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1. A differenciálhatóság és a derivált fogalma

Emlékeztetünk az egyváltozós különbségi hányados fogalmára, melyet a konvex függvények tárgyalása során vezettünk
be: ha f valós változós valós értékű függvény és u ∈ D(f), akkor a D(f) \ {u} halmazon értelmezett

x 7→ Kf
u (x) :=

f(x) − f(u)

x − u

függvényt az f függvény u ponthoz tartozó különbségihányados-függvényének nevezzük.

1.1. Definíció (belső pont). Az u valós számról akkor mondjuk, hogy belső pontja a H számhalmaznak, ha van
olyan r pozitív szám, melyre (u − r, u + r) ⊂ H. A H számhalmaz belső pontjainak halmazát az intH jelsorozattal
jelöljük.

1.2. Példa. Könnyen belátható, hogy intQ = int(R \ Q) = ∅; továbbá, hogy ha I olyan nem-elfajuló intervallum,
amelynek bal végpontja α, jobb végpontja β, akkor int I = (α, β).

1.3. Megjegyzés. Nyilvánvaló, hogy ha u belső pontja a H számhalmaznak, akkor u torlódási pontja H-nak, sőt a
H \ {u} számhalmaznak is.

1.4. Definíció. Egy G számhalmazról akkor mondjuk, hogy nyílt, ha G minden eleme belső pontja G-nek.

1.5. Megjegyzés. Könnyen igazolható, hogy egy számhalmaz pontosan akkor nyílt, ha unióhalmaza egy páronként
diszjunkt nyílt intervallumokból álló megszámlálható halmazrendszernek. Speciálisan persze minden nyílt intervallum
is nyílt halmaz.

1.6. Definíció (derivált, differenciálhatóság egy pontban). Ha u belső pontja az f függvény értelmezési tar-
tományának és létezik a

lim
u

Kf
u = lim

x→u

f(x) − f(u)

x − u

határérték, akkor ezt a határértéket az f függvény u-beli deriváltjának, vagy differenciálhányadosának nevezzük és az
f ′(u) szimbólummal jelöljük. Ha ráadásul ez a határérték véges, akkor azt mondjuk, hogy az f függvény differenciálható
(vagy deriválható) az u helyen.

A derivált fogalmának bevezetését elsősorban a fizika és a geometria igényelte. Ezzel kapcsolatban érdemes végig-
gondolni a következő két megjegyzést.

1.7. Megjegyzés (a derivált geometriai jelentése). Egyszerű ábra készítésével könnyen meggyőződhetünk arról,
hogy a Kf

u (x) szám a függvénygrafikon (x, f(x)) és (u, f(u)) pontjain áthaladó (szelő) egyenes iránytangensével egyenlő.
A függvénygrafikonhoz annak (u, f(u)) pontjában húzott érintő egyenesen kézenfekvő azt az egyenest érteni, amely
egyrészt áthalad ezen a ponton, másrészt f ′(u) ∈ R esetén iránytangense f ′(u)-vel egyenlő, f ′(u) /∈ R esetén pedig az
„y-tengellyel” párhuzamos.

1.8. Megjegyzés (pillanatnyi sebesség, mint derivált). Tegyük fel, hogy egy szabadesést végző tömegpontnak
valamely vízszintes síktól számított előjeles távolsága a t időpontban f(t) := h− 1

2 ·g · t2 (h adott valós szám). Ennek a
tömegpontnak az u és t(6= u) időpontok által meghatározott időintervallumra vonatkozó (előjeles) átlagsebessége éppen
a Kf

u (t) = − g
2 · (t + u) számmal egyenlő. A tömegpontnak az u időpontban vett pillanatnyi sebességén kézenfekvő

a limu Kf
u = −g · u = f ′(u) számot érteni. Hasonló a helyzet általában is akkor, ha a tömegpont egyenesvonalú

mozgást végez: azt az egyenest, melyen a mozgását végzi, számegyenesnek képzelve, a tömegpont helye minden egyes t
időpontban egyetlen f(t) számmal azonosítható, a [t, u], illetve [u, t] időintervallumra vonatkozó átlagsebességen most
is a Kf

u (t) számot, az u időponthoz tartozó pillanatnyi sebességen most is az f ′(u) számot értik — feltéve persze, hogy
az utóbbi létezik. Ez a gondolatmenet még tovább általánosítható: ha egy fizikai mennyiség időben változik, de minden
egyes t időpontban egyetlen f(t) számmal adható meg, akkor e fizikai mennyiség változásának pillanatnyi sebességét
hasonlóan értelmezhetjük.
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1.9. Példa (a konstans függvények differenciálhatósága). Ha f tetszőleges számhalmazon értelmezett konstans
függvény és u ∈ intD(f), akkor — lévén a Kf

u függvény azonosan nulla — f differenciálható az u helyen és f ′(u) = 0.

1.10. Példa (a pozitív egész kitevőjű hatványfüggvények differenciálhatósága). Bármely n pozitív egész és
u ∈ R esetén az idn függvény differenciálható az u helyen és ott a deriváltja n · un−1-nel egyenlő, hiszen az

x 7→ xn − un

x − u
=

n−1
∑

k=0

xk · un−1−k

különbségihányados-függvény olyan n tagú összeg, amelynek minden egyes tagja tart az un−1 számhoz.

1.11. Példa (az expc és logc függvények differenciálhatósága). Az előző fejezet „Néhány nevezetes határér-
ték” című szakaszában bizonyítottak szerint minden 1-től különböző c pozitív szám, minden a ∈ R+ és minden u ∈ R

esetén az expc függvény differenciálható az u helyen, ott a deriváltja ln c · cu, továbbá a logc függvény differenciálható
az a helyen és ott a deriváltja (1/ ln c) · (1/a).

1.12. Definíció (bal és jobb oldali derivált, ill. differenciálhatóság). Legyen f valós változós valós értékű
függvény és u ∈ D(f). Ha létezik olyan r pozitív szám, melyre (u − r, u] ⊂ D(f) [illetve [u, u + r) ⊂ D(f)] és a
Kf

u függvénynek van bal [jobb] oldali határértéke az u helyen, akkor azt az f függvény u helyen vett bal [jobb] oldali
deriváltjának nevezzük és az f ′

−(u) [f ′
+(u)] szimbólummal jelöljük. Ha az f függvénynek az u helyen van bal [jobb]

oldali deriváltja és az véges, akkor azt mondjuk, hogy f balról [jobbról] differenciálható az u helyen.

1.13. Definíció (differenciálható függvény). Ha az f függvény értelmezési tartományának minden pontja belső
pont (D(f) ⊂ intD(f)) és f az értelmezési tartományának minden egyes pontjában differenciálható, akkor f-et rövi-
den differenciálhatónak nevezzük. Ugyancsak differenciálhatónak nevezünk egy intervallumon értelmezett f függvényt
abban az esetben is, ha – az intervallum bal végpontját a-val, jobb végpontját b-vel jelölve – f az (a, b) intervallum
minden pontjában differenciálható, továbbá a ∈ D(f) esetén az a pontban jobbról és b ∈ D(f) esetén a b pontban balról
differenciálható.

Egy függvény valamely pontban vett deriváltjának a jelölése azt sugallja, hogy azt egy másik függvénynek az adott
pontban vett helyettesítési értékeként szokás felfogni.

1.14. Definíció (derivált függvény). Ha egy f függvény értelmezési tartományának van legalább egy olyan belső
pontja, melyben f differenciálható, akkor az összes ilyen pontok H halmazán értelmezhetjük az f ′ : H → R függvényt,
ezt nevezzük az f derivált függvényének. Hasonlóan értelmezhető a bal oldali és jobb oldali derivált függvény is.

1.15. Tétel (adott pontbeli differenciálhatóság ekvivalens megfogalmazásai). Legyen f egyváltozós valós
függvény, u ∈ intD(f) és A ∈ R; ekkor a következő négy kijelentés egymással egyenértékű: 1. f differenciálható az u
helyen és f ′(u) = A,

2. lim
x→u

f(x) − f(u) − A · (x − u)

x − u
= 0,

3. lim
x→u

f(x) − f(u) − A · (x − u)

|x − u| = 0,

4. van olyan Cf
u : D(f) → R függvény, amely folytonos az u helyen, ott a helyettesítési értéke A, s amelyre minden

x ∈ D(f) esetén
f(x) − f(u) = Cf

u (x) · (x − u).

Bizonyítás. Az, hogy a Kf
u különbségihányados-függvény határértéke létezik és A-val egyenlő, egyenértékű azzal,

hogy az x 7→ Kf
u (x) − A függvény határértéke az u helyen 0, hiszen egy y számra vonatkozóan „y ∈ B(A, ε)” és

„y − A ∈ B(0, ε)” egyaránt azt jelenti, hogy |y − A| < ε. Ezzel az 1. és 2. kijelentések egyenértékűségét igazoltuk.
A 2. és 3. állítások egyenértékűsége abból a két tényből következik, hogy egyrészt egy függvény határértéke valamely
u helyen pontosan akkor 0, ha ott az abszolútértékének a határértéke 0 (|y − 0| = ||y| − 0|), másrészt a 2.-ben, illetve
3.-ban szereplő függvényeknek ugyanaz az abszolútértéke.
1.⇒4. Az előző fejezetnek azt a tételét alkalmazhatjuk, éspedig az (f, v) := (Kf

u , A) párra, amelyik a véges helyen
vett véges függvény-határértéket a folytonossággal fogalmazza meg. Ebből azt kapjuk, hogy a Kf

u függvénynek az a
D(f)-re való kiterjesztése, amely az u helyen az A értéket veszi fel, folytonos az u helyen. Ez a függvény – és csakis
ez – játszhatja Cf

u szerepét.
4.⇒1. Az előző fejezet imént idézett tételének ezúttal a másik felét alkalmazhatjuk a különbségihányados-függvényre:
az u pontban folytonos kiterjesztés létezéséből következik, hogy létezik a limu Kf

u és egyenlő e kiterjesztésnek az u
helyen vett helyettesítési értékével. ¤
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1.16. Megjegyzés. A 4. állításra a továbbiakban mint a differenciálhatóság Carathéodory-féle definíciójára fogunk
hivatkozni. A 3. állításnak csak annyi lesz a szerepe, hogy motivációul fog szolgálni a többváltozós függvények diffe-
renciálhatósága fogalmának bevezetésénél, míg a 2. állítás csupán arra szolgált, hogy (még) könnyebbé tegye az 1. és
3. állítások egyenértékűségének bizonyítását.

1.17. Megjegyzés. Könnyen ellenőrizhető, hogy a tétel – értelemszerű változtatásokkal – átvihető az egy oldali dif-
ferenciálhatóságra, illetve deriváltra is. Hasonló a helyzet az alábbi tétellel is: a bal [jobb] oldali differenciálhatóságból
következik a bal [jobb] oldali folytonosság.

1.18. Tétel (a folytonosság, mint a differenciálhatóság szükséges feltétele). Ha f differenciálható az u ∈
intD(f) pontban, akkor ott folytonos is.

Bizonyítás. Felhasználva az előző tétel 1.⇒4. állítását, az f függvény előállítható a konstans — tehát folytonos —
x 7→ f(u), és az u helyen szintén folytonos x 7→ Cf

u (x) · (x − u) függvény összegeként. ¤

1.19. Megjegyzés (a folytonosság nem elegendő a differenciálhatósághoz). A tétel megfordítása nem igaz.
Például az abszolútérték-függvény folytonos a 0 helyen (miként minden más helyen is, lásd az előző fejezetet), de a
0 ponthoz tartozó különbségihányados-függvényének nincs határértéke a 0 helyen, hiszen ha lenne, akkor az ott a bal
és a jobb oldali határértékével is egyenlő lenne, viszont ez az utóbbi két határérték nem egyenlő egymással: az előbbi
−1, az utóbbi +1. Megjegyezzük továbbá, hogy ismeretesek példák olyan folytonos f : R → R függvényre is, amelyek
egyetlen pontban sem differenciálhatók.

2. Differenciálhatóság és az alapműveletek

2.1. Tétel (az összeg, a különbség és a szorzat differenciálási szabálya). Tegyük fel, hogy a valós változós
valós értékű f és g egyváltozós függvények differenciálhatók az u helyen. Ekkor
I. f + g differenciálható az u helyen és (f + g)′(u) = f ′(u) + g′(u),
II. f − g differenciálható az u helyen és (f − g)′(u) = f ′(u) − g′(u),
III. f · g differenciálható az u helyen és (f · g)′(u) = f ′(u) · g(u) + f(u) · g′(u).

Bizonyítás.
Ha az u pont rf , illetve rg sugarú környezete része az f , illetve g függvény értelmezési tartományának, akkor a

min{rf , rg} sugarú környezete része a két értelmezési tartomány metszetének, ami egyenlő az összeg, a különbség és
a szorzat értelmezési tartományával. Ezek szerint u az utóbbinak is belső pontja.

Mármost a tétel I. (II.) állítása az összegfüggvény (különbségfüggvény) határértékéről szóló elemi tételből követ-
kezik, hiszen – amint az a különbségihányados-függvény definíciója alapján könnyen ellenőrizhető – Kf+g

u = Kf
u +Kg

u

(Kf−g
u = Kf

u − Kg
u).

III. Minden x ∈ D(f) ∩ D(g) \ {u} esetén

f(x)g(x) − f(u)g(u)

x − u
=

f(x)g(x) − f(u)g(x) + f(u)g(x) − f(u)g(u)

x − u
=

[f(x) − f(u)]g(x) + f(u)[g(x) − g(u)]

x − u
, (1)

vagyis Kfg
u = gKf

u + f(u)Kg
u. Ezek után az összeg és a szorzat határértékéről szóló tételekre hivatkozhatunk, hiszen

g differenciálható az u pontban, így ott folytonos is és u ∈ D(g)′, ezért limu g = g(u). ¤

2.2. Tétel (a hányados differenciálási szabálya). Tegyük fel, hogy az f és g függvények differenciálhatók egy
olyan u pontban, ahol a g függvény értéke nem nulla. Ekkor f/g is differenciálható az u helyen és

(

f

g

)′

(u) =
f ′(u) · g(u) − f(u) · g′(u)

(g(u))
2 . (2)

Bizonyítás. Annak igazolása céljából, hogy u ∈ intD(f/g), két szám kisebbikeként nyerhetünk egy az (u−r, u+r) ⊂
D(f/g) feltételnek eleget tevő r pozitív számot. Abból, hogy f differenciálható az u helyen, adódik egy olyan rf pozitív
szám létezése, melyre (u − rf , u + rf ) ⊂ D(f). Másrészt abból, hogy g differenciálható az u helyen, következik, hogy
g ott folytonos is, az utóbbiból – lévén g(u) 6= 0 – az, hogy g lokálisan előjeltartó az u pontban, ezért van olyan rg

pozitív szám is, melyre minden x ∈ B(u, rg) esetén x ∈ D(g) és g(x) 6= 0. Ezek után világos, hogy rf és rg kisebbike
olyan pozitív szám, amilyet kerestünk. Mármost minden x ∈ D(f/g) esetén

Kf/g
u (x) =

f(x)
g(x) −

f(u)
g(u)

x − u
=

g(u)f(x) − f(u)g(x)

g(x)g(u)(x − u)
=
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g(u)[f(x) − f(u)] − f(u)[g(x) − g(u)]

g(x)g(u)(x − u)
=

g(u)Kf
u (x) − f(u)Kg

u(x)

g(x)g(u)
;

a differenciálhatósági feltételek miatt limu Kf
u = f ′(u), limu Kg

u = g′(u) és limu g = g(u), ezért a függvényhatárérték
és az algebrai alapműveletek közti kapcsolatokról szóló elemi tételekből éppen a kívánt eredményt kapjuk. ¤

2.3. Megjegyzés. Ennek a szakasznak a tételeiből a 1.9, 1.10. Példák felhasználásával adódik, hogy minden racionális
törtfüggvény differenciálható.

