
ÁLLANDÓ EGYÜTTHATÓS INHOMOGÉN EGYENLET MEGOLDÁSA
A PRÓBAFÜGGVÉNY MÓDSZERÉVEL

(Összeálĺıtotta: Csörgő István, 2007.)

Legyen I ⊂ R nýılt intervallum, n ∈ N, a0, . . . , an−1 ∈ C adottak, és tekintsük az y : I → C

függvényekre feĺırt
L(y) := y(n) + an−1 · y(n−1) + . . . + a1 · y′ + a0 · y

állandó együtthatós lineáris differenciáloperátort. Ennek karakterisztikus polinomja:

P (z) := zn + an−1 · zn − 1 + . . . + a1 · z + a0 (z ∈ C).

A karakterisztikus polinom gyökei seǵıtségével tudjuk megadni az L(y) = 0 homogén egyenlet
y1, . . . , yn : I → C alapmegoldásait, az ún. alaprendszert. Ezt az eljárást ismertnek tételezzük
fel. Ismerjük azt az eljárást is, hogy valós aj együtthatók esetén hogyan kaphatunk valós értékű
függvényekből álló alaprendszert (y1, . . . , yn : I → R). A továbbiakban az L(y) = f inhomogén

egyenlet egy yp : I → C partikuláris megoldásának keresésével foglalkozunk abban az esetben,
amikor f : I → C speciális függvény, pongyolán fogalmazva, amikor a jobb oldalon álló f függvény

”polinom-szor exponenciális-szor trigonometrikus” szerkezetű tagok összege.

Máris feltehető, hogy ez az összeg egyetlen tagból áll, hiszen ha ypk megoldása az L(y) = fk

egyenletnek (k = 1, . . . ,m), akkor - az L linearitása miatt - yp := yp1 + . . . + ypm megoldása az
L(y) = f1 + . . . + fk egyenletnek (szuperpoźıció elve).

Az eljárás kiindulópontja az alábbi tétel, mely a ”polinom-szor exponenciális” t́ıpusú jobb oldalra
vonatkozik:

1.1 Tétel. A fent bevezetett jelölések mellett legyen λ ∈ C, és jelölje r a λ multiplicitását a P

karakterisztikus polinomban (ha λ nem gyöke P -nek, akkor legyen r := 0). Legyen továbbá Q : I → C

egy N-edfokú polinom. Ekkor az
L(y) = Q(x) · eλx

egyenletnek van
yp = xr · R(x) · eλx

alakú megoldása, ahol R : I → C egy legfeljebb N-edfokú polinom.
Ha a differenciálegyenlet aj együtthatói, a Q polinom együtthatói, valamint a λ szám valósak,

akkor R együtthatói is valósak, tehát yp valós értékű függvény.

A tétel következménye az az eset, amikor a ”trigonometrikus szorzó” is belép.

1.2 Tétel. Jelölje i a képzetes egységet (i =
√
−1).

Az előző tétel feltételeihez képest legyen legyen λ, µ ∈ C, és jelölje r a λ + µi multiplicitását a
P karakterisztikus polinomban (ha λ + µi nem gyöke P -nek, akkor legyen r := 0). Legyenek továbbá
Q1, Q2 : I → C legfeljebb N-edfokú polinomok, melyek legalább egyike nem azonosan 0. Ekkor az

L(y) = eλx · (Q1(x) · cos µx + Q2(x) · sin µx)

egyenletnek van
yp = xr · eλx · (R1(x) · cos µx + R2(x) · sin µx)

alakú megoldása, ahol R1, R2 : I → C legfeljebb N-edfokú polinomok.
Ha a differenciálegyenlet aj együtthatói, a Q1 és Q2 polinomok együtthatói, valamint a λ és a µ

számok valósak, akkor R1 és R2 együtthatói is valósak, tehát yp valós értékű függvény.
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Bizonýıtás. Vázlatosan: cos µx-et és sin µx-et kifejezzük az exponenciális függvényekkel (Euler-
formula), majd - megfelelő rendezés után - alkalmazzuk az előző tételt.

