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1. A differencialhatésag és a derivalt fogalma

Emlékeztetiink az egyvaltozos kiilonbségi hanyados fogalméra, melyet a konvex fiiggvények targyalasa soran vezettiink
be: ha f valos valtozos valos értéki fiiggvény és u € D(f), akkor a D(f) \ {v} halmazon értelmezett

fz) = fu)

z— Kl(z):=
r—u

fliggvényt az f fliggvény u ponthoz tartozo kiilonbségihanyados-fliggvényének nevezziik.

1.1. Definici6é (belsé pont). Az u wvalds szdmrol akkor mondjuk, hogy belsé pontja a H szdmhalmaznak, ha van
olyan r pozitiv szam, melyre (u —r,u+1r) C H. A H szdmhalmaz belsd pontjainak halmazdt az int H jelsorozattal
jelolyiik.

1.2. Példa. Kénnyen beldthatd, hogy int @ = int(R \ Q) = 0; tovdbbd, hogy ha I olyan nem-elfajulé intervallum,
amelynek bal végpontja o, jobb végpontja B, akkor int I = (o, 3).

1.3. Megjegyzés. Nyilvanvalo, hogy ha u belsd pontja a H szdamhalmaznak, akkor w torloddsi pontja H-nak, sét a
H\ {u} szamhalmaznak is.

1.4. Definicio. Egy G szamhalmazrol akkor mondjuk, hogy nyilt, ha G minden eleme belsé pontja G-nek.

1.5. Megjegyzés. Kinnyen igazolhatd, hogy egy szdmhalmaz pontosan akkor nyilt, ha unidhalmaza egy pdronként
diszjunkt nyilt intervallumokbdl dllé megszdmldlhato halmazrendszernek. Specidlisan persze minden nyilt intervallum
is nyilt halmaz.

1.6. Definicié (derivalt, differenciadlhatosag egy pontban). Ha u belsé pontja az f fiigguény értelmezési tar-

tomdnydnak és létezik a
lim K7 — 1im 1) =70
u u T—u €T — U
hatdrérték, akkor ezt a hatdarértéket az f fiigguény u-beli derivdltjianak, vagy differencidalhdnyadosdnak nevezzik és az

f!(u) szimbolummeal jeloljik. Ha rdaddsul ez a hatdrérték véges, akkor azt mondjuk, hogy az f figgvény differencidlhato
(vagy derivdlhatd) az u helyen.

A derivalt fogalménak bevezetését elsGsorban a fizika és a geometria igényelte. Ezzel kapcsolatban érdemes végig-
gondolni a kévetkez6 két megjegyzést.

1.7. Megjegyzés (a derivalt geometriai jelentése). Egyszerid dbra készitésével konnyen meggydzddhetink arrdl,
hogy a K () szdm a figguénygrafikon (x, f(z)) és (u, f(u)) pontjain dthaladd (szel6) egyenes irdnytangensével egyenld.
A fiigguénygrafikonhoz annak (u, f(u)) pontjdban hizott érinté egyenesen kézenfekvd azt az egyenest érteni, amely
egyrészt dthalad ezen a ponton, mdsrészt f'(u) € R esetén irdnytangense f'(u)-vel egyenld, f'(u) ¢ R esetén pedig az
»y-tengellyel” parhuzamos.

1.8. Megjegyzés (pillanatnyi sebesség, mint derivalt). Tegyiik fel, hogy egy szabadesést végzd tomegpontnak
valamely vizszintes siktol szdmitott elGjeles tavolsdga at idépontban f(t) := h— % -g-t2 (h adott valds szdm). Ennek a
tomegpontnak az u és t(# u) iddépontok dltal meghatdrozott iddintervallumra vonatkozo (eldjeles) dtlagsebessége éppen
a KI(t) = =% - (t + u) szdmmal egyenld. A tomegpontnak az u idépontban vett pillanatnyi sebességén kézenfekvd
alim, K = —g-u = f'(u) szdmot érteni. Hasonld a helyzet dltaldban is akkor, ha a témegpont egyenesvonali
mozgdst végez: azt az egyenest, melyen a mozgdsdt végzi, szdmegyenesnek képzelve, a tomegpont helye minden egyes t
iddpontban egyetlen f(t) szdmmal azonosithatd, a [t,u], illetve [u,t] iddintervallumra vonatkozo dtlagsebességen most
is a K] (t) szamot, az u idéponthoz tartozd pillanatnyi sebességen most is az f'(u) szdmot értik — feltéve persze, hogy
az utobbi létezik. Ez a gondolatmenet még tovdbb dltaldnosithatd: ha egy fizikai mennyiség idében vdltozik, de minden
egyes t iddpontban egyetlen f(t) szdmmal adhatd meg, akkor e fizikai mennyiség vdltozdsdinak pillanatnyi sebességét
hasonléan értelmezhetjiik.
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1.9. Példa (a konstans fiiggvények differencialhatésaga). Ha f tetszdleges szamhalmazon értelmezett konstans
fiigguény és u € int D(f), akkor — lévén a K fiiggvény azonosan nulla — f differencidlhato az u helyen és f'(u) = 0.

1.10. Példa (a pozitiv egész kitevsji hatvanyfiiggvények differencidlhatésaga). Bdrmely n pozitiv egész és
u € R esetén az id™ fiigguény differencidlhaté az u helyen és ott a derivdltja n - u™~'-nel eqyenld, hiszen az

n—1
a" —u" kE_ ,n—1—k
T — = :
— > aku
k=0
kilonbségihdnyados-figguény olyan n tagi dsszeq, amelynek minden egyes tagja tart az u™ ' szdmhoz.

1.11. Példa (az exp, és log, fiiggvények differenciadlhatosaga). Az eldzd fejezet ,,Néhdny nevezetes hatdrér-
ték” cimi szakaszdban bizonyitottak szerint minden 1-t6l kilonbozé ¢ pozitiv szam, minden a € RT és minden u € R
esetén az exp,. fliggvény differencidlhatd az u helyen, ott a derivdltja Inc- c*, tovdbbd a log, figgvény differencidlhato
az a helyen és ott a derivdltja (1/1Inc) - (1/a).

1.12. Definicié (bal és jobb oldali derivalt, ill. differencidlhatosag). Legyen [ walds wvdltozés wvalds értékd
figgvény és u € D(f). Ha létezik olyan r pozitiv szam, melyre (u — r,u] C D(f) [illetve [u,u + 1) C D(f)] és a
K} fiigguénynek van bal [jobb] oldali hatdrértéke az u helyen, akkor azt az f fiiggvény u helyen vett bal [jobb] oldali
derivdltjanak nevezzik és az f (u) [fi (w)] szimbolummal jeloljik. Ha az f figgvénynek az u helyen van bal [jobb]
oldali derivdltja és az véges, akkor azt mondjuk, hogy f balrol [jobbrol] differencidlhats az u helyen.