2.4. Megjegyzés. Az előző két tétel nyilván érvényben marad akkor is, ha differenciálhatóság illetve derivált helyett
mindenütt bal [jobb] oldali differenciálhatóságot illetve bal [jobb] oldali deriváltat írunk.

3. A kompozíció és az inverz függvény differenciálhatósága

3.1. Tétel (az összetett függvény differenciálási szabálya). Legyenek f és g valós változós valós értékű függ-
vények. Ha g differenciálható az u helyen és f differenciálható a v := g(u) helyen, akkor f ◦ g is differenciálható az
u helyen, és (f ◦ g)′(u) = f ′(v) · g′(u).

Bizonyítás. Először azt igazoljuk, hogy u belső pontja f ◦ g értelmezési tartományának. f differenciálható a v
helyen, ezért van olyan ε pozitív szám, melyre (v − ε, v + ε) ⊂ D(f). g differenciálható az u helyen, így ott folytonos
is, ezért van olyan r pozitív szám, melyre minden x ∈ (u − r, u + r) esetén x ∈ D(g) és |g(x) − g(u)| < ε, ennélfogva
minden x ∈ (u − r, u + r) esetén x ∈ D(f ◦ g).

A differenciálhatóság Carathéodory-féle definícióját fogjuk használni. Ha x a D(f ◦ g) halmaz tetszőleges eleme,
akkor

f(g(x)) − f(g(u)) = Cf
v (g(x))[g(x) − g(u)] = Cf

v (g(x))Cg
u(x)(x − u),

tehát ha bevezetjük a Cf◦g
u (x) := Cf

v (g(x))Cg
u(x) definíciót, akkor az 1.15. Tétel alapján erről a Cf◦g

u függvényről két
dolgot kell bizonyítani: 1. folytonos az u helyen, 2. helyettesítési értéke az u helyen f ′(v) · g′(u). A két állítás közül
az előbbinek a bizonyítása céljából a 1.18, 1.15. tételekre kell hivatkoznunk, továbbá a(z egy-egy pontban) folytonos
függvények kompozíciójáról, illetve szorzatáról tanultakra, míg az utóbbi a 1.15. tételből következik. ¤

3.2. Állítás (a hatványfüggvények deriválhatósága a pozitív helyeken). Ha α ∈ R és u ∈ R+, akkor az idα

függvény differenciálható az u helyen, és ott a deriváltja α · uα−1-nel egyenlő.

Bizonyítás. Alkalmazzuk a most bizonyított tételt az f := exp, g(x) := α · lnx szereposztással: idα = f ◦ g
differenciálható és deriváltja az u helyen exp(α · lnu) · (α/u) = uα · (α/u) = α · uα−1. ¤

3.3. Megjegyzés. Könnyen igazolható, hogy az idα függvénynek minden nemnegatív α kitevő esetén van deriváltja
a 0 helyen is, éspedig α = 0 és α > 1 esetén 0, α ∈ (0, 1) esetén +∞, míg α = 1 esetén 1.

3.4. Tétel (az inverz függvény deriválási szabálya). Legyen I nemelfajuló intervallum, g : I → R folytonos
szigorúan monoton függvény, és tegyük fel, hogy egy v ∈ I valós számra létezik a limv Kg

v =: A határérték. Ekkor az
f := g−1 függvény u := g(v) ponthoz tartozó különbségihányadosának is létezik a határértéke az u helyen, éspedig

B := lim
u

Kf
u =



















1

A
, ha A ∈ R \ {0},

0, ha A /∈ R,
+∞, ha A = 0 és g szigorúan monoton növő,
−∞, ha A = 0 és g szigorúan monoton fogyó.

Ha v ∈ int I (következésképp létezik a g′(v) derivált), akkor létezik az f ′(u) derivált is, ha v bal végpontja I-nek és g
szigorúan növő, vagy v jobb végpontja I-nek és g szigorúan fogyó, akkor B = f ′

+(u), ha v jobb végpontja I-nek és g
szigorúan növő, vagy v bal végpontja I-nek és g szigorúan fogyó, akkor B = f ′

−(u).

Bizonyítás. Bolzano tételének következménye szerint J := R(g) = D(f) is intervallum. Ennek nincs izolált pontja,
így az u-beli határérték létezésének kérdése felvethető. f intervallumon értelmezett szigorúan monoton függvény
inverze, ezért folytonos, így u ∈ J ′ miatt f(u) = limu f . És minthogy minden x ∈ J \ {u} esetén

f(x) − f(u)

x − u
=

1
x − u

f(x) − f(u)

=
1

g(f(x)) − g(f(u))

f(x) − f(u)

=
1

Kg
v (f(x))

,
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azaz Kf
u = (1/Kg

v )◦f , továbbá f – a szigorú monotonitása miatt – csak a v helyen veszi fel az u értéket, a kompozíció
határértékéről szóló második tételünk szerint elég azt bizonyítani, hogy az 1/Kg

v függvény határértéke a v helyen a
négy esetben rendre 1/A, 0, +∞, illetve −∞. E négy állítás közül az első közvetlenül a reciprok határértékéről szóló
tételből következik. A második, a harmadik és a negyedik állítás bizonyítása céljából csupán azt kell meggondolnunk,
hogy egyrészt a Kg

v függvény minden értéke növő g esetén pozitív, csökkenő g esetén negatív, másrészt növekedő
g függvény esetében a 0 < 1/Kg

v (y) < ε egyenlőtlenség-pár egyenértékű az 1/ε < Kg
v (y) egyenlőtlenséggel, fogyó g

esetén a −ε < 1/Kg
v (y) < 0 egyenlőtlenség-pár azzal, hogy Kg

v (y) < −1/ε.
A kiegészítő állítások abból következnek, hogy szigorúan monoton növő/fogyó függvény az értelmezési tartomány
legkisebb elemét az értékkészlet legkisebb/legnagyobb elemébe, az értelmezési tartomány legnagyobb elemét pedig
az értékkészlet legnagyobb/legkisebb elemébe viszi, s ha ráadásul a függvény intervallumon értelmezett folytonos
függvény, akkor az értékkészlet is intervallum. A v ∈ int I esetben ezeket g két leszűkítésére kell alkalmazni (annak
bizonyítása céljából, hogy u is belső pontja J-nek), a leszűkítések értelmezési tartománya I ∩ (−∞, v], illetve I ∩
[v, +∞), a többi esetben magára a g függvényre (annak bizonyítása céljából, hogy u bal, illetve jobb végpontja a J
intervallumnak). ¤

3.5. Tétel (a hiperbolikus függvények deriváltjai). A hiperbolikus függvények differenciálhatók; minden u ∈ R

esetén I. sh′(u) = ch u, II. ch′(u) = sh u, III. th′(u) = 1/ch2 u;
IV. minden 0-tól különböző u ∈ R esetén cth′(u) = −1/sh2 u.

Bizonyítás. A 3.1. Tétel szerint az x 7→ e−x függvény differenciálható és a deriváltja az u helyen −e−u. Ebből,
a 2.1. Tételből, és az exp′(u) = eu egyenlőségből következik az I. és a II. állítás. Az utóbbiakból III. és IV. úgy
következik, hogy először alkalmazzuk az (sh, ch), illetve a (ch, sh) függvénypárra a hányados differenciálhatóságáról
szóló tételt, majd az így nyert formula egyszerűbbé tétele céljából a ch2 x−sh2 x = 1 azonosságot. ¤

Eltekintve attól, hogy az arch függvény az 1 helyen nem differenciálható, a hiperbolikus függvények inverze is
differenciálható az értelmezési tartományuk minden egyes pontjában:

3.6. Tétel (az „area” függvények deriváltjai). I. Minden valós u és minden 1-nél nagyobb x esetén

arsh′(u) =
1√

1 + u2
, arch′(x) =

1√
x2 − 1

;

II. arch′
+(1) = +∞, III. minden u ∈ (−1, 1) és minden x ∈ R \ [−1, 1] esetén

arth′(u) =
1

1 − u2
, ar cth′(x) =

1

1 − x2
.

Bizonyítás. A 3.4. Tételt alkalmazzuk, éspedig egymás után ötször.
I. Először a g := sh, v := arshu szereposztással:

1

arsh′(u)
= ch(arshu) =

√

1 + sh2(arshu) =
√

1 + u2,

majd térjünk át reciprokokra; másodszor a g := ch |[1,+∞), v := archx szereposztással:

1

arch′(x)
= sh(archx) =

√

ch2(archx) − 1 =
√

x2 − 1.

II. Harmadszor a g := ch |[1,+∞), v := 0 szereposztással (most a g szigorúan monoton növő és g′(v) = 0).
III. Negyedszer legyen g := th és v := arthu:

1

arth′(u)
=

1

ch2 (arthu) = 1 − th2(arthu) = 1 − u2,

az utolsó előtti egyenlőséget úgy kaptuk, hogy a ch2 v − sh2 v = 1 egyenletből kifejeztük 1/ ch2 v-t.
Végül legyen g := cth és v := ar cthu:

1

ar cth′(u)
= − 1

sh2 (ar cthu) = 1 − cth2(ar cth u) = 1 − u2,

ezúttal a ch2 v − sh2 v = 1 egyenletből nem az 1/ ch2 v-t, hanem a −1/ sh2 v-t fejeztük ki. ¤
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4. Pontbeli (szigorú) növekedés és fogyás, a szélsőérték szükséges feltétele

A következő fogalmakat elsősorban azért vezetjük be, hogy a differenciálható függvények monotonitásának vizsgálata
során tegyenek jó szolgálatot.

4.1. Definíció (Adott pontbeli (szigorú) növekedés és fogyás). Legyen f egyváltozós valós függvény és u ∈
D(f) ∩ D(f)′. Azt mondjuk, hogy f az u pontban a) növő, b) fogyó, c) szigorúan növő, d) szigorúan fogyó, ha
van olyan δ pozitív szám, amelyre minden x ∈ D(f) ∩ Ḃ(u, δ) esetén a Kf

u (x) helyettesítési érték a) nemnegatív, b)
nempozitív, c) pozitív, d) negatív.

4.2. Megjegyzés. A szorzás, illetve osztás előjelszabályaiból következik, hogy az iménti definícióban a δ számra vo-
natkozóan megfogalmazott feltétel egyenértékű azzal, hogy minden olyan u-nál kisebb x és u-nál nagyobb y számra,
amelyek benne vannak a D(f) ∩ Ḃ(u, δ) halmazban, teljesülnek az a) esetben az f(x) ≤ f(u) ≤ f(y), a b) esetben az
f(x) ≥ f(u) ≥ f(y), a c) esetben az f(x) < f(u) < f(y), végül a d) esetben az f(x) > f(u) > f(y) egyenlőtlensé-
gek. Hasonlóképpen világos, hogy ha f monoton növő, monoton fogyó, szigorúan monoton növő, illetve szigorúan
monoton fogyó, akkor minden egyes u ∈ D(f)∩D(f)′ pontban is növő, fogyó, szigorúan növő, illetve szigorúan fogyó.
Viszont abból, hogy egy f függvény egy u pontban szigorúan növő, nem következik, hogy volna az u pontnak olyan
K környezete, amelyre az f |K függvény monoton volna. Legyen például u := 0 és f az a függvény, amely a 0-hoz
a 0-t, a 0-tól különböző x számokhoz az x · (2 + sin 1

x ) számot rendeli. Könnyen belátható, hogy ez a függvény a 0
pontban lokálisan növő. Azt, hogy ez a függvény a 0 szám egyetlen környezetében sem monoton növő, a következő
szakasz egyik tételének felhasználásával lehet igazolni: például azt lehet igazolni, hogy minden pozitív egész n esetén
megadható olyan δn pozitív szám, hogy az xn := 1/(2nπ) szám δn sugarú környezetében minden x-re f ′(x) < 0, s
emiatt az f függvénynek a B(xn, δn) intervallumra való leszűkítése szigorúan monoton fogyó. Egyszerűbb ellenpélda:
f : (−1, 1) → R, f(0) := 0, minden x ∈ (−1, 1) \ {0} esetén f(x) := ctg x.

4.3. Tétel (differenciálható függvény pontbeli növekedésének/fogyásának a feltételei). Legyen f valós
változós valós értékű függvény, u ∈ D(f) ∩ D(f)′, és tegyük fel, hogy létezik a limu Kf

u =: A határérték. I. Ha f az u
pontban növő [fogyó], akkor A ≥ 0 [A ≤ 0]; II. ha A > 0 [A < 0], akkor f az u pontban szigorúan növő [fogyó].

Bizonyítás. Mind a négy állítás közvetlen következménye a függvényhatárérték és rendezés kapcsolatairól szóló
tételnek. ¤

4.4. Definíció (lokális, illetve abszolút szélsőértékek). Legyen f egyváltozós valós függvény és u ∈ D(f). Az a
kijelentés, hogy az f függvénynek az u helyen lokális minimuma [maximuma] van, a következőt jelenti: van olyan δ
pozitív szám, melyre minden x ∈ D(f) ∩ B(u, δ) esetén f(x) ≥ f(u) [f(x) ≤ f(u)]. Az a kijelentés, hogy f -nek az u
helyen abszolút minimuma [maximuma] van, azt jelenti, hogy minden x ∈ D(f) esetén f(x) ≥ f(u) [f(x) ≤ f(u)]. Az
a kijelentés, hogy az f függvénynek az u helyen abszolút [lokális] szélsőértéke van, azt jelenti, hogy f-nek az u helyen
abszolút [lokális] minimuma, vagy maximuma van. Ha a lokális minimum [maximum] definíciójában B(u, δ) helyett
Ḃ(u, δ)-t és a ≥ helyett a > jelet [≤ helyett a < jelet] írjuk, akkor kapjuk a szigorú lokális minimum [maximum]
definícióját. Hasonló értelemben élesíthető az abszolút minimum [maximum] fogalma is: a szigorú abszolút minimum
[maximum] definíciójában is kizárjuk az f(x) = f(u) egyenlőség teljesülését az u-tól különböző x-ekre.