1.3 Megjegyzés.

1. Látható, hogy µ = 0 esetén az előző tételhez jutunk. Ilyenkor Q(x) = Q1(x), R(x) = R1(x),
λ + µi = λ.

2. Fontos szerepe van annak, hogy a λ+µi szám gyöke-e a karakterisztikus polinomnak, s ha igen,
akkor hányszoros gyöke (r értékének meghatározása). Az első tételben persze - µ = 0 miatt -
λ + µi = λ.

Nevezzük a továbbiakban a λ + µi számot ”rezonáló gyök”-nek.

A módszert a gyakorlatban ı́gy célszerű végrehajtani:

1. lépés: Tisztázzuk, hogy a µ = 0 vagy a µ 6= 0 esettel van-e dolgunk.

2. lépés: Megállaṕıtjuk a λ + µi rezonáló gyököt, megnézzük, hogy hányszoros gyöke a karakterisztikus
polinomnak. Ezzel meghatározzuk r értékét, s az xr hatványt.

3. lépés: A keresett polinomokat (R ill. R1, R2) ”határozatlan együtthatókkal” felvesszük.

4. lépés: Előálĺıtjuk az yp próbafüggvényt (határozatlan együtthatókkal).

5. lépés: yp-t (megfelelő számú deriválás után) behelyetteśıtjük a differenciálegyenletbe.

6. lépés: A megfelelő együtthatók egyenlővé tételével kapott egyenletrendszert megoldjuk. Így megkapjuk
a határozatlan együtthatók értékét, s ezzel megvan az yp partikuláris megoldás.

A továbbiakban 10 db kidolgozott példa következik, melyeknél az alapintervallum végig I = R.
Mivel a cél a próbafüggvény-módszer szemléltetése, ezért az első 7 példában a differenciáloperátor
(vagyis a differenciálegyenlet bal oldala) ugyanaz lesz, és csak egy partikuláris megoldást keresünk.
Az utolsó 3 példában megváltozik a diff. egyenlet bal oldala, itt az összes megoldást fogjuk keresni.

Az első 7 példa közös differenciáloperátora:

L(y) := y′′ − y′ − 2y.

Karakterisztikus polinomja:
P (z) = z2 − z − 2,

melynek 2 db egyszeres valós gyöke van: λ1 = 2 és λ2 = −1.
Ennek alapján az y′′ − y′ − 2y = 0 homogén egyenlet alapmegoldásai (az alaprendszer):

y1(x) = e2x, y2(x) = e−x (x ∈ R)

1.4 Kidolgozott példák.

Az 1. példa jobb oldala egy exponenciális függvény, és nincs rezonancia.

1 Példa. Keressük meg az
y′′ − y′ − 2y = 8e3x

differenciálegyenlet egy megoldását.
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Megoldás.

Nincs trigonometrikus szorzó, tehát µ = 0.
A rezonáló gyök: λ = 3, ami nem gyöke P -nek, tehát r = 0 (nincs rezonancia).
Q(x) = 8, ami egy 0-adfokú polinom, tehát N = 0. Ezért R(x) = A (A jelöli a határozatlan

együtthatót).
A próbafüggvény: yp = A · e3x.
y′

p = 3Ae3x, y′′

p = 9Ae3x. Behelyetteśıtve:

9Ae3x − 3Ae3x − 2Ae3x = 8e3x, 4Ae3x = 8e3x, A = 2.

A partikuláris megoldás tehát yp(x) = 2e3x (x ∈ R).

A 2. példa jobb oldala szintén exponenciális függvény, de rezonancia is van.

2 Példa. Keressük meg az
y′′ − y′ − 2y = 9e2x

differenciálegyenlet egy megoldását.

Megoldás.

Nincs trigonometrikus szorzó, tehát µ = 0.
A rezonáló gyök: λ = 2, ami 1-szeres gyöke P -nek, tehát r = 1 (rezonancia van).
Q(x) = 9, ami egy 0-adfokú polinom, tehát N = 0. Ezért R(x) = A.
A próbafüggvény: yp = x · A · e3x.
y′

p = Ae2x + 2Axe2x, y′′

p = 4Ae2x + 4Axe2x. Behelyetteśıtve:

4Ae2x + 4Axe2x − Ae2x − 2Axe2x − 2Axe2x = 9e2x, 3Ae2x = 9e2x, A = 3.