1.13. Definici6 (differencialhaté fliggvény). Ha az f fiigguény értelmezési tartomdnydnak minden pontja belsd
pont (D(f) Cint D(f)) és f az értelmezési tartomdnydnak minden egyes pontjiban differencidlhatd, akkor f-et révi-
den differencidlhatonak nevezzik. Ugyancsak differencidlhatonak neveziink egy intervallumon értelmezett f fliggvényt
abban az esetben is, ha — az intervallum bal végpontjdit a-val, jobb végpontjdt b-vel jelolve — f az (a,b) intervallum
minden pontjaban differencidlhatd, tovibbd a € D(f) esetén az a pontban jobbrdl és b € D(f) esetén a b pontban balrdl
differencidlhato.

Egy fliggvény valamely pontban vett derivaltjanak a jelolése azt sugallja, hogy azt egy masik fliggvénynek az adott
pontban vett helyettesitési értékeként szokas felfogni.

1.14. Definicié (derivalt fiiggvény). Ha egy f figguény értelmezési tartomdnydnak van legaldbb egy olyan belsd
pontja, melyben f differencidlhatd, akkor az dsszes ilyen pontok H halmazdn értelmezhetjik az f' : H — R fligguényt,
ezt nevezzik az f derivdlt fligguényének. Hasonléan értelmezhetd a bal oldali €s jobb oldali derivdlt fliggvény is.

1.15. Tétel (adott pontbeli differencialhatésag ekvivalens megfogalmazasai). Legyen [ egyvdltozds valds
fiigguény, u € int D(f) és A € R; ekkor a kiévetkezd négy kijelentés eqgymdssal eqyenértékd: 1. f differencidlhats az u

helyen és f'(u) = A,
fl@) = flu) = A-(z —u)

2. lim =0,
T—U r—u
A A C) R Celk) Y

4. van olyan CI : D(f) — R fiigguény, amely folytonos az u helyen, ott a helyettesitési értéke A, s amelyre minden
x € D(f) esetén
f(@) = fu) = Ci(x) - (x — ).

Bizonyitas. Az, hogy a K kiilonbségihdnyados-fiiggvény hatarértéke létezik és A-val egyenls, egyenértékii azzal,
hogy az = — K/ (z) — A fiiggvény hatéarértéke az u helyen 0, hiszen egy y szamra vonatkozoéan ,y € B(A,¢e)” és
2y — A € B(0,e)” egyarant azt jelenti, hogy |y — A| < e. Ezzel az 1. és 2. kijelentések egyenértékiiségét igazoltuk.

A 2. és 3. allitasok egyenértékiisége abbol a két ténybdl kovetkezik, hogy egyrészt egy fiiggvény hatarértéke valamely
u helyen pontosan akkor 0, ha ott az abszolutértékének a hatarértéke 0 (Jly — 0| = ||y| — 0]), masrészt a 2.-ben, illetve
3.-ban szerepld fiiggvényeknek ugyanaz az abszolutértéke.

1.=4. Az el6z6 fejezetnek azt a tételét alkalmazhatjuk, éspedig az (f,v) := (K}, A) parra, amelyik a véges helyen
vett véges fiiggvény-hatarértéket a folytonossaggal fogalmazza meg. Ebbdl azt kapjuk, hogy a K/ fiiggvénynek az a
D(f)-re valo kiterjesztése, amely az u helyen az A értéket veszi fel, folytonos az u helyen. Ez a fliggvény — és csakis
ez — jatszhatja CJ szerepét.

4.=1. Az el6z6 fejezet imént idézett tételének ezuttal a masik felét alkalmazhatjuk a kiilonbségihanyados-fiiggvényre:
az u pontban folytonos kiterjesztés létezésébdl kovetkezik, hogy létezik a lim, K és egyenls e kiterjesztésnek az u
helyen vett helyettesitési értékével. ([
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1.16. Megjegyzés. A /4. dllitdsra a tovdabbiakban mint a differencidlhatdsdag Carathéodory-féle definicidjdra fogunk
hivatkozni. A 3. dllitdsnak csak annyi lesz a szerepe, hogy motivdcicul fog szolgdlni a tébbvdltozds fliggvények diffe-
rencidlhatdsdga fogalmdnak bevezetésénél, mig a 2. dllitds csupdn arra szolgdlt, hogy (még) kinnyebbé tegye az 1. és
3. dllitdsok egyenértékiiségének bizonyitdsdt.

1.17. Megjegyzés. Konnyen ellendrizhetd, hogy a tétel — értelemszerd vdltoztatdsokkal — dtvihetd az egy oldali dif-
ferencidlhatdsdgra, illetve derivdltra is. Hasonld a helyzet az aldbbi tétellel is: a bal [jobb] oldali differencidlhatdsdgbol
kévetkezik a bal [jobb] oldali folytonossdy.

1.18. Tétel (a folytonossag, mint a differencialhatosag sziikséges feltétele). Ha f differencidlhaté az u €
int D(f) pontban, akkor ott folytonos is.

Bizonyitas. Felhasznalva az el6z6 tétel 1.=-4. éllitasat, az f fiiggvény elGallithato a konstans — tehat folytonos —
x + f(u), és az u helyen szintén folytonos z +— C(z) - (x — u) fiiggvény Ssszegekeént. O

1.19. Megjegyzés (a folytonossag nem elegendé a differencialhatésaghoz). A tétel megforditisa nem igaz.
Példdul az abszolitérték-figguény folytonos a 0 helyen (miként minden mds helyen is, ldsd az el6z8 fejezetet), de a
0 ponthoz tartozo kilénbségihdnyados-fligguényének nincs hatdrértéke a 0 helyen, hiszen ha lenne, akkor az ott a bal
€s a jobb oldali hatdrértékével is egyenld lenne, viszont ez az utobbi két hatdrérték nem egyenld eqgymdssal: az eldbbi
—1, az utobbi +1. Megjegyezziik tovdbbd, hogy ismeretesek példdk olyan folytonos f : R — R fligguvényre is, amelyek
egyetlen pontban sem differencidlhatdk.

2. Differencidlhatésag és az alapmiiveletek

2.1. Tétel (az Osszeg, a kiilonbség és a szorzat differencialasi szabalya). Tegyiik fel, hogy a valds vdltozds
valds értékd f és g egyvdltozds fligguények differencidlhatdk az u helyen. Ekkor

L f+ g differencidlhaté az u helyen és (f + g)' (u) = f'(u) + ¢'(u),

II. f — g differencidlhaté az u helyen és (f — g)'(u) = f'(u) — ¢'(u),

III. f - g differencidlhaté az u helyen és (f - g)'(u) = f/(u) - g(u) + f(u) - ¢’ (u).

Bizonyitas.

Ha az u pont 7y, illetve vy sugara kornyezete része az f, illetve g fiiggvény értelmezési tartomanyanak, akkor a
min{rys,ry} sugari kornyezete része a két értelmezési tartomany metszetének, ami egyenls az Osszeg, a kiilonbség és
a szorzat értelmezési tartomanyaval. Ezek szerint u az utébbinak is bels§ pontja.