4.5. Megjegyzés. Sokan vannak, akik a lokális szélsőérték definíciójában megkövetelik az u ∈ intD(f) feltétel telje-
sülését is.

4.6. Tétel (a lokális szélsőérték elsőrendű szükséges feltétele). Ha az f függvénynek lokális szélsőértéke van
egy olyan u pontban, ahol f -nek van deriváltja, akkor f ′(u) = 0.

Bizonyítás. Ha f ′(u) 6= 0 volna, akkor az előző tétel II. állítása szerint f az u pontban szigorúan növő, vagy fogyó
volna, de akkor – minthogy f ′(u) létezése miatt u ∈ intD(f), – f az u pont minden egyes környezetében felvenne
f(u)-nál kisebb, és f(u)-nál nagyobb értékeket is. ¤

A legutóbb bizonyított tételben a lokális szélsőértéknek valóban csak szükséges feltételét adtuk, másszóval az
f ′(u) = 0 feltétel valóban nem elegendő ahhoz, hogy f -nek az u helyen lokális szélsőértéke legyen. Egyszerű ellenpélda:
f := id3, u = 0.

Ráadásul léteznek olyan differenciálható f : R → R függvények is, amelyeknek a deriváltja például az u = 0 helyen
nulla, de a 0 pont nem lokális szélsőértékhelye sem az f |(−∞,0], sem az f |[0,+∞) leszűkítésnek. Egy ilyen függvény
például az, amelyik a nullához a nullát, tetszőleges nullától különböző x valós számhoz pedig az x2 · sin(1/x)-t rendeli
hozzá.
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5. Intervallumon értelmezett (szigorúan) monoton függvények

Az előző szakaszban mondottak ellenére van olyan szituáció, amikor pontbeli növekedési (fogyási) feltétel teljesüléséből
lehet (globális) monotonitásra következtetni:

5.1. Tétel. Ha J nemelfajuló intervallum és az f : J → R függvény a J intervallum minden egyes pontjában
a) növő, akkor f monoton növő,
b) fogyó, akkor f monoton fogyó,
c) szigorúan növő, akkor f szigorúan monoton növő,
d) szigorúan fogyó, akkor f szigorúan monoton fogyó.

Bizonyítás. A c) állítást igazoljuk, a többi teljesen hasonlóan bizonyítható. Tekintsük a J intervallum tetszőleges
két különböző elemét, jelöjük a kisebbiket a-val, a nagyobbikat b-vel, igazoljuk, hogy f(b) − f(a) > 0. Álljon H az
(a, b] intervallumnak azokból az y elemeiből, amelyekre minden x ∈ (a, y] esetén f(x)− f(a) > 0, azt kell igazolnunk,
hogy b ∈ H. Az a pontbeli szigorú növekedés definíciójából következik, hogy ez a H halmaz tartalmazza az a pont egy
pontozott jobb oldali környezetének minden elemét, tehát nemüres. H definíciója szerint b felső korlátja H-nak, így
β := supH ∈ (a, b]. β ∈ H, ugyanis az f(x)−f(a) > 0 egyenlőtlenség x ∈ (a, β) esetén abból következik, hogy – a felső
határ definíciója szerint – az x-nél nagyobb számok között található H-beli elem (a < x ≤ y ∈ H ⇒ f(x)−f(a) > 0),
x = β esetén pedig abból, hogy – lévén f a β pontban szigorúan növő – valamely δ > 0 mellett f a (β − δ, β)
intervallumon mindenütt f(β)-nál kisebb értéket vesz fel, de ha β nem volna H-ban, akkor ebben az intervallumban
kellene lennie H-beli elemnek. Végül igazoljuk, hogy β nem lehet kisebb mint b, vagyis csakis β = b lehet. Valóban,
ha β < b lenne, akkor ismét vehetnénk egy olyan δ pozitív számot, mint az imént, s ebből azt kapnánk, hogy
(β, β + δ) ⊂ H, vagyis azt kapnánk, hogy H felső határa határozottan nagyobb lenne, mint β. ¤

Szükségünk lesz a most bizonyított tétel alábbi variánsára is:

5.2. Tétel. Legyen J nemelfajuló és nem nyílt intervallum, f : J → R a J-hez tartozó végpontban illetve végpontokban
folytonos függvény. Ha f az intJ intervallum minden egyes pontjában

a) növő, akkor f monoton növő,
b) fogyó, akkor f monoton fogyó,
c) szigorúan növő, akkor f szigorúan monoton növő,
d) szigorúan fogyó, akkor f szigorúan monoton fogyó.

Bizonyítás. Ismét csak a c) állítást igazoljuk, a többi hasonlóan bizonyítható. Az előző tétel szerint f |int J szigorúan
monoton növő, így elég azt igazolni, hogy ha inf J = min J =: a, akkor minden x ∈ intJ esetén f(a) < f(x), továbbá
ha supJ = max J =: b, akkor minden x ∈ intJ esetén f(x) < f(b). Az utóbbi két állítás közül ismét elég az elsőt
bizonyítani, mert a másik hasonlóan intézhető el. Az f |int J függvény monoton növő volta miatt e függvénynek van az
a helyen jobb oldali határértéke és ez egyenlő e függvény értékkészletének alsó határával. Ennek a határértéknek meg
kell egyeznie az f függvény a-beli jobb oldali határértékével, ami az f a-beli folytonossága miatt f(a)-val is egyenlő.
Ezek szerint minden x ∈ intJ esetén f(a) ≤ f(x). Ha volna olyan y ∈ intJ , melyre f(a) = f(y), akkor f |int J szigorú
monoton növő volta miatt az a és y közötti x számok a J intervallumnak olyan belső pontjai lennének, melyekre
f(x) < f(a) = f(y) teljesülne, ami ellentmondana az előző mondatban mondottaknak. ¤

A pontbeli szigorú növekedés [fogyás] elégséges feltételéből (4.3.II.) és a most bizonyított tételből nyomban követ-
kezik az alábbi állítás:

5.3. Tétel (elégséges feltétel differenciálható függvény szigorú monotonitására). Ha J nemelfajuló inter-
vallum, f ∈ C(J)-nek J minden belső pontjában van deriváltja és ez minden belső pontban pozitív [negatív], akkor f
szigorúan monoton növő [fogyó].

5.4. Tétel (a differenciálható monoton függvények jellemzése). Legyen J nemelfajuló intervallum, f ∈
C(J), és tegyük fel, hogy f-nek intJ minden pontjában van deriváltja. Ekkor a következő két kijelentés egymás-
sal egyenértékű: 1. f monoton növő [fogyó], 2. minden x ∈ intJ esetén f ′(x) ≥ 0 [f ′(x) ≤ 0].

Bizonyítás. 1.⇒2. Ez a 4.3. Tételből és az azt megelőző Megjegyzés első mondatából következik.
2.⇒1. Indirekt úton okoskodunk, csak a monoton növő esetet részletezzük. Ha volna olyan a ∈ J és olyan a-nál
nagyobb b ∈ J , melyekre f(b) < f(a) volna, akkor bevezetve a

g : [a, b] → R, x 7→ f(x) +
f(a) − f(b)

b − a
· (x − a)
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függvényt, ez folytonos volna, (a, b) minden pontjában létezne deriváltja és minden

x ∈ (a, b) esetén g′(x) = f ′(x) +
f(a) − f(b)

b − a
> 0

volna (erre f ′(x) = +∞ esetén is lehet következtetni például abból, hogy a Kg
x függvény a Kf

x függvénynek és
a konstans f(a)−f(b)

b−a függvénynek az összege), erre a függvényre tehát alkalmazható volna az előző tétel, így ez a
függvény szigorúan monoton növő volna, ami ellentmond annak, hogy g(a) = g(b) = f(a). ¤

5.5. Tétel (a konstans függvények jellemzése). Legyen J nemelfajuló intervallum és f : J → R. Ekkor a kö-
vetkező két állítás egymással egyenértékű: 1. f konstans, 2. f ∈ C(J), int(J) minden pontjában van deriváltja és
minden x ∈ int(J) esetén f ′(x) = 0.

Bizonyítás. Az 1.⇒2. állítás a korábban tett megjegyzéseinkből, vagy akár a derivált definíciójából is könnyen
következik.
2.⇒1. Az előző tétel szerint f monoton növő és monoton fogyó, tehát konstans. ¤

5.6. Tétel (a differenciálható szigorúan monoton függvények jellemzése). Legyen J nemelfajuló interval-
lum, f ∈ C(J) és f |int(J) differenciálható. Ekkor a következő két állítás egymással egyenértékű: 1. f szigorúan
monoton növő [fogyó], 2. minden x ∈ int(J) esetén létezik az f ′(x) és az nemnegatív [nempozitív], továbbá nincs
olyan (a, b) ⊂ J intervallum, melyre minden x ∈ (a, b) esetén f ′(x) = 0 volna.

Bizonyítás. Ismét csak a szigorúan monoton növő esetet részletezzük.
1.⇒2. Láttuk (5.4.), hogy már a monoton növekedésből is következik a deriváltak nemnegativitása. Ha lenne olyan
(a, b) ⊂ J , melynek minden egyes x pontjára f ′(x) = 0 teljesülne, akkor az előző tétel szerint f egy ilyen intervallumon
konstans volna, ami ellentmond a szigorú monotonitásnak.
2.⇒1. Ismét az 5.4. Tételből következik, hogy f monoton növő. Ha nem lenne szigorúan növő, akkor lenne J-ben
olyan a és b, melyekre a < b és f(a) = f(b) teljesülne, sőt (a monoton növekedést ismét kihasználva) f az (a, b)
intervallumon konstans volna, következésképpen (5.5.) minden x ∈ (a, b) esetén f ′(x) = 0 volna. ¤

5.7. Tétel (az abszolút szélsőérték elsőrendű elégséges feltétele). Legyen I nemelfajuló intervallum, u ∈
int(I) = (a, b), f ∈ C(I), f-nek van deriváltja az (a, b)\{u} halmaz minden pontjában, végül minden x ∈ (a, u) esetén
f ′(x) ≤ 0 [f ′(x) ≥ 0] és minden x ∈ (u, b) esetén f ′(x) ≥ 0 [f ′(x) ≤ 0]. Ekkor az f függvénynek az u helyen abszolút
minimuma [maximuma] van.

Bizonyítás. Ismét csak az első változatot részletezzük: A 5.4. Tétel szerint f -nek a J ∩ (−∞, u] intervallumra való
leszűkítése monoton fogyó, a J ∩ [u,+∞) intervallumra való leszűkítése pedig monoton növő, így minden x ∈ J esetén
f(u) ≤ f(x). ¤

6. Középértéktételek I.

6.1. Tétel (Darboux tételének speciális esete). Ha g : [a, b] → R differenciálható és g′+(a) < 0 < g′−(b), akkor
van olyan u ∈ (a, b), amelyre g′(u) = 0.

Bizonyítás. g differenciálható, ezért folytonos is az [a, b] intervallumon, így Weierstrass tétele szerint van legkisebb
értéke. Sem g(a), sem g(b) nem lehet g legkisebb értéke; g(a) azért nem lehet, mert g′+(a) < 0 miatt g az a pontban
lokálisan szigorúan fogyó, g(b) azért nem lehet, mert g′−(b) > 0 miatt g a b helyen lokálisan szigorúan növő. Így tehát
az (a, b) = int[a, b] intervallumban található olyan u szám, melyre g(u) a g függvény legkisebb értéke. A (lokális)
szélsőérték elsőrendű szükséges feltétele (4.6.) szerint minden ilyen u kielégíti a g′(u) = 0 egyenletet. ¤

6.2. Tétel (Darboux tétele). Ha az f : [a, b] → R differenciálható függvényre és az y valós számra teljesülnek vagy
az f ′

+(a) < y < f ′
−(b), vagy az f ′

−(b) < y < f ′
+(a) egyenlőtlenségek, akkor található olyan u ∈ (a, b), melyre f ′(u) = y.

Bizonyítás. Értelmezzük a g : [a, b] → R függvényt az első egyenlőtlenség-pár teljesülése esetén az x 7→ f(x)− y · x,
a másik esetben az x 7→ y · x − f(x) hozzárendeléssel. g is differenciálható, hiszen két ilyen függvény összege, g′(x)
az első esetben minden x ∈ [a, b] esetén az f ′(x) − y, a második esetben az y − f ′(x) számmal egyenlő. Ezek szerint
az f -re és y-ra vonatkozó feltételekből következnek az g′+(a) < 0 < g′−(b) egyenlőtlenségek, míg a bizonyítandó állítás
egyenértékű azzal, hogy a g′(u) = 0 egyenletnek létezik u ∈ (a, b) megoldása, így tételünk az előző tétel következménye.

¤
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6.3. Lemma. Ha egy nyílt intervallumon értelmezett differenciálható függvény deriváltja egyetlen pontban sem nulla,
akkor ez a függvény szigorúan monoton.

Bizonyítás. Elég azt igazolni, hogy a derivált vagy minden pontban negatív, vagy minden pontban pozitív (5.3).
Ez azért van így, mert a logikailag elképzelhető harmadik eset, hogy tudniillik olyan pont is van, ahol a derivált
negatív, meg olyan is, amelyben a derivált pozitív, Darboux tétele szerint nem következhet be: ha ugyanis létezne az
intervallumban két ilyen szám, a kisebbiket a-val, nagyobbikat b-vel jelölve, a függvényünknek az [a, b] intervallumra
való leszűkítésére lehetne alkalmazni Darboux tételét, s azt kapnánk, hogy a derivált értéke valahol mégis nulla lenne.

¤

6.4. Tétel (általánosított Rolle-tétel). Ha egy nyílt intervallumon értelmezett differenciálható függvénynek az in-
tervallum mindkét végpontjában van határértéke és ezek a határértékek egyenlők egymással, akkor a függvény deriváltja
az intervallum legalább egy pontjában nulla.

Bizonyítás. Indirekt úton okoskodunk. Ha a derivált értéke egyetlen pontban sem volna nulla, akkor az imént bi-
zonyított lemma szerint függvényünk szigorúan monoton lenne. A monotonitásból következik az, hogy a két végpont-
beli határérték a függvény értékkészletének alsó, illetve felső határa, viszont a szigorú monotonitás miatt függvényünk
nem konstans, így értékkészletének alsó határa nem lehet egyenlő a felső határával. ¤

6.5. Tétel (Rolle tétele). Ha egy zárt intervallumon értelmezett folytonos függvény az intervallum végpontjaiban
azonos értékeket vesz fel, és az intervallum belső pontjaiban differenciálható, akkor deriváltjának értéke legalább egy
belső pontban nulla.