A partikuláris megoldás tehát yp(x) = 3xe2x (x ∈ R).

A 3. példa jobb oldala ”polinom-szor exponenciális”, és nincs rezonancia.

3 Példa. Keressük meg az
y′′ − y′ − 2y = 4xex

differenciálegyenlet egy megoldását.

Megoldás.

Nincs trigonometrikus szorzó, tehát µ = 0.
A rezonáló gyök: λ = 1, ami nem gyöke P -nek, tehát r = 0 (nincs rezonancia).
Q(x) = 4x, ami egy elsőfokú polinom, tehát N = 1. Ezért R(x) = Ax + B.
A próbafüggvény: yp = (Ax + B) · ex.
y′

p = Aex + (Ax + B)ex, y′′

p = 2Aex + (Ax + B)ex. Behelyetteśıtve:

2Aex + (Ax + B)ex − Aex − (Ax + B)ex − 2(Ax + B)ex = 4xe2x.

Rendezés és együttható-összehasonĺıtás után:

Aex − 2Axex − 2Bex = 4xex, A − 2B = 0 − 2A = 4, A = −2, B = −1.

A partikuláris megoldás tehát yp(x) = (−2x − 1)ex (x ∈ R).

A 4. példa jobb oldala szintén ”polinom-szor exponenciális”, de itt van rezonancia.

3



4 Példa. Keressük meg az
y′′ − y′ − 2y = (5 − 6x)e−x

differenciálegyenlet egy megoldását.

Megoldás.

Nincs trigonometrikus szorzó, tehát µ = 0.
A rezonáló gyök: λ = −1, ami gyöke P -nek, tehát r = 1 (van rezonancia).
Q(x) = 5 − 6x, ami egy elsőfokú polinom, tehát N = 1. Ezért R(x) = Ax + B.
A próbafüggvény: yp = x · (Ax + B) · e−x = (Ax2 + Bx)e−x.
y′

p = (2Ax + B)e−x − (Ax2 + Bx)e−x,
y′′

p = 2Ae−x − (2Ax + B)e−x − (2Ax + B)e−x + (Ax2 + Bx)e−x.
Behelyetteśıtés, rendezés és együttható-összehasonĺıtás után:

2A − 3B = 5 − 6A = −6, A = 1, B = −1.

A partikuláris megoldás tehát yp(x) = x(x − 1)e−x = (x2 − x)e−x (x ∈ R).

Az 5. példa jobb oldala egy (másodfokú) polinom.

5 Példa. Keressük meg az
y′′ − y′ − 2y = 2x2 − 2x − 6

differenciálegyenlet egy megoldását.

Megoldás.

Nincs trigonometrikus szorzó, tehát µ = 0.
Exponenciális szorzó sincs, ami azt jelenti, hogy a rezonáló gyök: λ = 0. Ez nem gyöke P -nek,

tehát r = 0 (nincs rezonancia).
Q(x) = 2x2 − 2x − 6, ami egy másodfokú polinom, tehát N = 2. Ezért R(x) = Ax2 + Bx + C.
A próbafüggvény: yp = Ax2 + Bx + C.
y′

p = 2Ax + B, y′′

p = 2A. Behelyetteśıtve:

2A − 2Ax − B − 2Ax2 − 2Bx − 2C = 2x2 − 2x − 6.

Rendezés és együttható-összehasonĺıtás után:

2A − B − 2C = −6 − 2A − 2B = −2 − 2A = 2, A = −1, B = 2, C = 1.

A partikuláris megoldás tehát yp(x) = −x2 + 2x + 1 (x ∈ R).

A 6. példában megjelenik a trigonometrikus rész. Mivel a karakterisztikus polinom gyökei valósak,
ezért rezonanciás példa nem adható. A jobb oldal egy trigonometrikus függvény.