Marmost a tétel I. (IL.) allitasa az Osszegfiiggvény (kiilonbségfiiggvény) hatéarértékérsl szolo elemi tételbdl kivet-
kezik, hiszen — amint az a kiilsnbségihanyados-fiiggvény definici6ja alapjan kdnnyen ellenérizhets — K/ +9 = K + K9
(Ki~9 = K{ — KY).

III. Minden = € D(f) N D(g) \ {u} esetén
f@)g(x) = flwg(u)  f(z)g(x) = fwg(x) + f(w)g(x) = flw)g(uw) _ [f(z) = fw)lg(z) + f(u)lg(z) — g(u)] (1)

r—u r—u r—u

vagyis K9 = gK7 + f(u)K9. Ezek utan az dsszeg és a szorzat hatarértékérsl szolo tételekre hivatkozhatunk, hiszen
g differencialhat6 az u pontban, igy ott folytonos is és u € D(g)’, ezért lim, g = g(u). O

2.2. Tétel (a hanyados differencialasi szabalya). Tegyik fel, hogy az f és g figguények differencidlhatok egy
olyan u pontban, ahol a g figgvény értéke nem nulla. Ekkor f/g is differencidlhaté az u helyen és

£ (= £ g(w) = f(u) - g'(w)
(5) Gw?

Bizonyitas. Annak igazolasa céljabol, hogy u € int D(f/g), két szam kisebbikeként nyerhetiink egy az (w—r,u+r) C

D(f/qg) feltételnek eleget tevs r pozitiv szamot. Abbol, hogy f differencialhato az u helyen, adodik egy olyan ry pozitiv

szam létezése, melyre (u —rg,u+1ry) C D(f). Masrészt abbol, hogy ¢ differencialhato az u helyen, kivetkezik, hogy

g ott folytonos is, az utobbibol — 1évén g(u) # 0 — az, hogy g lokélisan elGjeltarté az u pontban, ezért van olyan r,

pozitiv szam is, melyre minden x € B(u,r,) esetén x € D(g) és g(z) # 0. Ezek utan vilagos, hogy ry és r, kisebbike

olyan pozitiv szam, amilyet kerestiink. Marmost minden x € D(f/g) esetén
K1/o(n) — 90 6 _ 9)f(@) — f(w)(x)

B r—u 9(x)g(u)(x —u)

(2)
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g(W)f(z) — f(w)] — f(u)lg(z) —g(w)] _ g(w)K](z) - f(u)Ki(z)

9(x)g(u)(z — u) - 9(x)g(u) ’
a differencialhatosagi feltételek miatt lim, K7 = f/(u), lim, K7 = ¢'(u) és lim, g = g(u), ezért a fiiggvényhatarérték
és az algebrai alapmiiveletek kozti kapcsolatokrol szold elemi tételekbél éppen a kivant eredményt kapjuk. O

2.3. Megjegyzés. Ennek a szakasznak a tételeibdl a 1.9, 1.10. Példdk felhaszndldsdval adddik, hogy minden raciondlis
tortfiggvény differencidlhato.

2.4. Megjegyzés. Az el6zd két tétel nyilvin érvényben marad akkor is, ha differencidlhatdsdg illetve derivalt helyett
mindendtt bal [jobb] oldali differencidlhatdsdgot illetve bal [jobb] oldali derivdltat irunk.

3. A kompozici6 és az inverz fiiggvény differencidlhatosaga

3.1. Tétel (az Osszetett fliggvény differencialasi szabalya). Legyenek f és g valds vdltozds valds értékid fiigg-
vények. Ha g differencidlhato az u helyen és f differencidlhatd a v := g(u) helyen, akkor f o g is differencidlhatd az
u helyen, és (f o g)'(u) = f'(v) - g'(u).

Bizonyitas. El6szor azt igazoljuk, hogy u belsé pontja f o g értelmezési tartomanyanak. f differencialhatd a v
helyen, ezért van olyan e pozitiv szam, melyre (v —e,v +¢) C D(f). g differencialhato az u helyen, igy ott folytonos
is, ezért van olyan r pozitiv szam, melyre minden = € (u —r,u + r) esetén x € D(g) és |g(z) — g(u)| < €, ennélfogva
minden z € (u —r,u+7) esetén = € D(f o g).

A differencidlhatosag Carathéodory-féle definiciojat fogjuk hasznalni. Ha xz a D(f o g) halmaz tetszsleges eleme,
akkor

Flo(@)) = flg(w) = Cf (g(2))lg(z) — g(w)] = Cf (9(2)) T () (z — ),

tehat ha bevezetjiik a C{°9(x) := Cf (g(z))CJ(x) definiciot, akkor az 1.15. Tétel alapjan errél a Cf°9 fiiggvényrsl két
dolgot kell bizonyitani: 1. folytonos az u helyen, 2. helyettesitési értéke az u helyen f/(v) - ¢'(u). A két allitas koziil
az el6bbinek a bizonyitasa céljabol a 1.18, 1.15. tételekre kell hivatkoznunk, tovabba a(z egy-egy pontban) folytonos
fliggvények kompoziciojarol, illetve szorzatarol tanultakra, mig az utobbi a 1.15. tételbsl kovetkezik. O

3.2. Allitas (a hatvanyfiiggvények derivalhatoésaga a pozitiv helyeken). Ha o € R ésu € RT, akkor azid®
fligguény differencidlhatd az u helyen, és ott a derivdltja o - u*~ ' -nel egyenld.

Bizonyitas. Alkalmazzuk a most bizonyitott tételt az f := exp, g(z) := « - Inx szereposztassal: id® = fog
differencialhaté és derivaltja az u helyen exp(a - Inu) - (a/u) = u® - (a/u) = a - u®~1L. O

3.3. Megjegyzés. Konnyen igazolhatd, hogy az id® fiigguénynek minden nemnegativ o kitevd esetén van derivdltja
a 0 helyen is, éspedig a =0 és a > 1 esetén 0, a € (0,1) esetén +oo, mig o =1 esetén 1.

3.4. Tétel (az inverz fiiggvény derivalasi szabalya). Legyen I nemelfajuld intervallum, g : I — R folytonos
szigorian monoton fligguény, €s tegyiik fel, hogy egy v € I wvalds szamra létezik a lim, K9 =: A hatdrérték. Ekkor az
f =g fiiggvény u := g(v) ponthoz tartozé kiilénbségihdnyadosdnak is létezik a hatdrértéke az u helyen, éspedig

1
1 ha A € R\ {0},

0, ha A¢ R,

400, ha A =0 és g szigoruan monoton novd,
—00, ha A=0 és g szigorian monoton fogyd.

B = limK{: =
u

Ha v € int I (kévetkezésképp létezik a g'(v) derivdlt), akkor létezik az f'(u) derivdlt is, ha v bal végpontja I-nek és g
szigorian néve, vagy v jobb végpontja I-nek és g szigorian fogyd, akkor B = f! (u), ha v jobb végpontja I-nek és g
szigorian névd, vagy v bal végpontja I-nek és g szigorian fogyd, akkor B = f’ (u).

