmossaguk megszamlalhatoéan végtelen.

3. Igazolja a megfelel6 bijekcio megadasaval (rajzzal és vetitéssel), hogy az alabbi halmazok szdmossaga
megegyezik! ( Ebbol kis meggondoléssal arra is tudunk kdvetkeztetni, hogy mindegyik kontinuum
szamossagu)

a, (0,1) intervallum és az R val6s sz&mok halmaza

b, (a,b) intervallum és az R val6s szamok halmaza

¢, (0,1) és (0,1] intervallumok (itt kivételesen konnyebb nem rajzzal, hanem megfelel6 hozzarendeléssel
megadni a bijekcidt)

d, Egyetlen pontban kilyukasztott kdrvonal és a valés szamok halmaza

e, Kdrvonal és négyzet-vonal

f, Egyetlen pontban kilyukasztott ggmbfelszin és az R? sik pontjai (sztereografikus projekcio)

g, Két kiilonb6zo6 sugart korfeliilet

h, Két tetszéleges haromszog (mint feliilet)
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4. Adja meg az alabbi halmazok szamossagat:

a, A komplex szamok halmaza

b, Azon komplex szdmok halmaza, melyeknek val@s és képzetes része is egész szam.
B = {a+bi, ahol a és b egész}

¢, Azon komplex szamok halmaza melyeknek képzetes része 3i.

C = {a+3i, ahol a tetsz6leges valds szam}

Sikgrafok

Kuratowski-tétel: egy graf akkor és csak akkor sikgraf, ha nincs olyan részgréfja, amia Ks -
el, vagy a Kazs -al topologikusan izomorf (homeomorf).

Euler sikgrafokra vonatkozo tétele: ha G 6sszefiiggé sikgraf, akkor: p-e+t = 2. (Jel6lés:
e=elek szdma, t=tartomanyok szdma, p=pontok (csticsok) szama.)

Euler tétel kovetkezménye 1: ha G 6sszefiiggd sikgraf és legalabb 3 pontja van, akkor:
e<3-p-6

Euler tétel kovetkezménye 2: ha G 6sszefiiggd sikgraf, legalabb harom pontja van, és nem
tartalmaz harom élhosszl kort, akkor: e<2-p—4

Vigyazat a kovetkezmeények sziikseges, de nem elégséges feltételeket adnak ahhoz, hogy egy
graf sikgréaf legyen!

1. Bizonyitsuk be, hogy a kovetkez graf ( Ke ) nem lehet sikgraf:

Megoldas:
Kuratowski tétel segitsegevel is lathatd, mert a grafnak van részgrafja ami

topologikusan izomorf Ks -el.

Nézzlk meg azonban az Euler-tétel segitségével is:

e <3- p—6 sziikséges, hogy teljesuljon ahhoz, hogy sikgraf lehessen.
Esetlinkben: e=(6*5)/2=15, c=6

30<3-6-6

30 <12, amibdl kovetkezik, hogy nem sikgraf.

2, Dontse el az alabbi grafrol, hogy sikbarajzolhat6-e?

Mo.:
e Kuratowski tétel alapjan nem sikbarajzolhatd,
mert homeomorf Ks -el.

e Az Euler tétel els6 kdvetkezménye alapjan nem tudnank valaszt adni,
mert a grafra teljesul: e<3-p—6 hiszen 11<3-6—-6=12

e A masodik kovetkezmeény pedig nem hasznalhatd, mert van harom
élhosszusagu kor.
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3.

a, Melyik graf rajzolhat6 sikba a kovetkezok koziil? Amelyik nem, indokolja meg miért nem.
Amelyik sikbarajzolhatd, annak adja meg egy lerajzolaséat!

A F K

T ¢

4

a, Adott a G véges egyszerii 6-regularis (minden csucsara 6 él illeszkedik) graf. Dontse el,
hogy sikbarajzolhaté-e ez a graf!

b, Sikba rajzolhat6-e az az n csucsu graf, amelynek n-2 csucsara 6 él illeszkedik, két cstcsara
pedig 77
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