Bizonyítás. Szűkítsük le függvényünket az intervallum belső pontjainak halmazára. Erre a leszűkített függvényre
alkalmazható az előző tétel, hiszen egyrészt a végpontokban fennálló folytonosság miatt ott létezik a határérték is, és
az egyenlő a helyettesítési értékkel, másrészt az eredeti függvény határértékének létezése és valamely A számmal való
egyenlősége is egyenértékű a leszűkített függvény határértékének létezésével és az A számmal való megegyezésével,
meg a belső pontokban feltételezett differenciálhatóság is egyenértékű a leszűkített függvény differenciálhatóságával.
Ha a leszűkített függvény deriváltja egy pontban nulla, akkor ott az eredeti függvényé is nulla. ¤

6.6. Tétel (a Lagrange-féle középértéktétel). Ha az f ∈ C[a, b] függvény differenciálható a nyílt (a, b) interval-
lum minden egyes pontjában, akkor van olyan w ∈ (a, b), melyre f ′(w) egyenlő a z := [f(b)−f(a)]/(b−a) hányadossal.

Bizonyítás. Az [a, b] intervallumon értelmezett x 7→ f(x)− f(a)− z · (x− a) =: ϕ(x) függvényre alkalmazható Rolle
tétele, hiszen ez a függvény (a, b) pontjaiban differenciálható, a két végpontban folytonos (az f függvény is ilyen, a
polinomfüggvények is ilyenek, továbbá két ilyen függvény összege is ilyen) és mindkét végpontban a 0 értéket veszi
fel. Rolle tétele szerint tehát van az (a, b) intervallumban olyan w szám, amelyre 0 = ϕ′(w) = f ′(w) − z. ¤

6.7. Megjegyzés. A most bizonyított tétel állításának szemléletes tartalma: a függvény grafikonjának van olyan
érintője, amely párhuzamos a grafikon két végpontján áthaladó (szelő) egyenessel.

6.8. Megjegyzés. Evidens, hogy az alábbi tételből speciális esetként adódik a Lagrange-féle középértéktétel (g := id),
a Lagrange-féle középértéktételből pedig Rolle tétele.

6.9. Tétel (a Cauchy-féle középértéktétel). Ha mind az f , mind a g függvény az [a, b] intervallumon értelmezett
folytonos, a belső pontokban differenciálható függvény, továbbá minden egyes x ∈ (a, b) esetén g′(x) 6= 0, akkor

I. g(b) − g(a) 6= 0, II. van olyan v ∈ (a, b), amelyre

f(b) − f(a)

g(b) − g(a)
=

f ′(w)

g′(w)
.

Bizonyítás. I. Ha g(b) = g(a) volna, akkor Rolle tétele szerint volna olyan x ∈ (a, b), amelyre g′(x) = 0 volna.
II. A bizonyítandó egyenlőséget a nevezőkkel való átszorzás, majd egy oldalra rendezés után

(f(b) − f(a)) · g′(w) − (g(b) − g(a)) · f ′(w) = 0

alakra hozhatjuk, ez adhatja azt az ötletet, hogy vezessük be a

h : [a, b] → R x 7→ (f(b) − f(a)) · g(x) − (g(b) − g(a)) · f(x)
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függvényt, és próbáljuk erre alkalmazni Rolle tételét. A valamely pontban folytonos, illetve differenciálható függ-
vények konstansszorosa is, összege is folytonos, illetve differenciálható ugyanebben a pontban, ezért h ∈ C[a, b], h
differenciálható a nyílt (a, b) intervallum pontjaiban és minden x ∈ (a, b) esetén

h′(x) = (f(b) − f(a)) · g′(x) − (g(b) − g(a)) · f ′(x),

vagyis olyan (a, b)-beli w szám létezését kell bizonyítanunk, amelyre h′(w) = 0. Ez valóban következik Rolle tételéből,
hiszen — amint az egyszerű számolással ellenőrizhető — h(b) = h(a)(= f(b)g(a) − f(a)g(b)). ¤

Ha az iménti bizonyításban a b-beli, illetve a-beli helyettesítési értékeket az ottani határértékekkel helyettesítjük,
és Rolle tétele helyett az általánosított Rolle-tételre hivatkozunk, akkor éppen az alábbi tétel bizonyítását kapjuk:

6.10. Tétel (az általánosított Cauchy-féle középértéktétel). Legyen −∞ ≤ a < b ≤ +∞, f és g az (a, b)
intervallumon értelmezett olyan differenciálható függvények, melyeknek létezik és véges a határértéke mind az a, mind
a b pontban, végül tegyük fel, hogy g deriváltja az (a, b) intervallum egyetlen pontjában sem nulla. Ekkor I. limb g −
lima g 6= 0; II. van olyan w ∈ (a, b), melyre

limb f − lima f

limb g − lima g
=

f ′(w)

g′(w)
.

7. Kritikus határértékek

A határértékek és az algebrai műveletek kapcsolatáról szóló szakaszban két nullához tartó függvény hányadosáról
semmi általános érvényűt nem tudtunk állítani, s hasonló volt a helyzet a ±∞-hez tartó függvények hányadosa esetén
is. A differenciálszámítás eszközeinek birtokában viszont már tudunk bizonyítani néhány hasznos állítást ebben
a témakörben. Ezek közül az elsőnek (melyet „gyenge L’Hospital-szabály”-nak fogunk nevezni) a bizonyításához
elegendő a differenciálhatóság definícióját használni:

7.1. Tétel. Legyen u a H számhalmaz belső pontja, f és g egyaránt a H halmazon értelmezett, és az u pontban
differenciálható függvény, tegyük fel továbbá, hogy f(u) = g(u) = 0 6= g′(u). Ekkor az f/g függvénynek van határértéke
az u pontban, és ez f ′(u)/g′(u)-val egyenlő.

Bizonyítás. g′(u) 6= 0 és u ∈ intH miatt van olyan r pozitív szám, melyre minden x ∈ Ḃ(u, r) esetén x ∈ H és
g(x) 6= 0 (4.3.II.). A továbbiakban csak ilyen x számokra szorítkozva, egyszerűsítsük az f(x)/g(x) törtet x − u-val,
és használjuk fel az f(u) = g(u) = 0 feltételt:

f(x)

g(x)
=

Kf
u (x)

Kg
u(x)

,

az utóbbi tört számlálója, illetve nevezője tart az f ′(u), illetve a g′(u) számhoz, az utóbbi nullától különböző, ezért
a hányados határértéke e két szám hányadosával egyenlő. ¤

Nem ilyen egyszerű a helyzet, ha az a pont, amelyben a határértéket keressük, nincs benne az értelmezési tartomány-
ban, vagy benne van ugyan, de ott a függvényeink nem differenciálhatók. Ilyen esetekben is előfordulhat azonban,
hogy az alábbi tétel segítségével meg tudjuk határozni a hányados határértékét:

7.2. Tétel (az 1. L’Hospital-szabály). Legyen I nyílt intervallum, u pedig ennek vagy eleme, vagy végpontja (azaz
u ∈ I ′), F és G az I \{u} halmazon értelmezett olyan differenciálható függvények, melyeknek a határértéke az u helyen
nulla. Ha van olyan pozitív r szám, melyre minden x ∈ I ∩ Ḃ(u, r) esetén G′(x) 6= 0 , és létezik a limu F ′/G′ =: v,
akkor u torlódási pontja az F/G függvény értelmezési tartományának, és ott e függvény határértéke v-vel egyenlő.

Bizonyítás. Először azt bizonyítjuk, hogy az I ∩ Ḃ(u, r) halmazon a G függvény nem veszi fel a nulla értéket. Ha u
végpontja az I intervallumnak, akkor ez a metszethalmaz egy olyan (a, b) nyílt intervallum, melynek egyik végpontja
u. Ha lenne G-nek egy (a, b)-beli z gyökhelye, akkor G határértéke is nulla lenne a z helyen (hiszen G itt folytonos), de
akkor — J-vel jelölve azt a nyílt intervallumot, melynek végpontjai u és z — a G|J függvényé is, tehát a G|J függvény
teljesítené az általánosított Rolle-tétel feltételeit, holott a deriváltjának nincs gyökhelye. Ha u belső pontja I-nek,
akkor az I ∩ Ḃ(u, r) halmaz két diszjunkt nyílt intervallum uniója, de mindkét intervallumról elmondható mindaz,
amit az imént az (a, b) intervallumról elmondtunk.

Minthogy u torlódási pontja az I ∩ Ḃ(u, r) halmaznak, még inkább torlódási pontja a bővebb D(F/G) halmaznak.
Az F/G határértékére vonatkozó állítás bizonyítása céljából legyen ε tetszőleges pozitív szám, δ ∈ (0, r) pedig olyan
szám, melyre minden w ∈ I ∩ Ḃ(u, δ) esetén F ′(w)/G′(w) ∈ B(v, ε). Ezek után elég azt igazolni, hogy minden
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x ∈ I ∩ Ḃ(u, δ) esetén F (x)/G(x) ∈ B(v, ε), ehhez pedig azt, hogy minden x ∈ I ∩ Ḃ(u, δ) számhoz található olyan
w ∈ I ∩ Ḃ(u, δ), melyre F (x)/G(x) = F ′(w)/G′(w). Legyen tehát x ∈ I ∩ Ḃ(u, δ) és jelöljük J-vel azt a nyílt
intervallumot, amelynek végpontjai u és x. Ez a J részhalmaza az I ∩ Ḃ(u, δ) halmaznak, az (F |J , G|J) függvénypár
teljesíti az általánosított Cauchy-féle középértéktétel feltételeit, hiszen a leszűkített függvények határértékei az x
pontban megegyeznek a leszűkítés nélküli függvények ottani helyettesítési értékeivel, az u pontban pedig nullával. E
középértéktétel szerint tehát valóban létezik olyan w, amilyennek a létezését állítottuk. ¤

7.3. Tétel (a 2. L’Hospital-szabály). Legyen I nyílt intervallum, u pedig ennek vagy eleme, vagy végpontja (azaz
u ∈ I ′), legyenek F és G az I \{u} halmazon értelmezett differenciálható függvények. Ha a |G| függvény határértéke az
u helyen +∞, van olyan pozitív r szám, melyre minden x ∈ I∩Ḃ(u, r) esetén G′(x) 6= 0 , és létezik a limu F ′/G′ =: v,
akkor u torlódási pontja az F/G függvény értelmezési tartományának, és ott e függvény határértéke v-vel egyenlő.

Bizonyítás. Elég a következő két állítást bizonyítani: 1. Ha u nem bal végpontja az I intervallumnak, akkor
egy bal oldali pontozott környezetében a G függvény értéke mindenütt nullától különböző, és az F/G függvény bal
oldali határértéke az u helyen v; 2. Ha u nem jobb végpontja az I intervallumnak, akkor egy jobb oldali pontozott
környezetében a G függvény értéke mindenütt nullától különböző, és az F/G függvény jobb oldali határértéke az u
helyen v.

1. A G függvénynek az I∩Ḃ−(u, r) nyílt intervallumra való leszűkítése szigorúan monoton, mert a deriváltja minden
pontban nullától különböző (lásd az általánosított Rolle-tétel előtt bizonyított 6.3. Lemmát), ezért az u helyen van
határértéke, ez csakis +∞ vagy −∞ lehet, mert a |G| függvény határértéke az u helyen +∞. Ebből következik
egy olyan p ∈ (0, r] szám létezése, melyre minden x ∈ I ∩ Ḃ−(u, p) esetén G(x) 6= 0. Ezek után elég az F/G
függvénynek az I ∩ Ḃ−(u, p) intervallumra való leszűkítésével foglalkozni, erről bizonyítani, hogy határértéke az u
helyen v. Ezt a függvényhatárértékre vonatkozó átviteli elv kiegészítésének felhasználásával tesszük: azt igazoljuk,
hogy ha az u-hoz tartó szigorúan monoton (növő) (xn) sorozat minden tagja az I ∩ Ḃ−(u, p) intervallumban van,
akkor lim(F (xn)/G(xn)) = v. Minthogy a (G(xn)) sorozat szigorúan monoton és határértéke +∞ vagy −∞, Stolz
tétele szerint elég azt bizonyítani, hogy

lim
n→∞

F (xn+1) − F (xn)

G(xn+1) − G(xn)
= v.

Ebből a célból alkalmazzuk a Cauchy-féle középértéktételt minden n pozitív egész esetén az F , G függvényeknek arra
a leszűkítésére, melyeknek az értelmezési tartománya az [xn, xn+1] intervallum. Így kapunk egy olyan (wn) sorozatot,
melyre minden n esetén xn < wn < xn+1 < wn+1 < u (tehát ez is u-hoz tartó szigorúan monoton növő sorozat) és

F (xn+1) − F (xn)

G(xn+1) − G(xn)
=

F ′(wn)

G′(wn)
.

És minthogy a jobb oldalon álló sorozat határértéke a határértékre vonatkozó átviteli elv szerint v, a bizonyítás elején
megfogalmazott 1. állítás igazolását befejeztük.

A 2. állítás bizonyítása hasonlóan végezhető: bal oldali pontozott környezetek helyett jobb oldaliakkal, illetve
szigorúan növő sorozatok helyett szigorúan fogyó sorozatokkal, stb. (Sőt, valójában a 2. állítás az 1. állítás következ-
ményének is tekinthető.) ¤

8. Többször differenciálható függvények

Emlékeztetünk rá, hogy a derivált függvény fogalmát a fejezet elején értelmeztük (1.14).
A valós változós valós értékű függvények magasabb rendű deriváltjait rekurzív módon értelmezzük:

8.1. Definíció (Magasabb rendű derivált függvények). Legyen f egyváltozós valós függvény és n olyan pozitív
egész, amelyre értelmezett az f függvénynek az f (n) : intD(f) ⊃→ R n-edik derivált függvénye (valójában n = 1, 2, és 3
esetén az f (1), f (2), f (3) jelölések helyett inkább az f ′, f ′′, f ′′′ jelöléseket szokás használni). Ha az utóbbinak létezik a
korábban definiált értelemben vett derivált függvénye (vagyis van legalább egy olyan u ∈ intD(f (n)) pont, ahol az f (n)

függvény differenciálható, akkor az
(

f (n)
)′

derivált függvényt az f függvény n+1-edik derivált függvényének nevezzük,
f (n+1)-gyel jelöljük, és az f (n+1)(u) helyettesítési értéket az f függvény u pontban vett n + 1-edik deriváltjának is
nevezzük. Végezetül állapodjunk meg abban is, hogy f nulladik deriváltján magát az f függvényt értjük, s az a kijelentés,
hogy f az u pontban (a H halmazon) nullaszor differenciálható, jelentse azt, hogy u eleme (H része) f értelmezési
tartományának.