Bizonyitas. Bolzano tételének kovetkezménye szerint J := R(g) = D(f) is intervallum. Ennek nincs izolalt pontja,
igy az u-beli hatarérték létezésének kérdése felvethets. f intervallumon értelmezett szigorian monoton fiiggvény
inverze, ezért folytonos, igy u € J' miatt f(u) = lim, f. Es minthogy minden = € J \ {u} esetén

f@)—fw) 1 1 o
() ~ K@)
)

T—u rT—u g(f(z)) —

<
—~
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azaz K = (1/K9)o f, tovabba f — a szigorti monotonitésa miatt — csak a v helyen veszi fel az u értéket, a kompozicio
hatarértékérsl szolo masodik tételiink szerint elég azt bizonyitani, hogy az 1/K¢ fliggvény hatarértéke a v helyen a
négy esetben rendre 1/A, 0, +o0, illetve —co. E négy allitas koziil az els6 kozvetleniil a reciprok hatéarértékérsl szolo
tételbsl kovetkezik. A mésodik, a harmadik és a negyedik &llitas bizonyitasa céljabol csupén azt kell meggondolnunk,
hogy egyrészt a KJ fiiggvény minden értéke névé g esetén pozitiv, csokkens g esetén negativ, mésrészt noévekedd
g fiiggvény esetében a 0 < 1/K9(y) < € egyenlStlenség-par egyenértékd az 1/e < KI(y) egyenlStlenséggel, fogyd g
esetén a —¢ < 1/K9(y) < 0 egyenl6tlenség-par azzal, hogy K9 (y) < —1/e.

A kiegészits allitasok abbol kovetkeznek, hogy szigortan monoton névs/fogyo fiiggvény az értelmezési tartomany
legkisebb elemét az értékkészlet legkisebb/legnagyobb elemébe, az értelmezési tartomany legnagyobb elemét pedig
az értékkészlet legnagyobb/legkisebb elemébe viszi, s ha rdadasul a fliggvény intervallumon értelmezett folytonos
fliggvény, akkor az értékkészlet is intervallum. A v € int I esetben ezeket g két lesziikitésére kell alkalmazni (annak
bizonyitasa céljabol, hogy u is bels6 pontja J-nek), a lesziikitések értelmezési tartomanya I N (—oo, ], illetve T N
[v,+00), a tobbi esetben magara a g fliggvényre (annak bizonyitasa céljabol, hogy u bal, illetve jobb végpontja a J
intervallumnak). O

3.5. Tétel (a hiperbolikus fliggvények derivaltjai). A hiperbolikus figgvények differencidlhatok; minden v € R
esetén 1. sh’(u) = chu, II. ch'(u) = shu, IIL. th'(u) = 1/ch®u
IV. minden 0-t6l kiilonboz6 u € R esetén cth’(u) = —1/sh*u

Bizonyitas. A 3.1.Tétel szerint az x — e~ fliggvény differencialhato és a derivaltja az u helyen —e™". Ebbdl,
a 2.1. Tételbdl, és az exp’(u) = e* egyenlGséghbdl kovetkezik az 1. és a II. allitds. Az utobbiakbél IIL. és IV. ugy
kovetkezik, hogy elgszor alkalmazzuk az (sh,ch), illetve a (ch,sh) fiiggvényparra a hanyados differencialhatésagarol
sz6l6 tételt, majd az igy nyert formula egyszertibbé tétele céljabél a ch? z—sh? x = 1 azonossagot. O

Eltekintve attol, hogy az arch fliggvény az 1 helyen nem differencialhaté, a hiperbolikus fiiggvények inverze is
differencidlhaté az értelmezési tartoméanyuk minden egyes pontjaban:

3.6. Tétel (az ,area” fiiggvények derivaltjai). I. Minden valds u és minden 1-nél nagyobb x esetén

1 1
arsh’(u) = ——, arch’(z) = ———:
(u) Tt (z) =

II. arch!, (1) = +oo, III. minden u € (—1,1) és minden € R\ [—1,1] esetén

1 1

/ !
arth (U) = ﬁ, ar cth (fl’:) = m

Bizonyitas. A 3.4. Tételt alkalmazzuk, éspedig egymas utén &tszor.
I. Elészor a g := sh, v := arsh u szereposztassal:

1
———— =ch(arshu) = /1 + sh?(arshu) =V1+u2
arsh’(u)

majd térjiink at reciprokokra; méasodszor a g := ch|[; o), v := archx szereposztassal:

1
———— =sh(archz) = /ch®(archz) — 1 = Vz
arch’(z)

II. Harmadszor a g := ch|[1 ;o0), v := 0 szereposztassal (most a g szigortian monoton névé és g'(v) = 0).
III. Negyedszer legyen g := th és v := arthu:

1

1
———— = —(arthu) = 1 — th*(arthu) = 1 — u?
arth’(u )

az utolso el6tti egyenlSséget ugy kaptuk, hogy a ch? v — sh? v = 1 egyenletbd] kifejeztiik 1 / ch? v-t.
Végiil legyen g := cth és v := arcthu:

1 1
arcth (a) = f?(arcthu) =1—cth?(arcthu) = 1 — 2,
ar cth’(u s

ezittal a ch® v — sh® v = 1 egyenletbsl nem az 1/ ch? v-t, hanem a -1/ sh? v-t fejeztiik ki. (I
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4. Pontbeli (szigorii) novekedés és fogyas, a szélsGérték sziikséges feltétele

A kovetkezd fogalmakat elsGsorban azért vezetjiik be, hogy a differencialhaté fliggvények monotonitasanak vizsgélata
soran tegyenek jo szolgélatot.

4.1. Definicié (Adott pontbeli (szigort) névekedés és fogyas). Legyen [ egyvdltozos valds fiigguény és u €
D(f) N D(f)'. Azt mondjuk, hogy f az u pontban a) novd, b) fogyd, c) szigorian névd, d) szigorian fogyd, ha
van olyan & pozitiv szam, amelyre minden = € D(f) N B(u,d) esetén a Kl (x) helyettesitési érték a) nemnegativ, b)
nempozitiv, ¢) pozitiv, d) negativ.