6 Példa. Keressük meg az
y′′ − y′ − 2y = 130 cos 3x

differenciálegyenlet egy megoldását.

Megoldás.

Van trigonometrikus szorzó, µ = 3.
Exponenciális szorzó ”nincs”, ezért a rezonáló gyök: λ + µi = 0 + 3i = 3i, ami nem gyöke P -nek,

tehát r = 0 (nincs rezonancia).
Q(x) = 130, ami egy 0-adfokú polinom, tehát N = 0. Ezért R1(x) = A és R2(x) = B.
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A próbafüggvény: yp = A cos 3x + B sin 3x.
y′

p = −3A sin 3x + 3B cos 3x, y′′

p = −9A cos 3x − 9B sin 3x. Behelyetteśıtve:

−9A cos 3x − 9B sin 3x + 3A sin 3x − 3B cos 3x − 2A cos 3x − 2B sin 3x = 130 cos 3x.

Rendezés és együttható-összehasonĺıtás után:

−11B + 3A = 0 − 11A − 3B = 130, A = −11, B = −3.

A partikuláris megoldás tehát yp(x) = −11 cos 3x − 3 sin 3x (x ∈ R).
Figyeljük meg, hogy bár a diff. egyenlet jobb oldalán csak cosinusos tag szerepelt, a megoldásban

sinusos és cosinusos tag is van.

A 7. példa jobb oldala ”exponenciális-szor trigonometrikus”.

7 Példa. Keressük meg az
y′′ − y′ − 2y = −10ex sin x

differenciálegyenlet egy megoldását.

Megoldás.

Van trigonometrikus szorzó, µ = 1.
Exponenciális szorzó is van (λ = 1), a rezonáló gyök: λ+µi = 1+ i, ami nem gyöke P -nek, tehát

r = 0 (nincs rezonancia).
Q(x) = −10, ami egy 0-adfokú polinom, tehát N = 0. Ezért R1(x) = A és R2(x) = B.
A próbafüggvény: yp = ex · (A cos x + B sin x).
y′

p = ex((A + B) cos x + (B − A) sin x), y′′

p = ex(2B cos x − 2A sin x). Behelyetteśıtve:

ex(2B cos x − 2A sin x) − ex((A + B) cos x + (B − A) sin x) − 2ex · (A cos x + B sin x) = −10ex sin x.

Rendezés és együttható-összehasonĺıtás után:

B − 3A = 0 − A − 3B = −10, A = 1, B = 3.

A partikuláris megoldás tehát yp(x) = ex(cos x + 3 sin x) (x ∈ R).

A befejező három példában tehát a differenciáloperátor nem ugyanaz, mint az eddigi, és az összes
megoldást keressük.

Az 8. példa arra mutat rá, hogy a 0-val való rezonanciát nem könnyű észrevenni (u. is ”hiányzik”
az exponenciális szorzó, melynek kitevőjében van a rezonáló gyök valós része).

8 Példa. Oldjuk meg az
y′′ − y′ = 2x

differenciálegyenletet.

Megoldás.

Először a homogén egyenletet oldjuk meg. A karakterisztikus polinom:

P (z) = z2 − z,

melynek 2 db egyszeres valós gyöke van: λ1 = 0 és λ2 = 1.
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Ennek alapján a homogén egyenlet alapmegoldásai (az alaprendszer):

y1(x) = e0x = 1, y2(x) = ex (x ∈ R)

Térjünk rá az inhomogén egyenletre.
Nincs trigonometrikus szorzó, tehát µ = 0.
Exponenciális szorzó sincs, ami azt jelenti, hogy a rezonáló gyök: λ = 0. Ez azonban gyöke

P -nek, tehát r = 1 (van rezonancia).
Q(x) = x, ami egy elsőfokú polinom, tehát N = 1. Ezért R(x) = Ax + B.
A próbafüggvény: yp = x · (Ax + B) · e0x = Ax2 + Bx.
y′

p = 2Ax + B, y′′

p = 2A. Behelyetteśıtve:

2A − 2Ax − B = 2x.