8.2. Definíció (Többszörös differenciálhatóság egy pontban, illetve nyílt halmazon). Az a kijelentés, hogy
f az u helyen n-szer differenciálható, azt jelenti, hogy u eleme az n-edik derivált függvény értelmezési tartományának,
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az pedig, hogy f a H nyílt halmazon n-szer differenciálható, azt jelenti, hogy f a H halmaz minden egyes pontjában
n-szer differenciálható, speciálisan abban az esetben, ha az utóbbi kijelentés H := D(f) mellett teljesül, az f függvényt
röviden n-szer differenciálhatónak nevezzük. Hasonlóan, az a kijelentés, hogy f az u pontban [a H nyílt halmazon] n-
szer folytonosan differenciálható, azt jelenti, hogy egyrészt f az u pontban [a H nyílt halmazon] n-szer differenciálható,
másrészt az f (n) függvény folytonos az u pontban [a H halmaz minden egyes pontjában].

Az „n-szer differenciálható” vagy az „n-szer folytonosan differenciálható” lehet olyan függvény jelzője is, melynek
értelmezési tartománya zárt vagy félig nyílt intervallum (az n = 1 esetet illetően lásd a 1.13. definíciót). A definíció
lényege egyszerűen annyi, hogy ilyenkor a végpontbeli egy oldali deriváltat deriváltnak tekintjük:

8.3. Definíció. Legyen J zárt vagy félig nyílt intervallum, f : J → R és n pozitív egész. Annak a mondatnak a
jelentését, hogy f n-szer differenciáható [f n-szer folytonosan differenciálható] n szerinti rekurzióval lehet megadni,
éspedig úgy, hogy ezzel együtt megadjuk a kiterjesztett n-edik derivált értelmezését is. f egyszer differenciálható, ha
egyrészt f differrenciálható J minden egyes belső pontjában, másrészt ha u ∈ J végpontja J-nek, akkor f az u pontban
egy oldalról differenciálható. Az f függvény kiterjesztett értelemben vett első derivált függvényén ilyenkor a derivált
függvénynek azt a J-n értelmezett kiterjesztését értjük, amelynek az értéke u ∈ J \ intJ esetén f-nek az u-beli egy
oldali deriváltjával egyenlő. Ha ez a függvény még folytonos is, akkor azt mondjuk, hogy f (egyszer) folytonosan
differenciálható. Hasonlóan, ha az f kiterjesztett értelemben vett n-edik derivált függvénye (egyszer) differenciálható,
akkor f -et n+1-szer differenciálhatónak nevezzük, és ha f ilyen, akkor a kiterjesztett értelemben vett n+1-edik derivált
függvénye J minden egyes belső pontjához az ottani n + 1-edik deriváltat, míg egy u ∈ J \ intJ ponthoz a kiterjesztett
értelemben vett n-edik derivált függvénynek az u-beli egy oldali deriváltját rendeli. Ha ez a kiterjesztett értelemben vett
n + 1-edik derivált függvény folytonos, akkor azt mondjuk, hogy f n + 1-szer folytonosan differenciálható.

8.4. Definíció (végtelen sokszor differenciálható függvény). Az a kijelentés, hogy az f függvény végtelen soks-
zor differenciálható az u pontban, illetve a H(⊂ intD(f)) nyílt halmazon, azt jelenti, hogy f minden pozitív egész
n esetén n-szer differenciálható az u pontban, illetve a H halmazon. A H = D(f) esetben most is kimaradhat a
mondatból az, hogy „a D(f) halmazon”.

8.5. Feladat. Bizonyítandó, hogy az alábbi függvények mindegyike végtelen sokszor differenciálható: a racionális
törtfüggvények, az exponenciális függvények, a logaritmusfüggvények, a pozitív számok halmazán értelmezett hatvány-
függvények, bármely hatványfüggvénynek a pozitív számok halmazára való leszűkítése, cos, sin, tg, ctg, arctg, arcctg,
arccos |(−1,1), arcsin |(−1,1), ch, sh, th, cth, arch |(1,+∞), arsh, arth, ar cth.

8.6. Feladat. Ha n pozitív egész, f és g ugyanazon nyílt halmazon értelmezett valós változós valós értékű függvények,
és mindkét függvény n-szer differenciálható az u pontban, akkor f + g is, fg is, és minden valós c szám esetén cf is
n-szer differenciálható az u helyen, továbbá

(f + g)(n)(u) = f (n)(u) + g(n)(u), (fg)(n)(u) =

n
∑

i=0

(

n

i

)

f (i)(u)g(n−i)(u), (cf)(n)(u) = cf (n)(u).

Általánosítsuk az összegre vonatkozó állítást több tagú összegre is!

8.7. Megjegyzés. A szorzat n-edik deriváltjára vonatkozó formulát Leibniz-formulának szokták nevezni, teljes in-
dukcióval történő bizonyítását elvégezhetjük pédául úgy, hogy a binomiális tétel teljes indukciós bizonyítását másoljuk.

A hatványfüggvények deriválási szabályának alkalmazásával igen könnyen oldható meg az alábbi

8.8. Feladat. Legyen u tetszőleges valós szám, k pozitív egész, és f : R → R az a függvény, amely minden egyes
valós x-hez az (x−u)k számot rendeli. Bizonyítandó, hogy ekkor minden i ∈ 0, k − 1 esetén f (i)(u) = 0; f (k)(u) = k!,
továbbá ha x tetszőleges valós szám, akkor az f (i)(x) derivált minden k-nál nagyobb i egész esetén nullával, i = k
esetén pedig k!-sal egyenlő.

8.9. Definíció (n-edrendben kicsi függvény). Legyen n nemnegatív egész, f egyváltozós valós függvény és u ∈ R

torlódási pontja f értelmezési tartományának. Ekkor az a kijelentés, hogy f az u helyen n-edrendben kicsi, azt jelenti,
hogy

lim
x→u

f(x)

(x − u)n
= 0.

8.10. Tétel. Legyen n pozitív egész, f olyan egyváltozós valós függvény, amely egy u pont valamely környezetében
n−1-szer, és az u helyen n-szer differenciálható, végül tegyük fel, hogy minden n-nél nem nagyobb nemnegatív k egész
esetén f (k)(u) = 0. Ekkor f az u helyen n-edrendben kicsi.
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Bizonyítás. n szerinti teljes indukciót alkalmazunk. Ha n = 1, akkor az állítás az u-beli derivált definíciójából
következik. Legyen n olyan pozitív egész, melyre az állítás igaz és f olyan egyváltozós valós függvény, amely egy u
pont valamely U környezetében n-szer, és az u pontban n+1-szer differenciálható. Ekkor az f ′ függvényre alkalmazható
az indukciós feltevés, ezért f ′ az u helyen n-edrendben kicsi. Legyen ε tetszőleges pozitív szám, δ pedig olyan pozitív
szám, amelyre minden t ∈ Ḃ(u, δ) esetén t ∈ U és

∣

∣

∣

∣

f ′(t)

(t − u)n

∣

∣

∣

∣

< ε.

Ezek után elég azt igazolni, hogy minden x ∈ Ḃ(u, δ) esetén
∣

∣

∣

∣

f(x)

(x − u)n+1

∣

∣

∣

∣

< ε.

Legyen tehát x ∈ Ḃ(u, δ), Ix az az intervallum, melynek végpontjai u és x, és alkalmazzuk a Lagrange-féle középér-
téktételt f -nek Ix-re való leszűkítésére: az Ix intervallum belsejében található olyan cx, melyre

f(x)

x − u
= f ′(cx),

s amely persze I \ {u} ⊂ Ḃ(u, δ) miatt benne van a Ḃ(u, δ) pontozott környezetben, ezért – felhasználva azt is, hogy
cx az u és x pontok között van, s ennélfogva |cx − u|/|x − u| < 1,

∣

∣

∣

∣

f(x)

(x − u)n+1

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x)

x − u

1

(x − u)n

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(cx)

(cx − u)n
· (cx − u)n

(x − u)n

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(cx)

(cx − u)n

∣

∣

∣

∣

∣

∣

∣

∣

cx − u

x − u

∣

∣

∣

∣

n

< ε

adódik. ¤

9. A lokális Taylor-formula és következményei

9.1. Definíció (Taylor-polinomok). Ha n nemnegatív egész, az egyváltozós valós f függvény n-szer differenciálható
az u pontban (ez n = 0 esetén csak annyit jelentsen, hogy értelmezett az u pontban) és i ∈ 0, n, akkor az f függvény
u ponthoz tartozó n-edik Taylor-polinomja a

T f
u,n(x) :=

n
∑

k=0

f (k)(u)

k!
(x − u)k

hozzárendeléssel értelmezett T f
u,n polinomfüggvény.

9.2. Állítás. Az iménti definícióban megfogalmazott feltételek mellett minden i ∈ 0, n esetén (T f
u,n)(i)(u) = f (i)(u).

Bizonyítás. Lásd a 8.8., 8.6. feladatokat. ¤

9.3. Megjegyzés. A következő szakaszban (10.4) megmutatjuk, hogy a legfeljebb n-edfokú polinomfüggvények között
T f

u,n az egyetlen olyan p polinomfüggvény, amelyre teljesül az, hogy

∀ i ∈ 0, n p(i)(u) = f (i)(u).

9.4. Tétel (lokális Taylor-formula – két változatban). Legyen n pozitív egész és tegyük fel, hogy az egyváltozós
valós f függvény az u pont egy környezetében n − 1-szer, az u pontban pedig n-szer differenciálható. Ekkor

lim
x→u

f(x) − T f
u,n(x)

(x − u)n
= 0 és lim

x→u

f(x) − T f
u,n−1(x)

(x − u)n
=

1

n!
f (n)(u).

Bizonyítás. 8.6. és 8.8. szerint az f − T f
u,n függvényre alkalmazható az előző szakasz tétele, tehát ez a függvény az

u helyen n-edrendben kicsi. A tétel második állítása egyenértékű az elsővel, hiszen egyenértékű azzal, hogy az

x 7→
f(x) − T f

u,n−1(x)

(x − u)n
− 1

n!
f (n)(u)

függvény határértéke az u helyen nulla, viszont ez utóbbi függvény azonos az

x 7→
f(x) − T f

u,n(x)

(x − u)n

függvénnyel (szorozzuk és osszuk a második tagot (x − u)n-nel, majd hozzunk közös nevezőre). ¤
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9.5. Definíció. Ha n pozitív egész, u ∈ R, f valós változós valós értékű függvény, és minden i ∈ 0, n − 1 f (i) = 0,
akkor azt mondjuk, hogy u az f függvénynek legalább n-szeres gyök(hely)e. Ha ráadásul létezik az f n-edik deriváltja
is az u helyen, de az már nem nulla, akkor azt mondjuk, hogy u az f-nek pontosan n-szeres gyök(hely)e.

A lokális Taylor-formula segítségével be tudjuk bizonyítani a kritikus határértékek című szakasz első tételének
(„gyenge L’Hospital-szabály”) alábbi egyszerű általánosítását:

9.6. Tétel. Tegyük fel, hogy u belső pontja a H számhalmaznak, f és g a H halmazon értelmezett és az u pontban
n-szer differenciálható függvények, u az f-nek legalább n-szeres gyöke, a g-nek pedig pontosan n-szeres gyöke. Ekkor
f/g értelmezett az u egy pontozott környezetében és limu f/g = f (n)(u)/g(n)(u).

Bizonyítás. Minthogy u legalább n-szeres gyöke mind az f , mind a g függvénynek, minden x ∈ D(f/g) esetén

f(x)

g(x)
=

n!
f(x)−T f

u,n−1
(x)

(x−u)n

n!
g(x)−T g

u,n−1
(x)

(x−u)n

.

A lokális Taylor-formula szerint a számláló határértéke f (n)(u), a nevezőé g(n)(u), a tétel feltétele szerint a nevező
határértéke nem nulla, ebből a tétel mindkét állítása következik. ¤

A szakasz további tételeiben a valamely pontban többször differenciálható függvény lokális viselkedését vizsgáljuk,
a szóban forgó pont a derivált többszörös gyökhelye lesz.

9.7. Tétel. Legyen n pozitív egész, az f függvény valamely u pont egy környezetében n−1-szer, magában az u pontban
n-szer differenciálható, végül tegyük fel, hogy minden i ∈ 1, n − 1 esetén f (i)(u) = 0.

1. Ha f-nek lokális szélsőértéke van az u helyen és n páratlan, akkor f (n)(u) = 0.

2. Ha f-nek lokális minimuma [maximuma] van az u helyen és n páros, akkor f (n)(u) ≥ 0 [f (n)(u) ≤ 0].

3. Ha n páros és f (n)(u) > 0 [f (n)(u) < 0, akkor f-nek az u helyen szigorú lokális minimuma [maximuma] van.

Bizonyítás. A lokális Taylor-formula szerint

f (n)(u) = n! lim
x→u

f(x) − f(u)

(x − u)n
.

Mindegyik állítás a függvényhatárérték és rendezés kapcsolatáról szóló tétel egyszerű következménye:
1. Az említett tétel az x 7→ (n!)(f(x)−f(u))/(x−u)n függvénynek mind a D(f)∩(−∞, u), mind a D(f)∩(u, +∞)

halmazra való leszűkítésére alkalmazható, ebből azt kapjuk, hogy e két függvény egyikének határértéke az u helyen
nemnegatív, a másikáé nempozitív, de minthogy mindkét (egy oldali) határértéknek meg kell egyeznie a leszűkítés
nélküli függvény határértékével, az f (n)(u) számmal, az csak nulla lehet.

2. Az x 7→ (n!)(f(x)− f(u))/(x−u)n függvénynek az u egy pontozott környezetében felvett értékei nemnegatívak
[nempozitívak], ezért az u-beli határértékéről is ugyanez mondható.

3. Az imént is vizsgált függvényről ezúttal azt tudjuk, hogy u-beli határértéke pozitív [negatív], ebből következik,
hogy az u egy pontozott környezetében felvett értékei is ugyanilyen előjelűek. És minthogy közben a tört nevezője e
pontozott környezet minden pontjában pozitív, a tört előjele megegyezik a számláló előjelével. ¤

9.8. Tétel. Legyen n pozitív egész, az f függvény valamely u pont egy környezetében n−1-szer, magában az u pontban
n-szer differenciálható, végül tegyük fel, hogy minden i ∈ 1, n − 1 esetén f (i)(u) = 0.

1. Ha f az u pontban növő [fogyó] és n páratlan, akkor f (n)(u) ≥ 0 [f (n)(u) ≤ 0].

2. Ha f növő [fogyó] az u pontban és n páros, akkor f (n)(u) = 0.

3. Ha n páratlan és f (n)(u) > 0 [f (n)(u) < 0], akkor f az u pontban szigorúan növő [fogyó].

Bizonyítás vázlata. A lokális Taylor-formula szerint

f (n)(u) = n! lim
x→u

f(x) − T f
u,n−1(x)

x − u

1

(x − u)n−1
= n! lim

x→u

f(x) − f(u)

x − u

1

(x − u)n−1
.

Innentől kezdve az előző bizonyítás lényegében szó szerint másolható. ¤
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10. Középértéktételek II.