4.2. Megjegyzés. A szorzds, illetve osztdas eldjelszabdalyaibol kovetkezik, hogy az iménti definiciéban a 6 szamra vo-
natkozdan megfogalmazott feltétel egyenértékd azzal, hogy minden olyan u-ndl kisebb x €és u-ndl nagyobb y szdmra,
amelyek benne vannak a D(f) N B(u,d) halmazban, teljesiinek az a) esetben az f(z) < f(u) < f(y), a b) esetben az
flz) > f(u) > f(y), a c) esetben az f(x) < f(u) < f(y), végil a d) esetben az f(x) > f(u) > f(y) egyenldtlensé-
gek. Hasonloképpen vildgos, hogy ha f monoton névd, monoton fogyd, szigorian monoton névd, illetve szigorian
monoton fogyd, akkor minden egyes u € D(f)ND(f)" pontban is novd, fogyd, szigorian novd, illetve szigorian fogyd.
Viszont abbdl, hogy egy f fligguény egy u pontban szigorian névd, nem kévetkezik, hogy volna az u pontnak olyan
K kéornyezete, amelyre az flx figguény monoton volna. Legyen példiul u := 0 és f az a figgvény, amely a 0-hoz
a 0-t, a 0-tdl killonbéz6 x szdamokhoz az x - (2 + sin%) szamot rendeli. Kdénnyen beldthatd, hogy ez a fiigguény a O
pontban lokdlisan ndévd. Azt, hogy ez a fiiggvény a 0 szdm egyetlen kdérnyezetében sem monoton névd, a kévetkezd
szakasz eqyik tételének felhaszndldsdval lehet igazolni: példdul azt lehet igazolni, hogy minden pozitiv egész n esetén
megadhatd olyan &, pozitiv szdm, hogy az x, = 1/(2nm) szdm 0, sugari kornyezetében minden xz-re f'(xz) < 0, s
emiatt az f figguénynek a B(xy, 6y) intervallumra vald leszikitése szigorian monoton fogyd. Eqyszeribb ellenpélda:
f:(=1,1) = R, f(0):=0, minden z € (—1,1) \ {0} esetén f(z) := ctgx.

4.3. Tétel (differencialhaté fliggvény pontbeli ndvekedésének /fogyasanak a feltételei). Legyen f wvalds
vdltozds valds értéki fiigguény, u € D(f) N D(f), és tegyiik fel, hogy létezik a lim, KJ =: A hatdrérték. 1. Ha f az u
pontban novd [fogyd], akkor A >0 [A<O0/; II. ha A >0 [A < 0], akkor f az u pontban szigorian névd [fogyd].

Bizonyitas. Mind a négy allitds kozvetlen kovetkezménye a fiiggvényhatarérték és rendezés kapcsolatairdl szolo
tételnek. O

4.4. Definicié (lokalis, illetve abszolat széls6értékek). Legyen f egyvdltozds valds fiigguény és u € D(f). Az a
kijelentés, hogy az f fiiggvénynek az u helyen lokdlis minimuma [mazimumal van, a kovetkezdt jelenti: van olyan 6
pozitiv szam, melyre minden x € D(f) N B(u,d) esetén f(x) > f(u) [f(x) < f(u)]. Az a kijelentés, hogy f-nek az u
helyen abszolit minimuma [mazimumal van, azt jelenti, hogy minden x € D(f) esetén f(x) > f(u) [f(z) < f(u)]. Az
a kijelentés, hogy az f figguénynek az u helyen abszolit [lokdlis| szélsdértéke van, azt jelenti, hogy f-nek az u helyen
B(u,0)-t és a > helyett a > jelet [< helyett a < jelet] irjuk, akkor kapjuk a szigord lokdlis minimum [mazimum]
definicicjdt. Hasonlo értelemben élesithetd az abszolit minimum [mazimum] fogalma is: a szigord abszolut minimum
[mazimum] definicidjaban is kizdrjuk az f(x) = f(u) egyenldséy teljesilését az u-tdl kilonbézd x-ekre.

4.5. Megjegyzés. Sokan vannak, akik a lokdlis szélséérték definicididban megkdvetelik az u € int D(f) feltétel telje-
stilését is.

4.6. Tétel (a lokalis szélsGérték elsérendii sziikséges feltétele). Ha az [ figgvénynek lokdlis szélséértéke van
egy olyan u pontban, ahol f-nek van deriwdltja, akkor f'(u) = 0.

Bizonyitas. Ha f/(u) # 0 volna, akkor az eléz6 tétel 11. allitdsa szerint f az u pontban szigortian novs, vagy fogyo
volna, de akkor — minthogy f/(u) létezése miatt u € int D(f), — f az u pont minden egyes kornyezetében felvenne
f(u)-nal kisebb, és f(u)-nal nagyobb értékeket is. O

A legutobb bizonyitott tételben a lokalis szélsGértéknek valoban csak szikséges feltételét adtuk, masszoval az
f(u) = 0 feltétel valoban nem elegends ahhoz, hogy f-nek az u helyen lokalis szélséértéke legyen. Egyszert ellenpélda:
f:=1id* u=0.

Raadasul léteznek olyan differencialhato f : R — R fiiggvények is, amelyeknek a derivaltja példaul az u = 0 helyen
nulla, de a 0 pont nem lokalis szélsGértékhelye sem az f|(_oo ), Sem az f|[o 4o0) lesztikitésnek. Egy ilyen fiiggvény
példaul az, amelyik a nulldhoz a nullat, tetszéleges nullatol kiilonbézs = valos szémhoz pedig az 22 - sin(1/z)-t rendeli
hozza.
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5. Intervallumon értelmezett (szigoriian) monoton fiiggvények

Az el6z6 szakaszban mondottak ellenére van olyan szituaci6, amikor pontbeli novekedési (fogyasi) feltétel teljesiilésébsl
lehet (globalis) monotonitasra kovetkeztetni:

5.1. Tétel. Ha J nemelfajuld intervallum és az f : J — R fiiggvény a J intervallum minden egyes pontjdban
a) névd, akkor f monoton névd,
b) fogyd, akkor f monoton fogyd,
¢) szigorian novd, akkor f szigorian monoton névd,
d) szigorian fogyd, akkor f szigorian monoton fogyd.

Bizonyitas. A c) allitast igazoljuk, a tobbi teljesen hasonloan bizonyithato. Tekintsiik a J intervallum tetszsleges
két kiilonboz6 elemét, jelojiik a kisebbiket a-val, a nagyobbikat b-vel, igazoljuk, hogy f(b) — f(a) > 0. Alljon H az
(a, b] intervallumnak azokbol az y elemeibdl, amelyekre minden = € (a,y| esetén f(z) — f(a) > 0, azt kell igazolnunk,
hogy b € H. Az a pontbeli szigori névekedés definiciéjabol kovetkezik, hogy ez a H halmaz tartalmazza az a pont egy
pontozott jobb oldali kérnyezetének minden elemét, tehat nemiires. H definicidja szerint b fels6 korlatja H-nak, igy
B:=supH € (a,b]. § € H, ugyanis az f(z)— f(a) > 0 egyenl6tlenség x € (a, 3) esetén abbol kovetkezik, hogy — a felss
hatar definicioja szerint — az x-nél nagyobb szamok kozott talalhato H-beli elem (a < x <y € H = f(z) — f(a) > 0),
x = [ esetén pedig abbol, hogy — lévén f a [ pontban szigorian névé — valamely § > 0 mellett f a (8 — 4, 5)
intervallumon mindeniitt f(3)-nél kisebb értéket vesz fel, de ha 8 nem volna H-ban, akkor ebben az intervallumban
kellene lennie H-beli elemnek. Végiil igazoljuk, hogy 6 nem lehet kisebb mint b, vagyis csakis § = b lehet. Valoban,
ha 8 < b lenne, akkor ismét vehetnénk egy olyan & pozitiv szdmot, mint az imént, s ebbdl azt kapnank, hogy
(8,8 +90) C H, vagyis azt kapnank, hogy H fels6 hatara hatarozottan nagyobb lenne, mint £. O

Sziikségiink lesz a most bizonyitott tétel alabbi variansara is:

5.2. Tétel. Legyen J nemelfajulo és nem nyilt intervallum, f : J — R a J-hez tartozé végpontban illetve végpontokban
folytonos fiigguény. Ha f az int J intervallum minden egyes pontjiban

a) névd, akkor f monoton névd,

b) fogyo, akkor f monoton fogyd,

¢) szigorian novd, akkor f szigorian monoton névd,

d) szigorian fogyd, akkor f szigorian monoton fogyd.