Együttható-összehasonĺıtás után:

2A − B = 0 − 2A = 2, A = −1, B = −2.

A partikuláris megoldás tehát yp(x) = −x2 − 2x (x ∈ R).
A differenciálegyenlet összes megoldása:

y(x) = −x2 − 2x + c1 + c2e
x (c1, c2 ∈ R; x ∈ R).

Érdemes kipróbálni, hogy ha nem vesszük észre a rezonanciát, akkor a helytelen yp = Ax + B

próbafüggvényhez jutunk, ami semilyen A, B esetén sem megoldás.

A 9. példában a rezonáló gyök tiszta képzetes szám:

9 Példa. Oldjuk meg az
y′′ + 4y = 8 cos 2x

differenciálegyenletet.

Megoldás.

Először a homogén egyenletet oldjuk meg. A karakterisztikus polinom:

P (z) = z2 + 4,

melynek egy konjugált komplex gyökpárja van: λ1 = 2i és λ2 = −2i.
Ennek alapján a homogén egyenlet valós értékű alapmegoldásai (a valós alaprendszer):

y1(x) = cos 2x, y2(x) = sin 2x (x ∈ R)

Térjünk rá az inhomogén egyenletre.
Van trigonometrikus szorzó, µ = 2.
Exponenciális szorzó sincs, ami azt jelenti, hogy a rezonáló gyök: λ + µi = 0 + 2i = 2i. Ez gyöke

P -nek, tehát r = 1 (van rezonancia).
Q(x) = 8, ami egy 0-adfokú polinom, tehát N = 0. Ezért R1(x) = A, R2(x) = B.
A próbafüggvény: yp = x · (A cos 2x + B sin 2x).
Deriválás, behelyetteśıtés, és együttható-összehasonĺıtás után:

A = 0, B = 2

eredményre jutunk. A partikuláris megoldás tehát yp(x) = 2x sin 2x (x ∈ R).
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A differenciálegyenlet összes megoldása:

y(x) = 2x sin 2x + c1 cos 2x + c2 sin 2x (c1, c2 ∈ R; x ∈ R).

Az utolsó, a 10. példában kétszeres rezonancia van.

10 Példa. Oldjuk meg az
y′′ + 4y′ + 4y = 6 · e−2x

differenciálegyenletet.

Megoldás.

Először a homogén egyenletet oldjuk meg. A karakterisztikus polinom:

P (z) = z2 + 4z + 4,

melynek 1 db kétszeres valós gyöke van: λ1 = λ2 = −2.
Ennek alapján a homogén egyenlet alapmegoldásai (az alaprendszer):

y1(x) = e−2x, y2(x) = x · e−2x (x ∈ R)

Térjünk rá az inhomogén egyenletre.
Nincs trigonometrikus szorzó, tehát µ = 0.
A rezonáló gyök: λ = −2. Ez kétszeres gyöke P -nek, tehát r = 2 (ún. kétszeres rezonancia van).
Q(x) = 6, ami egy 0-adfokú polinom, tehát N = 0. Ezért R(x) = A.
A próbafüggvény: yp = x2 · A · e−2x.
y′

p = (2Ax − 2Ax2)e−2x, y′′

p = (2A − 8Ax + 4Ax2)e−2x. Behelyetteśıtve:

(2A − 8Ax + 4Ax2 + 8Ax − 8Ax2 + 4Ax2)e−2x = 6e−2x.

Rendezés és együttható-összehasonĺıtás után:

2A = 6, A = 3.

A partikuláris megoldás tehát yp(x) = 3x2 · e−2x (x ∈ R).
A differenciálegyenlet összes megoldása:

y(x) = 3x2e−2x + c1e
−2x + c2xe−2x (c1, c2 ∈ R; x ∈ R).

Érdemes kipróbálni, hogy ha nem vesszük figyelembe a kétszeres rezonanciát, akkor az yp = Ae−2x

és az yp = Axe−2x helytelen próbafüggvények semilyen A esetén sem adnak megoldást.
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