10.1. Tétel (n-edrendű általánosított Rolle-tétel). Legyen n pozitív egész, ϕ nyílt intervallumon értelmezett
n-szer differenciálható függvény és u ∈ R az intervallum egyik végpontja. Tegyük fel egyrészt azt, hogy ϕ-nek az
intervallum mindkét végpontjában létezik határértéke és ez a két határérték egyenlő egymással, másrészt azt, hogy
minden egyes k ∈ 1, n − 1 esetén limu ϕ(k) = 0. Ekkor az intervallumban van olyan pont, ahol ϕ n-edik deriváltja
nullával egyenlő.

Bizonyítás. n szerinti teljes indukcióval. Az n = 1 esetet már bizonyítottuk (általánosított Rolle-tétel). Legyen n
olyan pozitív egész, amelyre igaz a tétel, h : (a, b) → R pedig olyan n + 1-szer differenciálható függvény, melynek
a két végpontban létezik határértéke, lima h = limb h, továbbá amelyre u = a vagy u = b, és minden k ∈ 1, n
esetén limu h(k) = 0. Az általánosított Rolle-tétel szerint van olyan v ∈ (a, b), ahol h deriváltja nulla. Legyen
ϕ a h′ függvénynek az a leszűkítése, melynek értelmezési tartománya az u és v végpontok által meghatározott I
nyílt intervallum. Ez a függvény nyilván n-szer differenciálható, minden k ∈ 0, n − 1 esetén limu ϕ(k) = 0, továbbá
limv ϕ = 0. Az utóbbit azért állíthatjuk, mert h′ a v helyen n-szer — tehát legalább egyszer — differenciálható,
ezért ott folytonos is, és (lévén v nem-izolált pontja az (a, b) intervallumnak) így 0 = h′(v) = limv h′ = limv h′|I =
limv(h|I)′ = limv ϕ. Erre a függvényre tehát alkalmazható az indukciós feltétel: az I intervallum valamely pontjában
az n-edik deriváltja nulla, ezért a h függvény n + 1-edik deriváltja ebben a pontban nulla. ¤

10.2. Tétel (Taylor-formula Lagrange-féle maradéktaggal). Ha n pozitív egész, I ⊂ R nemelfajuló interval-
lum, u ∈ int I és f : I → R folytonos, I belsejében n-szer differenciálhatófüggvény, akkor minden u-től különböző
I-beli v számhoz található u és v között olyan w szám, amelyre

f(v) − T f
u,n−1(v) =

f (n)(w)

n!
(v − u)n.

Bizonyítás. Rögzítsünk egy v ∈ I \{v} számot, u és v közül a kisebbiket jelöljük a-val, a nagyobbikat b-vel. Az előző
tételt fogjuk alkalmazni az (a, b) intervallumon az x 7→ f(x)− T f

u,n−1(x) − c
n! (x− u)n hozzárendeléssel értelmezett ϕ

függvényre, ahol a c valós számot úgy határozzuk meg, hogy limv ϕ = 0 legyen, vagyis c az f(v)−T f
u,n−1(v) = c

n! (v−u)n

egyenlet egyetlen megoldása. f n-szer differenciálható, a polinomfüggvények pedig végtelen sokszor, ezért ϕ n-szer
differenciálható I belsejében. Ugyancsak f n-szer differenciálható voltából kapjuk, hogy az f (k) függvény minden
k ∈ 0, n − 1 esetén folytonos, ezért az u helyen van határértéke és ez megegyezik a helyettesítési értékével. Ebből, a
hatványfüggvények differenciálási szabályából, és egyéb egyszerű differenciálási szabályokból következik, hogy minden
n-nél kisebb nemnegatív k-ra limu ϕ(k) = 0. Ezzel megmutattuk, hogy ϕ teljesíti az előző tétel feltételeit. Az
x 7→ c(x−u)n

n! polinomfüggvény n-edik deriváltja a konstans c függvény, a T f
u,n−1 polinomfüggvényé – lévén a fokszáma

kisebb mint n – azonosan nulla, következésképp ϕ(n) = f (n)−c, így az előző tételből éppen az adódik, amit állítottunk.
¤

Míg a lokális Taylor-formula arról szól, hogyan közelíti a T f
v,n Taylor-polinom az f függvényt a v pont közelében

egy-egy rögzített n esetén, a legutóbbi tétel segítségével jónéhány esetben azt is lehet bizonyítani, hogy rögzített, és
esetleg v-től távol lévő x pontra az n 7→ T f

v,n(x) sorozat konvergál az f(x) számhoz. Erre a szituációra az első példával
az alábbi tételben találkozunk, a következő kettővel pedig a trigonometrikus függvények tárgyalása során.

10.3. Tétel. Minden valós x szám esetén

ex = lim
n→∞

n
∑

k=0

xk

k!
.

Bizonyítás vázlata. Ha x = 0, akkor az egyenlőség nyilvánvaló. Legyen tehát a továbbiakban x tetszőleges 0-tól
különböző valós szám.
A Lagange-maradéktagos Taylor-formula szerint (u := 0, f := exp) minden pozitív egész n-hez található x és 0 között
olyan wn, amelyre

∣

∣

∣

∣

∣

ex −
n−1
∑

k=0

xk

k!

∣

∣

∣

∣

∣

= |ex − T exp
0,n−1(x)| =

ewn |x|n
n!

≤ e|x|
|x|n
n!

,

¤

Most térünk rá annak a Taylor-polinomok definiálása után tett 9.3.megjegyzésnek a bizonyítására, amely az
ottanihoz képest kissé általánosabban így fogalmazható:
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10.4. Állítás. Bármely valós u-hoz, bármely nemnegatív egész n-hez, és bármely n + 1 tagú valós (c0, c1, . . . , cn)
sorozathoz legfeljebb egy olyan legfeljebb n-edfokú p polinomfüggvény található, melyre minden k ∈ 0, n esetén p(k)(u) =
ck.

Bizonyítás. Tegyük fel, hogy van legalább két ilyen polinomfüggvény és a különbségüket jelöljük g-vel. Ekkor tehát
g nem azonosan nulla, legfeljebb n-edfokú polinomfüggvény, melyre minden k ∈ 0, n esetén g(k)(u) = 0. Azt ugyan az
algebrából is lehet tudni, hogy ilyen polinom(függvény) nem létezik, de most ezt a következőképpen is bizonyíthatjuk:
lévén g legfeljebb n-edfokú polinomfüggvény, az n + 1-edik derivált függvénye az azonosan nulla függvény, tehát ha x
tetszőleges u-tól különböző valós szám, akkor x és u között van olyan v valós szám, melyre

g(x) = g(x) − T g
u,n(x) =

g(n+1)(v)

(n + 1)!
(x − u)n+1 = 0.

¤

11. Konvex függvények

11.1. Tétel. Legyen az I ⊂ R nemelfajuló intervallum bal végpontja a, jobb végpontja b, továbbá f : I → R konvex
függvény. Ekkor I. f-nek az I ∩ (a, b] intervallum minden pontjában van bal oldali deriváltja és az I ∩ [a, b) inter-
vallum minden pontjában van jobb oldali deriváltja, II. f az (a, b) intervallum minden pontjában balról is, jobbról is
differenciálható, továbbá minden (a, b)-beli v pontban f ′

−(v) ≤ f ′
+(v), III. mind az f ′

−, mind az f ′
+ függvény monoton

növő, IV. az (a, b) intervallumban csak megszámlálható sok olyan pont lehet, ahol f nem differenciálható.

Bizonyítás. I. A konvex függvények jellemzéseiről szóló tétel szerint f mindegyik különbségihányados-függvénye
monoton növő, ezért létezik egy oldali határértéke minden olyan pontban, ahol a létezésének kérdése egyáltalán
felvethető.
II. Legyen v ∈ (a, b), jelöljük a Kf

v függvény (a, v)-re, illetve (v, b)-re való leszűkítésének értékkészletét A-val, illetve
B-vel. A Kf

v függvény monoton növő volta miatt bármely a ∈ A és b ∈ B esetén a ≤ b, vagyis B minden eleme felső
korlátja A-nak és A minden eleme alsó korlátja B-nek. Ismét a monoton függvény egy oldali határértékéről szóló tétel
szerint f ′

−(v) = sup A és f ′
+(v) = inf B, az előbb mondottakból következően minden b ∈ B esetén supA ≤ b, vagyis

sup A alsó korlátja B-nek, ezért nem nagyobb, mint inf B.
III. A II. állítás miatt most már elég annyit bizonyítani, hogy ha u ∈ I, v ∈ I és u < v, akkor f ′

+(u) ≤ f ′
−(v). Ez

ismét a monoton függvény egy oldali határértékeiről szóló tételből következik:

f ′
+(u) = lim

u+0
Kf

u = inf Kf
u |I∩(u,+∞) ≤ Kf

u (v) = Kf
v (u) ≤ sup Kf

v |I∩(−∞,v) = lim
v−0

Kf
v = f ′

−(v) .

IV. Minden monoton növő függvény szakadási pontjainak halmaza megszámlálható, ezért a III. állítás miatt elég azt
igazolni, hogy ha egy v pontban f nem differenciálható, akkor az f ′

+ függvény nem folytonos a v helyen. A II. állítás
alapján mondhatjuk, hogy f ′

−(v) < f ′
+(v). Ha az f ′

+ függvény akárcsak balról folytonos lenne a v helyen, akkor
létezne olyan u ∈ (a, v) , melyre f ′

−(v) < f ′
+(u) lenne, ami ellentmondana az előző bekezdésben bizonyítottaknak.

¤

11.2. Megjegyzés. Igazolható, hogy ha egy f : (a, b) → R függvényre teljesülnek a II.-III. állítások, akkor f konvex.

11.3. Tétel (a differenciálható konvex függvények jellemzései). Legyen az I ⊂ R nemelfajuló intervallum bal
végpontja a, jobb végpontja b, továbbá f : I → R olyan folytonos függvény, amely differenciálható az (a, b) intervallum
minden pontjában. Ekkor az alábbi kijelentések egymással egyenértékűek: 1. f konvex, 2. f ′ monoton növő az (a, b)
intervallumon, 3. ha u ∈ (a, b) és x ∈ I \ {u}, akkor

f(x) ≥ f(u) + f ′(u)(x − u).

Bizonyítás. 1.⇒3. Korábban bizonyított tétel szerint f konvex voltából következik, hogy Kf
u monoton növő. És

minthogy e függvény határértéke az u helyen f ′(u), a Kf
u (x)− f ′(u) különbség az u-nál kisebb x-ekre nempozitív, az

u-nál nagyobbakra pedig nemnegatív. Ebből következik, hogy minden x ∈ I \ {u} esetén

f(x) − f(u) − f ′(u)(x − u) =

[

f(x) − f(u)

x − u
− f ′(u)

]

(x − u) = [Kf
u (x) − f ′(u)](x − u) ≥ 0.

3.⇒2. Legyen a < v < w < b, igazoljuk, hogy f ′(v) ≤ f ′(w). A 3. állítást először az (x, u) := (w, v), másodszor az
(x, u) := (v, w) szereposztással alkalmazva, majd az így adódó két egyenlőtlenséget összeadva ezt kapjuk:

0 ≥ f ′(v)(w − v) + f ′(w)(v − w), azaz f ′(v)(w − v) ≤ f ′(w)(w − v).
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2.⇒1. A konvex függvények jellemzéseiről szóló tétel szerint f konvex voltára például abból is következtetheünk,
hogy minden szigorúan monoton növő I-beli (u, v, w) hármasra Kf

v (u) ≤ Kf
v (w). Vegyünk tehát egy I-beli számokból

alkotott tetszőleges szigorúan növő (u, v, w) hármast. A Lagrange-féle középértéktételből és f ′ monoton növő voltából
következik, hogy – alkalmas s ∈ (u, v) és t ∈ (v, w) számokkal – Kf

v (u) = f ′(s) ≤ f ′(t) = Kf
v (w). ¤

11.4. Megjegyzés. Az iménti bizonyítás 1.⇒3. része akkor is megismételhető, ha u végpontja az I intervallumnak
és ott az f egy oldalról differenciálható, feltéve hogy f ′(u) helyébe az u-beli egy oldali deriváltat képzeljük – azzal a
minimális változtatással, hogy ekkor az x < u, x > u esetek közül az egyikről nem kell beszélni. Hasonlót kiegészítést
lehet fűzni a bizonyítás 3.⇒2. részéhez is, úgyhogy az intervallumon értelmezett differenciálható konvex függvényeknek
még a kiterjesztett értelemben vett derivált függvénye is monoton növő.

11.5. Tétel (a differenciálható szigorúan konvex függvények jellemzései). Legyen az I ⊂ R nemelfajuló in-
tervallum bal végpontja a, jobb végpontja b, továbbá f : I → R olyan folytonos függvény, amely differenciálható az
(a, b) intervallum minden pontjában. Ekkor az alábbi kijelentések egymással egyenértékűek: 1. f szigorúan konvex,
2. f ′ szigorúan monoton növő az (a, b) intervallumon, 3. ha u ∈ (a, b) és x ∈ I \ {u}, akkor

f(x) > f(u) + f ′(u)(x − u).

11.6. Következmény (a kétszer differenciálható (szigorúan) konvex függvények). Legyen az I ⊂ R nemel-
fajuló intervallum, f : I → R olyan folytonos függvény, amely kétszer differenciálható az I intervallum minden
belső pontjában. Ekkor a következő két kijelentés egymással egyenértékű: 1. f konvex, 2. f második deriváltja az I
intervallum minden belső pontjában nemnegatív. Az alábbi kijelentések szintén egymással egyenértékűek: 1. f szi-
gorúan konvex, 2. f második deriváltja az I intervallum minden belső pontjában nemnegatív, és I-nek nincs olyan
nyílt részintervalluma, amelyen f ′′ azonosan nulla volna.

Az utóbbi állítás felhasználásával (is) ellenőrizhető, hogy az alábbi függvények mindegyike szigorúan konvex:
az összes exponenciális függvény, az 1-nél kisebb alapú logaritmusfüggvények, az id · ln függvény, akármelyik 1-nél
nagyobb kitevőjű hatványfüggvénynek a nemnegatív számok halmazára való leszűkítése, akármelyik negatív kitevőjű
hatványfüggvénynek a pozitív számok halmazára való leszűkítése, a ch függvény, a sh |[0,+∞), a th |(−∞,0], minden
k egész esetén a szinusz függvény leszűkítése a [(2k − 1)π, 2kπ] intervallumra és a koszinusz függvény leszűkítése a
[(2k + 1/2)π, (2k + 3/2)π] intervallumra, stb. Hasonlóan, szigorúan konkáv például az összes 1-nél nagyobb alapú
logaritmusfüggvény, és mindazon hatványfüggvényeknek a nemnegatív számok halmazára való leszűkítése, amelyeknek
a kitevője a (0, 1) intervallumban van (így például a négyzetgyökfüggvény).