Bizonyitas. Ismét csak a c) allitast igazoljuk, a t6bbi hasonléan bizonyithat6. Az el6z6 tétel szerint f|ing 7 Szigorian
monoton novd, igy elég azt igazolni, hogy ha inf J = min J =: a, akkor minden = € int J esetén f(a) < f(z), tovdbba
ha sup J = maxJ =: b, akkor minden x € int J esetén f(x) < f(b). Az utébbi két allitas koziil ismét elég az elsét
bizonyitani, mert a masik hasonloan intézhets el. Az f|iy s fliggvény monoton névs volta miatt e fliggvénynek van az
a helyen jobb oldali hatarértéke és ez egyenld e fiiggvény értékkészletének also hataraval. Ennek a hatarértéknek meg
kell egyeznie az f fliggvény a-beli jobb oldali hatarértékével, ami az f a-beli folytonossaga miatt f(a)-val is egyenld.
Ezek szerint minden x € int J esetén f(a) < f(z). Ha volna olyan y € int J, melyre f(a) = f(y), akkor flin s szigort
monoton novs volta miatt az a és y kozotti x szdmok a J intervallumnak olyan bels6 pontjai lennének, melyekre
f(z) < f(a) = f(y) teljesiilne, ami ellentmondana az el6z6 mondatban mondottaknak. O

A pontbeli szigori névekedés [fogyas| elégséges feltételébdl (4.3.11.) és a most bizonyitott tételbdl nyomban kivet-
kezik az alabbi allitas:

5.3. Tétel (elégséges feltétel differencialhaté fliggvény szigord monotonitasara). Ha J nemelfajulé inter-
vallum, f € C(J)-nek J minden belsd pontjdban van derivdltja és ez minden belsé pontban pozitiv [negativ], akkor f
szigorian monoton nové [fogyd|.

5.4. Tétel (a differencidlhaté monoton fiiggvények jellemzése). Legyen J nemelfajuld intervallum, f €
C(J), és tegyik fel, hogy f-nek intJJ minden pontjiban van derivdltja. Ekkor a kévetkezd két kijelentés egymds-
sal egyenértékd: 1. f monoton névd [fogyd], 2. minden x € int J esetén f'(x) >0 [f'(x) <0/.

Bizonyitas. 1.=2. Ez a 4.3. Tételbdl és az azt megel6z6 Megjegyzés els6 mondatabol kovetkezik.
2.=1. Indirekt uton okoskodunk, csak a monoton névs esetet részletezziik. Ha volna olyan a € J és olyan a-nél
nagyobb b € J, melyekre f(b) < f(a) volna, akkor bevezetve a

g:la,b) = R, 1z~ f(z)+



Szilagyi Tivadar Differencidlszamitas 8

fiiggvényt, ez folytonos volna, (a,b) minden pontjaban létezne derivaltja és minden

fla) = £(b)

b—a >0

x € (a,b) esetén ¢'(z) = f'(z) +
volna (erre f'(x) = +oo esetén is lehet kivetkeztetni példaul abbol, hogy a KJ fiiggvény a K/ fiiggvénynek és

a konstans W fiiggvénynek az Osszege), erre a fiiggvényre tehat alkalmazhatod volna az el6z6 tétel, igy ez a
fiiggvény szigortian monoton névs volna, ami ellentmond annak, hogy g(a) = g(b) = f(a). |

5.5. Tétel (a konstans fliggvények jellemzése). Legyen J nemelfajuld intervallum és f : J — R. Ekkor a ko-
vetkezd két dllitds egymdssal egyenértéki: 1. f konstans, 2. f € C(J), int(J) minden pontjdban van derivdltja és
minden x € int(J) esetén f'(x) = 0.

Bizonyitas. Az 1.=2. allitds a korabban tett megjegyzéseinkbdl, vagy akar a derivalt definici6jaboél is kénnyen
kovetkezik.
2.=1. Az el6z6 tétel szerint f monoton névé és monoton fogyo, tehat konstans. O

5.6. Tétel (a differencidlhaté szigorian monoton fiiggvények jellemzése). Legyen J nemelfajuld interval-
lum, f € C(J) és flin() differencidlhats. Ekkor a kévetkezd két dllitds egymdssal egyenértéki: 1. f szigorian
monoton névé [fogyd], 2. minden x € int(J) esetén létezik az f'(x) és az nemnegativ [nempozitiv], tovdbbd nincs
olyan (a,b) C J intervallum, melyre minden x € (a,b) esetén f'(x) = 0 volna.

Bizonyitas. Ismét csak a szigortian monoton ndévd esetet részletezziik.

1.=2. Lattuk (5.4.), hogy mér a monoton névekedésbdl is kovetkezik a derivaltak nemnegativitasa. Ha lenne olyan
(a,b) C J, melynek minden egyes x pontjara f'(z) = 0 teljesiilne, akkor az el6z6 tétel szerint f egy ilyen intervallumon
konstans volna, ami ellentmond a szigorti monotonitasnak.

2.=1. Ismét az 5.4. Tételbdl kovetkezik, hogy f monoton névé. Ha nem lenne szigortian névs, akkor lenne J-ben
olyan a és b, melyekre a < b és f(a) = f(b) teljesiilne, s6t (a monoton novekedést ismét kihasznalva) f az (a,b)
intervallumon konstans volna, kovetkezésképpen (5.5.) minden = € (a,b) esetén f'(x) = 0 volna. O

5.7. Tétel (az abszolut szélsGérték elsSrendi elégséges feltétele). Legyen I nemelfajuls intervallum, u €
int(I) = (a,b), f € C(I), f-nek van derivdltja az (a,b)\ {u} halmaz minden pontjdban, végil minden x € (a,u) esetén
f'(x) <0 [f'(x) > 0] és minden x € (u,b) esetén f'(x) >0 [f'(x) <0]. Ekkor az f figgvénynek az u helyen abszolit
minimuma [mazimumal van.

Bizonyitas. Ismét csak az elsG valtozatot részletezziik: A 5.4. Tétel szerint f-nek a J N (—oo, u] intervallumra valo
lesztikitése monoton fogyo, a J N [u, +00) intervallumra valo lesziikitése pedig monoton névs, igy minden x € J esetén

fu) < fla). O

6. Kozépértéktételek I.

6.1. Tétel (Darboux tételének specialis esete). Ha g : [a,b] — R differencidlhatd és g’ (a) < 0 < g’ (b), akkor
van olyan u € (a,b), amelyre g'(u) = 0.

Bizonyitas. g differencialhato, ezért folytonos is az [a,b] intervallumon, igy Weierstrass tétele szerint van legkisebb
értéke. Sem g(a), sem g(b) nem lehet g legkisebb értéke; g(a) azért nem lehet, mert g/, (a) < 0 miatt g az a pontban
lokalisan szigortian fogyo, g(b) azért nem lehet, mert ¢’ (b) > 0 miatt g a b helyen lokalisan szigorian nové. Igy tehat
az (a,b) = intla,b] intervallumban talalhaté olyan w szam, melyre g(u) a g fiiggvény legkisebb értéke. A (lokalis)
széls6érték elsérendi sziikséges feltétele (4.6.) szerint minden ilyen u kielégiti a ¢'(u) = 0 egyenletet. (I

6.2. Tétel (Darboux tétele). Ha az f : [a,b] — R differencidlhato figguényre és azy valds szamra teljesiinek vagy
az f(a) <y < fL(b), vagy az f' (b) <y < fi (a) egyeniGtlenségek, akkor taldalhato olyan u € (a,b), melyre f'(u) = y.

Bizonyitas. Ertelmezziik a g : [a,b] — R fiiggvényt az els6 egyenlGtlenség-par teljesiilése esetén az z +— f(x) —y -,
a masik esetben az x — y - x — f(x) hozzarendeléssel. g is differencialhato, hiszen két ilyen fiiggvény Osszege, ¢'(x)
az els6 esetben minden z € [a, b] esetén az f'(x) — y, a masodik esetben az y — f'(x) szammal egyenls. Ezek szerint
az f-re és y-ra vonatkozo feltételekbdl kovetkeznek az ¢, (a) < 0 < ¢’ (b) egyenl6tlenségek, mig a bizonyitandé allitas
egyenértékd azzal, hogy a ¢'(u) = 0 egyenletnek létezik u € (a,b) megoldasa, igy tételiink az el6z8 tétel kovetkezménye.

O
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6.3. Lemma. Ha egy nyilt intervallumon értelmezett differencidlhato fiigguény derivdltja egyetlen pontban sem nulla,
akkor ez a fiigguény szigordian monoton.

Bizonyitas. Elég azt igazolni, hogy a derivalt vagy minden pontban negativ, vagy minden pontban pozitiv (5.3).
Ez azért van igy, mert a logikailag elképzelhet§ harmadik eset, hogy tudniillik olyan pont is van, ahol a derivalt
negativ, meg olyan is, amelyben a derivalt pozitiv, Darboux tétele szerint nem kovetkezhet be: ha ugyanis létezne az
intervallumban két ilyen szam, a kisebbiket a-val, nagyobbikat b-vel jelolve, a fiiggvényiinknek az [a, b] intervallumra
valo lesztikitésére lehetne alkalmazni Darboux tételét, s azt kapnank, hogy a derivalt értéke valahol mégis nulla lenne.

O

6.4. Tétel (altalanositott Rolle-tétel). Ha egy nyilt intervallumon értelmezett differencidlhato figguénynek az in-
tervallum mindkét végpontjiban van hatdrértéke és ezek a hatdrértékek egyenldk egymdssal, akkor a fliggvény derivdltja
az intervallum legaldbb egy pontjdban nulla.

Bizonyitas. Indirekt uton okoskodunk. Ha a derivalt értéke egyetlen pontban sem volna nulla, akkor az imént bi-
zonyitott lemma szerint fiiggvényiink szigortian monoton lenne. A monotonitasbdl kévetkezik az, hogy a két végpont-
beli hatarérték a fiiggvény értékkészletének also, illetve fels6 hatara, viszont a szigortt monotonitas miatt fiiggvényiink
nem konstans, igy értékkészletének alsdé hatara nem lehet egyenld a fels hataraval. O

6.5. Tétel (Rolle tétele). Ha egy zdrt intervallumon értelmezett folytonos fiigguvény az intervallum végpontjaiban
azonos értékeket vesz fel, és az intervallum belsé pontjaiban differencidlhato, akkor derivdltjanak értéke legaldbb egy
belsd pontban nulla.

Bizonyitas. Szikitsiik le fliggvényiinket az intervallum bels6 pontjainak halmazara. Erre a leszikitett fiiggvényre
alkalmazhato az el6z6 tétel, hiszen egyrészt a végpontokban fennallo folytonossag miatt ott 1étezik a hatarérték is, és
az egyenld a helyettesitési értékkel, masrészt az eredeti fiiggvény hatarértékének létezése és valamely A szammal valo
egyenlGsége is egyenértékd a lesziikitett fiiggvény hatéarértékének létezésével és az A szammal vald megegyezésével,
meg a belsd pontokban feltételezett differencialhatosag is egyenértéki a lesziikitett fiiggvény differencialhatosagaval.
Ha a lesziikitett fliggvény derivaltja egy pontban nulla, akkor ott az eredeti fliggvényé is nulla. O

6.6. Tétel (a Lagrange-féle kdzépértéktétel). Ha az f € Cla,b] figgvény differencidlhaté a nyit (a,b) interval-
lum minden egyes pontjdban, akkor van olyan w € (a,b), melyre f'(w) egyenld a z := [f(b)— f(a)]/(b—a) hdnyadossal.

Bizonyitas. Az [a,b] intervallumon értelmezett x — f(x) — f(a) — z - (x — a) =: p(x) fliggvényre alkalmazhato Rolle
tétele, hiszen ez a fliggvény (a,b) pontjaiban differencialhato, a két végpontban folytonos (az f fliggvény is ilyen, a
polinomfiiggvények is ilyenek, tovabba két ilyen fliggvény Osszege is ilyen) és mindkét végpontban a 0 értéket veszi
fel. Rolle tétele szerint tehat van az (a,b) intervallumban olyan w szam, amelyre 0 = ¢'(w) = f'(w) — z. O

6.7. Megjegyzés. A most bizonyitott tétel dllitasanak szemléletes tartalma: a fiigguény grafikonjinak van olyan
érintdje, amely pdrhuzamos a grafikon két végpontjdn dthaladd (szeld) egyenessel.

6.8. Megjegyzés. Evidens, hogy az aldbbi tételbdl specidlis esetként adddik a Lagrange-féle kozépértéktétel (g :=id),
a Lagrange-féle kidzépértéktételbdl pedig Rolle tétele.