Megemlítjük az előző bekezdésben mondottak néhány egyszerű következményét. Az alábbi tételek közül az elsőben
az exponenciális függvény szigorú konvexitását, a másodikban a hatványfüggvények (leszűkítésének) szigorúan konvex,
illetve szigorúan konkáv voltát használjuk.

11.7. Tétel (súlyozott mértani, illetve számtani közép). Ha n 1-nél nagyobb egész, minden k ∈ 1, n esetén az
ak, bk, tk számok mindegyike pozitív, t1 + t2 + . . .+ tn = 1, továbbá mind az a1, . . . , an, mind a b

1/t1
1 , . . . , b

1/tn
n számok

között van két különböző, akkor

I.

n
∏

k=1

atk

k <

n
∑

k=1

tkak,

II.

n
∏

k=1

bk <

n
∑

k=1

tkb
1

tk

k .

Bizonyítás. I. Legyen minden k ∈ 1, n esetén xk := ln ak. Az ln függvény injektív volta miatt az xk számok között
is van két különböző.

n
∏

k=1

atk

k =

n
∏

k=1

(exk)
tk =

n
∏

k=1

etkxk = exp

(

n
∑

k=1

tkxk

)

<

n
∑

k=1

tkexk =

n
∑

k=1

tkak ,

az egyenlőtlenség az exponenciális függvény szigorú konvexitása miatt teljesül, az egyenlőségek pedig xk definíciója,
illetve a hatványozás azonosságai miatt.

II. Legyen ak := b
1

tk

k és alkalmazzuk az I. állítást. ¤

11.8. Megjegyzés. Az I. egyenlőtlenség bal, illetve jobb oldalán lévő számokat az a1, . . . , an számok t1, . . . , tn „súlyok-
kal” képezett súlyozott mértani, illetve számtani közepének szokták nevezni; a t1 = · · · = tn = 1/n esetben megkapjuk
a közönséges mértani, illetve számtani közepet.



Szilágyi Tivadar Differenciálszámítás 18

11.9. Megjegyzés. Az előző tétel bizonyításából kiolvasható, hogy az ottani I. egyenlőtlenség egyenértékű az expo-
nenciális függvény szigorú konvexitásával: a következtetés iránya könnyen megfordítható, vagyis az I. egyenlőtlenségből
következik az exponenciális függvényre vonatkozó Jensen-egyenlőtlenség.

11.10. Tétel. Ha n 1-nél nagyobb egész, minden k ∈ 1, n esetén az ak számok mindegyike pozitív, továbbá az
a1, . . . , an számok között van két különböző, akkor a nullától különböző számok halmazán értelmezett

x 7→
(

1

n

n
∑

k=1

ax
k

)
1

x

=: f(x)

függvény szigorúan monoton növő.

Bizonyítás. Azt kell bizonyítanunk, hogy ha a nullától különböző u és v számok közül v a nagyobb, akkor

(

1

n

n
∑

k=1

au
k

)
1

u

<

(

1

n

n
∑

k=1

av
k

)
1

v

.

Ha v pozitív, akkor ez egyenértékű azzal, amit úgy kapunk, hogy mindkét oldalt v-edik hatványra emeljük:

(

1

n

n
∑

k=1

au
k

)
v
u

<
1

n

n
∑

k=1

(au
k)

v
u ,

az utóbbi pedig negatív u esetén a negatív (v/u) kitevőjű hatványfüggvény R+-ra való leszűkítésének, pozitív u
esetén az 1-nél nagyobb kitevőjű hatványfüggvény R+-ra való leszűkítésének szigorú konvexitásából következik. Ha
v negatív, akkor megint mindkét oldalt v-edik hatványra emelve

(

1

n

n
∑

k=1

au
k

)
v
u

>
1

n

n
∑

k=1

(au
k)

v
u ,

adódik, ekkor v/u ∈ (0, 1), így az utóbbi egyenlőtlenség a (0, 1)-beli kitevőjű hatványfüggvény R+-ra való leszűkítésé-
nek szigorúan konkáv voltából következik. Természetesen mindhárom alkalommal kihasználtuk azt, hogy ha az ak

számok között van két különböző, akkor az au
k számok között is van – ez abból következik, hogy az u kitevőjű

hatványfüggvény a pozitív számok halmazán szigorúan monoton, tehát injektív. ¤

11.11. Megjegyzés. Vegyük észre, hogy a tételben szereplő hatványközepekkel a függvényhatárérték tárgyalása során
már találkoztunk (f(x) az a1, . . . , an számok x kitevőjű, vagy x-edik hatványközepe).

11.12. Definíció. Tegyük fel, hogy az f függvény differenciálható az u ∈ intD(f) pontban. Az u pontról akkor
mondjuk, hogy inflexiós pontja az f-nek, ha van olyan r pozitív szám, melyre f |(u−r,u] szigorúan konkáv és f |[u,u+r)

szigorúan konvex, vagy fordítva. u-ról akkor mondjuk, hogy gyengébb értelemben vett inflexiós pontja f-nek, ha az
f − T f

u,1 függvény az u pontban szigorúan lokálisan növő vagy szigorúan lokálisan fogyó.

11.13. Megjegyzés. Minthogy a ϕ := f −T f
u,1 függvény az u helyen a 0 értéket veszi fel, e függvény u-beli szigorúan

növő, illetve fogyó volta egy olyan pozitív r szám létezésével egyenértékű, melyre egyrészt B(u, r) ⊂ D(f), másrészt a
u − r < x < u < y < u + r feltételeknek eleget tevő (x, y) párok mindegyikére

f(x) < T f
u,1(x) és f(y) > T f

u,1(y), illetve f(x) > T f
u,1(x) és f(y) < T f

u,1(y).

A gyengébb értelemben vett inflexiós pont esetében tehát arról van szó, hogy f grafikonja az (u, f(u)) pontban átmetszi
az e pontban a grafikonhoz húzott érintőt.

11.14. Állítás. Ha u inflexiós pontja f -nek, akkor gyengébb értelemben vett inflexiós pontja is az f-nek.

Bizonyítás. A szigorúan konvex/konkáv függvények különbségihányados-függvényeinek szigorúan monoton növő/fogyó
voltából következik, hogy ha u inflexiós pontja f -nek, akkor az

[

f(x) − f(u)

x − u
− f ′(u)

]

(x − u)
(

= f(x) − f(u) − f ′(u)(x − u) = f(x) − T f
u,1(x)

)
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szorzat első tényezőjének előjele u egy pontozott környezetén belül állandó és nem nulla: ha f az (u−r, u] intervallumon
szigorúan konkáv és az [u, u + r) intervallumon szigorúan konvex, akkor ez az előjel pozitív, a másik esetben negatív,
így az u r sugarú környezetéből vett x számokra f(x) − T f

u,1(x) előjele az első esetben megegyezik x − u előjelével, a

második esetben az x− u előjelével ellentétes. Ebből következik, hogy az f − T f
u,1 függvény az első esetben szigorúan

növő, a második esetben szigorúan fogyó az u pontban. ¤

11.15. Tétel. Legyen n 1-nél nagyobb egész, f az u pont egy környezetében n− 1-szer, magában az u pontban n-szer
differenciálható, továbbá tegyük fel, hogy minden i ∈ 2, n − 1 esetén f (i)(u) = 0.

1. Ha u gyengébb értelemben vett inflexiós pontja az f -nek és n páros, akkor f (n)(u) = 0,

2. Ha n páratlan és f (n)(u) 6= 0, akkor u inflexiós pontja az f -nek.

Bizonyítás. 1. A lokális Taylor-formula, illetve a többszörösgyök-feltétel szerint

f (n)(u) = n! lim
x→u

f(x) − T f
u,n−1(x)

(x − u)n
= n! lim

x→u

f(x) − f(u) − f ′(u)(x − u)

(x − u)n
.

A gyengébb értelemben vett inflexiós pont definíciójából következik, hogy az utolsó limx→u jelet követő szorzat első
tényezője u-ban előjelet vált, a második tényező előjele viszont u egy pontozott környezetén belül állandó és nem
nulla, így a szorzat határértékének létezéséből, illetve ennek ama következményéből, hogy a bal oldali határérték
megegyezik a jobb oldali határértékkel, azt kapjuk, hogy ez a határérték nulla.
2. A potbeli szigorú növekedés/fogyás n-edrendű elégséges feltétele (9.8.3.) szerint az f ′′ függvény az u pontban
szigorúan lokálisan növő, illetve fogyó – attól függően, hogy f (n)(u) pozitív, vagy negatív. Azaz van olyan r pozitív
szám, melyre f ′′(x) előjele az első esetben az (u−r, u)-beli x-ekre negatív és az (u, u+r)-beli x-ekre pozitív, a második
esetben fordítva, így az első esetben f |(u−r,u] szigorúan konkáv és f |[u,u+r) konvex, a második esetben fordítva. ¤

12. A trigonometrikus függvények és a π szám

A koszinusz- és a szinuszfüggvény, valamint a π szám értelmezésére és néhány alapvető tulajdonságának igazolására a
középiskolában geometriai módszereket szoktak használni. Ennek a tárgyalásmódnak egy precízebb változata tanul-
mányozható például Császár Ákos Valós Analízis című tankönyvének I.4.54. szakaszában (ez az I. kötet 138. oldalán
kezdődik és a 142. oldalán fejeződik be).

A koszinusz- és a szinuszfüggvény néhány ismert tulajdonságából most összeállítunk egy olyan minimális elemszámú
feltételrendszert, amely elvileg alkalmas a (cos, sin) függvénypár definiálására. Ez a feltételrendszer (C,S) ∈ RR×RR

függvénypárokra vonatkozik, és az alábbi négy feltételt tartalmazza:

(a) ∀x ∈ R C2(x) + S2(x) = 1,

(b) ∀(x, y) ∈ R2 C(x + y) = C(x)C(y) − S(x)S(y),

(c) ∀(x, y) ∈ R2 S(x + y) = S(x)C(y) + C(x)S(y),

(d) ∃r ∈ R+ ∀x ∈ (0, r) 0 < C(x) és 0 < S(x) < x < S(x)/C(x).

Az a tény, hogy létezik olyan függvénypár, amelyik teljesíti ezt a négy feltételt, szinte közismertnek nevezhető (miként
az is, hogy a legnagyobb olyan r pozitív szám, amellyel a (d) feltétel teljesül, π/2-vel egyenlő). Geometriai eszközökkel
történő bizonyítása megtalálható az imént említett könyvrészletben, de ismert több geometriamentes bizonyítása is,
ezek közül az egyikkel fogunk megismerkedni.

Lényegesen szűkebb körben ismert viszont, hogy a (C,S) = (cos, sin) pár az egyetlen ilyen függvénypár. Az, hogy
legfeljebb egy ilyen pár létezhet, kiolvasható az alábbi tétel (l) állításából, míg annak a bizonyítását, hogy létezik ilyen
függvénypár, a hatványsorok tárgyalása során fogjuk befejezni. Hangsúlyozzuk, hogy a koszinusz-szinusz függvénypár
bevezetésével együtt sor kerül a π szám ugyancsak geometriamentes bevezetésére is.

12.1. Tétel (a trigonometrikus függvények néhány tulajdonsága). Ha egy (C, S) ∈ RR × RR függvénypár
teljesíti a fenti (a), (b), (c), (d) feltételeket, akkor az alábbiakat is teljesíti:
(e) C(0) = 1, S(0) = 0, (f) C páros, S páratlan függvény,
(g) bármely (u, v) valós számpárra

C(v) − C(u) = −2S

(

v + u

2

)

S

(

v − u

2

)

és S(v) − S(u) = 2C

(

v + u

2

)

S

(

v − u

2

)

,
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(h) C folytonos a 0 helyen,
(i) S differenciálható a 0 helyen és S′(0) = 1,
(j) C is, S is folytonos függvény,
(k) C is, S is differenciálható függvény, minden u ∈ R esetén C ′(u) = −S(u), és S′(u) = C(u)
(l) minden valós v-re

lim
n→∞

n
∑

k=0

(−1)k v2k

(2k)!
= C(v) és lim

n→∞

n
∑

k=0

(−1)k v2k+1

(2k + 1)!
= S(v),

(m) azok között az r pozitív számok között, amelyekre teljesül a (d) feltétel, van legnagyobb, ez a C függvény legkisebb
pozitív gyöke,

ennek kétszeresét π-vel jelölve,
(n) S a [−π/2, π/2] intervallumon szigorúan monoton növő, C a [0, π] intervallumon szigorúan monoton fogyó, S/C
a (−π/2, π/2) intervallumon szigorúan monoton növő, és C/S a (0, π) intervallumon szigorúan monoton fogyó;
(o) a C, S függvények 2π szerint, míg az S/C, C/S függvények π szerint periodikusak.

Bizonyítás.(e) Ha (b)-t és (a)-t az x := y := 0 szereposztással alkalmazzuk, azt kapjuk, hogy a k := C(0) szám a
2 id2 − id−1 polinomfüggvény egyik gyöke, vagyis k = 1 vagy k = −1/2. Indirekt úton folytatjuk: tegyük fel, hogy
k = −1/2. Ebből és (a)-ból (x = 0) azt kapjuk, hogy S(0) 6= 0, így a (c)-ből az x := y := 0 szereposztással adódó
S(0) = 2S(0)C(0) egyenlet mindkét oldalát eloszthatjuk az S(0) számmal, tehát azt kapjuk, hogy −1 = 2k = 1.
k = 1-ből és (a)-ból persze rögtön következik, hogy S(0) = 0.
(f) Minden valós x számra

[C(x) − C(−x)]2 + [S(x) + S(−x)]2
(a)
= 2 − 2C(x)C(−x) + 2S(x)S(−x)

(b)
= 2 − 2C(−x + x) = 2 − 2C(0)

(e)
= 0.

(g) A középiskolában megismert módon az x := (v + u)/2, y := ±(v − u)/2 szereposztásokkal kaphatjuk (b)-ből az
első, (c)-ből a második azonosságot.
(h) Ha az imént bizonyított azonosságok közül az elsőt olyan (u, v) párokra alkalmazzuk, amelyek teljesítik a 0 ≤
u < v < δ egyenlőtlenségeket, akkor arra következtethetünk, hogy C szigorúan monoton fogyó a [0, δ) intervallumon,
hiszen ilyen (u, v) párok esetén (v + u)/2 és (v − u)/2 egyaránt benne van a (0, δ) intervallumban, így (d) miatt S
értéke ezeken a helyeken pozitív. Ennek a leszűkített függvénynek a monotonitása miatt C-nek létezik a 0 helyen a
jobb oldali határértéke. A C függvény páros volta miatt ez az A jobb oldali határérték egyszersmind a határértéke
is a C függvénynek, így azt kell bizonyítanunk, hogy A = 1. (d)-ből következik, hogy A nem lehet negatív, ezért
elég azt igazolni, hogy A ∈ {−1/2, 1}, vagyis elég azt igazolni, hogy A gyöke a 2 id2 − id−1 polinomfüggvénynek. A
második és a harmadik szakasz egyszerű tételeiből következik, hogy az x 7→ 2C2(x)−C(2x)− 1 függvény határértéke
a 0 helyen 2A2 − A − 1, viszont a (b) és (a) feltételek szerint (y := x) ez az azonosan nulla függvény, így határértéke
0.
(i) Legyen ε tetszőleges pozitív szám. A C függvény 0-beli folytonossága miatt vehetünk egy olyan δ ∈ (0, r] pozitív
számot, melyre minden x ∈ (0, δ) esetén 1 − ε < C(x) ≤ 1. Ezek után a (d) feltételből következik, hogy ezekre az x
számokra

1 − ε < C(x) <
S(x)

x
< 1,

végül az S/ id függvény páros voltából következik (lásd (f)-t), hogy ezek az egyenlőtlenségek akkor is teljesülnek, ha
x ∈ (−δ, 0).
(j) S páratlan, így (d)-ből következik, hogy minden x ∈ (−r, r) esetén |S(x)| ≤ |x|. Legyen u ∈ R, ε ∈ R+, és legyen
v az u középpontú, min{r, ε} környezet tetszőleges eleme. Ekkor – felhasználva egyrészt a (g) azonosságokat, másrészt
azt, hogy (a) következtében mind a C, mind az S függvény értékkészlete rész a [−1, 1] intervallumnak –

|C(v) − C(u)| = 2

∣

∣

∣

∣

S

(

v + u

2

)
∣

∣

∣

∣

·
∣

∣

∣

∣

S

(

v − u

2

)
∣

∣

∣

∣

≤ |v − u| < ε,

|S(v) − S(u)| = 2

∣

∣

∣

∣

C

(

v + u

2

)
∣

∣

∣

∣

·
∣

∣

∣

∣

S

(

v − u

2

)
∣

∣

∣

∣

≤ |v − u| < ε.

(k) Ismét a (g) azonosságokat alkalmazzuk.

C(x) − C(u)

x − u
= −

S

(

x − u

2

)

x − u

2

· S
(

x + u

2

)

,
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itt a jobb oldal első tényezőjének határértéke az u helyen 1, hiszen ez az S/ id külső, és az injektív x 7→ (x−u)/2 belső
függvény kompozíciója és a belső függvény határértéke az u helyen 0, a második tényezőé S(u), mert ez a folytonos
S külső, és az x 7→ (x + u)/2 belső függvény kompozíciója és a belső függvény határértéke az u helyen u-val egyenlő.

S(x) − S(u)

x − u
=

S

(

x − u

2

)

x − u

2

· C
(

x + u

2

)

,

itt a jobb oldal első tényezőjének határértéke az u helyen 1, hiszen ez az S/ id külső, és az (injektív) x 7→ (x − u)/2
belső függvény kompozíciója és a belső függvény határértéke az u helyen 0, a második tényezőé C(u), mert ez a
(folytonos) C külső és az injektív x 7→ (x + u)/2 belső függvény kompozíciója, és a belső függvény határértéke az u
helyen u-val egyenlő.
(l) Az állítás v = 0 esetén nyilvánvaló, ezért a továbbiakban feltehetjük, hogy v 6= 0. (k)-ból következik, hogy mind
a C, mind az S függvény kétszer differenciálható, és C” = −C, S” = −S, ebből az, hogy C is, S is háromszor
differenciálható, és C ′′′ = S, S′′′ = −C, ebből pedig az, hogy mind a C, mind az S négyszer differenciálható, és
C(4) = C, S(4) = S. Ezek után egyszerű teljes indukcióval adódik, hogy minden pozitív egész n-re mind a C, mind az
S függvény 4n − 3-szor is, 4n − 2-ször is, 4n − 1-szer is és 4n-szer is differenciálható (így mindkét függvény végtelen
sokszor differenciálható), továbbá hogy minden valós u-ra mind az n 7→ C(n)(u), mind az n 7→ S(n)(u) sorozat
4 szerint periodikus, és mindkét sorozat abszolút értéke 2 szerint periodikus. Ebből (u := 0) azt kapjuk, hogy a
bizonyítandó állítások így fogalmazhatók át: limn→∞ |C(v) − TC

0,2n(v)| = 0, illetve limn→∞ |S(v) − TS
0,2n+1(v)| = 0.

A Lagrange-maradéktagos Taylor-formula szerint minden pozitív egész n-hez található a 0 és a v között olyan wn,
melyre

|C(v) − TC
0,2n(v)| =

|C(2n+1)(wn)||v|2n+1

(2n + 1)!
≤ |v|2n+1

(2n + 1)!

(az utolsó egyenlőtlenség abból következik, hogy a |C(2n+1)| = |S| függvény minden értéke a [0, 1] intervallumban van),
és a majoráns sorozat nullsorozat, hiszen egy (xn/n!) alakú sorozat részsorozata. Az (|S(v) − TS

0,2n+1(v)|) sorozat
nullához tartása ugyanígy igazolható, a maradéktagban ezúttal a |S(2n+2)| függvény szerepel, de ez is megegyezik az
|S| függvénnyel.

(m) Jelölje A azoknak az r pozitív számoknak a halmazát, amelyekre minden x ∈ (0, r) esetén C(x) > 0, míg
B azokét, amelyekre teljesül (d). (d) értelmezése alapján nyilvánvaló, hogy B ⊂ A, most igazoljuk, hogy A ⊂ B.
Ehhez már használhatjuk azt a tényt, hogy a vizsgált (C, S) függvénypárunk teljesíti a (k) feltételt. Abból, hogy
S(0) = 0 és minden x ∈ [0, r) esetén S′(x) = C(x) > 0, következik, hogy S|[0,r) szigorúan monoton növő, így az S
függvény a (0, r) intervallumon valóban csak pozitív értékeket vesz fel. Ebből, és a C2 +S2 = 1 azonosságból kapjuk,
hogy C a (0, r) intervallumon mindenütt 1-nél kisebb (és −1-nél nagyobb) értéket vesz fel, vagyis itt a 0 helyen is
folytonos x 7→ x−S(x) függvény deriváltja pozitív, aminek köszönhetően ez a függvény a [0, r) intervallumon szigorúan
monoton növő, következésképp a (0, r) intervallumon csak pozitív értékeket vesz fel. Ugyanígy bizonyíthatjuk az utolsó
egyenlőtlenséget is, ezúttal elég az x 7→ S(x)/C(x) − x függvényről bizonyítani, hogy a deriváltja a (0, r) intervallum
minden pontjában pozitív: ez a derivált egy x ∈ (0, r) pontban (C2(x) + S2(x))/C2(x) − 1 = 1/C2(x) − 1, és mint
azt az imént láttuk, |C(x)| < 1.

Mármost (supB =) supA ∈ A(= B) igazolása céljából csak annyit kell megjegyezni, hogy egy supA-nál kisebb x
pozitív szám esetén C(x) azért pozitív, mert – a felső határ definíciója szerint – van x-nél nagyobb A-beli elem.

Most azt igazoljuk, hogy a C függvény értékkészletének alsó határa negatív. Ez egyenértékű egyrészt azzal, hogy
van negatív szám az értékkészletében, másrészt C páros volta ((f)) és C(0) = 1 > 0 ((e)) miatt azzal is, hogy C a
pozitív számok halmazán felvesz negatív értéket is, amiből persze következik, hogy az A(= B) halmaz felső határa
pozitív valós szám. Indirekt úton okoskodunk: tegyük fel, hogy i := inf R(C) ≥ 0, legyen ε tetszőleges pozitív szám, u
pedig olyan valós szám, melyre 0 ≤ i ≤ C(u) ≤ i+ ε. Ekkor (b)-ből, (a)-ból és az alsó határ definíciójából következik,
hogy i ≤ C(2u) = 2C2(u)− 1 ≤ 2(i + ε)2 − 1. Az ε 7→ 2(i + ε)2 − i− 1 polinomfüggvény folytonossága miatt, éspedig
a 0-beli előjeltartása miatt ebből azt kapjuk, hogy 0 ≤ 2i2 − i − 1 = (2i + 1)(i − 1), tehát (tekintettel az indirekt
feltevésre) i ≥ 1, ebből R(C) ⊂ [−1, 1] miatt adódik, hogy C az azonosan 1 függvény, így (a) miatt S az azonosan
nulla függvény, ami ellentmond (d)-nek.

Végül C(supA) = 0-ra indirekt úton lehet következtetni abból, hogy (a folytonos) C függvény lokálisan előjeltartó
a sup A pontban: emiatt C(supA) > 0 esetén lézetne olyan δ > 0, melyre C értéke minden (0, sup A + δ)-beli helyen
pozitív lenne, vagyis az A halmaznak lenne sup A-nál nagyobb eleme, ha pedig C(supA) < 0 lenne, akkor sup A nem
lehetne eleme az A-nak.

(n) A bizonyítás (m) részének első bekezdése ismételhető az r = π/2 szereposztással.
(o) Abból, hogy π/2 gyöke a C függvénynek, először (a) és (b) segítségével kapjuk azt, hogy C(π) = 2C2(π/2)−1 =

−1, (c) segítségével azt, hogy S(π) = 2S(π/2)C(π/2) = 0, az utóbbiakból (b) és (c) felhasználásával azt, hogy minden
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valós x-re C(x + π) = −C(x) és S(x + π) = −S(x). Az utóbbiakból egy osztással kapjuk az S/C függvényre vonat-
kozó állítás bizonyítását, illetve külön-külön kétszer alkalmazva őket, kapjuk a 2π szerinti periodicitásra vonatkozó
állításokét. ¤

Az alábbi tételt a hatványsorok tárgyalása során bizonyítjuk:

12.2. Tétel. Minden valós x esetén léteznek az alábbi határértékek:

lim
n→∞

n
∑

k=0

(−1)k x2k

(2k)!
=: cos x és lim

n→∞

n
∑

k=0

(−1)k x2k+1

(2k + 1)!
=: sinx,

az így értelmezett cos, sin fügvények differenciálhatók, cos′ = − sin, sin′ = cos, cos 0 = 1 és sin 0 = 0.

A következő tételből kiderül, hogy ilyen módon valóban a kívánt függvényeket értelmezzük:

12.3. Tétel. Ha az összes valós számok halmazát önmagába képező C, S függvények teljesítik az (e), (k) feltételeket,
akkor teljesítik az (a), (b), (c), (d) feltételeket is.

Bizonyítás. (a) Minthogy a C2 + S2 függvény a 0 helyen (e) szerint az 12 + 02 = 1 értéket veszi fel és a deriváltja
minden valós x helyen egyenlő −2C(x)S(x)+2S(x)C(x) = 0-val, ez a függvény szükségképpen az azonosan 1 függvény.

(b) és (c) igazolása céljából elég azt bizonyítani, hogy minden valós y esetén az

R ∋ x 7→ [C(x)C(y) − S(x)S(y) − C(x + y)]2 + [S(x)C(y) + C(x)S(y) − S(x + y)]2 =: fy(x)

függvény az azonosan nulla függvény. fy azonosan nulla volta abból következik, hogy egyrészt fy(0) = [C(y)−C(y)]2+
[S(y) − S(y)]2 = 0, másrészt – miként az (k) alapján könnyen ellőrizhető – f ′

y azonosan nulla.
(d) bizonyításában az r pozitív számot válasszuk úgy, hogy a 0 szám r sugarú környezetében minden valós x-re

C(x) > 0 legyen. Ilyen szám a valamely pontban folytonos függvény lokális előjeltartásáról szóló tétel szerint létezik,
hiszen C(0) = 1 > 0, és C differenciálható a 0 helyen. Innentől kezdve a 12.1. Tétel (m) részének bizonyításából lehet
másolni egy részt: annak a bizonyítását, hogy (lásd az ottani jelöléseket) A ⊂ B.

¤

A koszinusz- és a szinuszfüggvény definícióját követheti természetesen a tangens- és a kotangensfüggvény értelme-
zése: tan := tg := sin / cos, cot := ctg := cos / sin.

A 12.1. Tétel (n) állítására alapozva be lehet vezetni az arkuszfüggvényeket:

arccos := (cos |[0,π])
−1, arcsin := (sin |[−π/2,π/2])

−1, arctg := (tg |(−π/2,π/2))
−1, arcctg := (ctg |(0,π))

−1,

melyeket – kissé pongyola szóhasználattal – a trigonometrikus függvények inverzeinek szoktak nevezni.
Számos apró állítást lehetne még bizonyítani a trigonmetrikus függvényekről, de mi most már csak egy dolgot

nézünk meg részletesen, azt, hogy mit lehet állítani differenciálhatóság szempontjából a tangens és a kotangens
függvényről, továbbá a trigonometrikus függvények inverzeiről:

12.4. Tétel. A tangens- és a kotangensfüggvény differenciálható, minden u ∈ D(tg), illetve u ∈ D(ctg) esetén
tg′(u) = 1/ cos2 u és ctg′(u) = −1/ sin2 u.

Bizonyítás. A 2.2. Tételből és az előző lemmából következik a differenciálhatóság ténye és a két formula érvényessége
is:

tg′(u) =
cos2 u + sin2 u

cos2 u
=

1

cos2 u
,

ctg′(u) =
− sin2 u − cos2 u

sin2 u
= − 1

sin2 u
.

¤

12.5. Állítás. Az arcsin és arccos függvények minden u ∈ (−1, 1) pontban differenciálhatók,

arcsin′(u) =
1√

1 − u2
= − arccos′(u),

továbbá arcsin′
+(−1) = arcsin′

−(1) = +∞ és arccos′+(−1) = arccos′−(1) = −∞.
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Bizonyítás. Alkalmazzuk az inverz deriváltjáról szóló tételt (3.4.) a g := sin |[−π/2,π/2], és a g := cos |[0,π] függvényre,
legyen először v := arcsin u, illetve v := arccos u, másodszor v := −1, harmadszor v := 1. Minthogy a cos függvény a
[−π/2, π/2] intervallumon és a sin függvény a [0, π] intervallumon csak nemnegatív értékeket vesz fel,

1

arcsin′(u)
= cos v =

√

1 − sin2 v =
√

1 − (sin(arcsinu))2 =
√

1 − u2,

illetve
1

arccos′(u)
= − sin v = −

√

1 − cos2 v = −
√

1 − (cos(arccos u))2 = −
√

1 − u2,

innen reciprokokra áttérve adódik az első két állítás.
A végpontokban vett egy oldali deriváltakra vonatkozó állítások közvetlenül következnek a 3.4. Tételből, hiszen a
sin |[−π/2,π/2] függvény szigorúan monoton növő, deriváltja a két végpontban nulla, a cos |[0,π] függvény szigorúan
monoton fogyó és a deriváltja a két végpontban nulla. ¤

12.6. Megjegyzés. Hasonlóan bizonyítható a következő állítás is (a bizonyítást a Kedves Olvasó feltétlenül gondolja
végig): minden u ∈ R esetén

arctg′(u) =
1

1 + u2
= −arcctg′(u).