6.9. Tétel (a Cauchy-féle kozépértéktétel). Ha mind az f, mind a g fliggvény az [a, b] intervallumon értelmezett
folytonos, a belsé pontokban differencidlhatd figguény, tovdbbd minden egyes x € (a,b) esetén g'(x) # 0, akkor
L g(b) — g(a) # 0, II. van olyan v € (a,b), amelyre

Bizonyitas. I. Ha g(b) = g(a) volna, akkor Rolle tétele szerint volna olyan x € (a, b), amelyre ¢'(x) = 0 volna.
II. A bizonyitando6 egyenléséget a nevezdkkel vald atszorzas, majd egy oldalra rendezés utan

(f(b) = f(a)) - g'(w) = (9(b) — g(a)) - f'(w) =0

alakra hozhatjuk, ez adhatja azt az otletet, hogy vezessiik be a

hifa,b] = R x— (f(b) = f(a) - g(z) — (9(b) — g(a)) - f(x)
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fliggvényt, és probaljuk erre alkalmazni Rolle tételét. A valamely pontban folytonos, illetve differencidlhato fiige-
vények konstansszorosa is, Osszege is folytonos, illetve differencidlhaté ugyanebben a pontban, ezért h € Cla,b], h
differencialhat6 a nyilt (a,b) intervallum pontjaiban és minden x € (a,b) esetén

vagyis olyan (a, b)-beli w szém létezését kell bizonyitanunk, amelyre h'(w) = 0. Ez valoban kovetkezik Rolle tételébol,
hiszen — amint az egyszeri szamolassal ellendrizhets — h(b) = h(a)(= f(b)g(a) — f(a)g(b)). O

Ha az iménti bizonyitasban a b-beli, illetve a-beli helyettesitési értékeket az ottani hatarértékekkel helyettesitjiik,
és Rolle tétele helyett az altalanositott Rolle-tételre hivatkozunk, akkor éppen az alabbi tétel bizonyitasat kapjuk:

6.10. Tétel (az altalanositott Cauchy-féle kézépértéktétel). Legyen —oo < a < b < +o0o, f és g az (a,b)
intervallumon értelmezett olyan differencidlhato fligguények, melyeknek létezik és véges a hatdrértéke mind az a, mind
a b pontban, végil tegyiik fel, hogy g deriwdltja az (a,b) intervallum egyetlen pontjdban sem nulla. Ekkor I. limy, g —
lim, g # 0; II. van olyan w € (a,b), melyre

limy f —lim, f  f'(w)
limyg —limeg  ¢'(w)’

7. Kritikus hatarértékek

A hatéarértékek és az algebrai miveletek kapcsolatarol szolo szakaszban két nulldhoz tarto fiiggvény hanyadoséarol
semmi altalanos érvénytit nem tudtunk allitani, s hasonlé volt a helyzet a +00-hez tarto fiiggvények hanyadosa esetén
is. A differencidlszamitas eszkOzeinek birtokdban viszont mar tudunk bizonyitani néhény hasznos allitast ebben
a témakorben. FEzek koziil az elsének (melyet ,gyenge L’Hospital-szabaly™nak fogunk nevezni) a bizonyitasahoz

7.1. Tétel. Legyen u a H szdmhalmaz belsé pontja, f és g egyardnt a H halmazon értelmezett, és az u pontban
differencidlhato figguény, tegyiik fel tovabbd, hogy f(u) = g(u) =0 # ¢'(u). Ekkor az f/g figgvénynek van hatdrértéke
az u pontban, és ez f'(u)/g'(u)-val egyenld.

Bizonyitas. ¢'(u) # 0 és u € int H miatt van olyan r pozitiv szam, melyre minden = € B(u,r) esetén = € H és
g(x) # 0 (4.3.IL1.). A tovabbiakban csak ilyen x szamokra szoritkozva, egyszertsitsiik az f(z)/g(x) tortet x — u-val,
és hasznaljuk fel az f(u) = g(u) = 0 feltételt:

fl@) _ Ki(x)

g(z) — Ki(z)’

az utobbi tort szamlaloja, illetve nevezdje tart az f'(u), illetve a ¢’(u) szamhoz, az utobbi nullatol kiillonbozs, ezért
a hanyados hatarértéke e két szam hanyadosaval egyenld. (I

Nem ilyen egyszeri a helyzet, ha az a pont, amelyben a hatarértéket keressiik, nincs benne az értelmezési tartomany-
ban, vagy benne van ugyan, de ott a fliggvényeink nem differencidlhatok. Ilyen esetekben is eléfordulhat azonban,
hogy az alabbi tétel segitségével meg tudjuk hatarozni a hanyados hatarértékét:

7.2. Tétel (az 1. L’Hospital-szabaly). Legyen I nyilt intervallum, u pedig ennek vagy eleme, vagy végpontja (azaz
u€l'), F ésG az I\{u} halmazon értelmezett olyan differencidlhato figgvények, melyeknek a hatdrértéke az u helyen
nulla. Ha van olyan pozitiv r szim, melyre minden x € I N B(u,r) esetén G'(x) # 0 , és létezik a lim, F'/G’ =: v,
akkor u torloddsi pontja az F/G figguény értelmezési tartomdnydnak, és ott e fiigguény hatdrértéke v-vel egyenld.

Bizonyitas. Elgszor azt bizonyitjuk, hogy az I N B (u,r) halmazon a G fiiggvény nem veszi fel a nulla értéket. Ha u
végpontja az I intervallumnak, akkor ez a metszethalmaz egy olyan (a,b) nyilt intervallum, melynek egyik végpontja
u. Ha lenne G-nek egy (a, b)-beli z gyokhelye, akkor G hatarértéke is nulla lenne a z helyen (hiszen G itt folytonos), de
akkor — J-vel jel6lve azt a nyilt intervallumot, melynek végpontjai u és z — a G| fliggvényé is, tehat a G| fliggvény
teljesitené az altalanositott Rolle-tétel feltételeit, holott a derivaltjanak nincs gyokhelye. Ha w bels§ pontja I-nek,
akkor az I N B (u,r) halmaz két diszjunkt nyilt intervallum uni6ja, de mindkét intervallumrol elmondhat6é mindaz,
amit az imént az (a,b) intervallumrol elmondtunk.

Minthogy u torlodasi pontja az I N B(u,r) halmaznak, még inkébb torlodasi pontja a bévebb D(F/G) halmaznak.
Az F/G hatarértékére vonatkozo allitas bizonyitésa céljabol legyen e tetsz6leges pozitiv szam, § € (0,r) pedig olyan
szam, melyre minden w € I N B(u,d) esetén F'(w)/G'(w) € B(v,e). Ezek utan elég azt igazolni, hogy minden
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x € IN B(u,d) esetén F(x)/G(z) € B(v,¢), ehhez pedig azt, hogy minden = € I N B(u,d) szamhoz taldlhaté olyan
w € IN B(u,d), melyre F(x)/G(z) = F'(w)/G'(w). Legyen tehat = € I N B(u,d) és jeldljiik J-vel azt a nyilt
intervallumot, amelynek végpontjai u és z. Ez a J részhalmaza az I N B (u, 6) halmaznak, az (F|;,G|s) fliggvénypar
teljesiti az altalanositott Cauchy-féle kozépértéktétel feltételeit, hiszen a lesziikitett fiiggvények hatarértékei az x
pontban megegyeznek a lesziikités nélkiili fiiggvények ottani helyettesitési értékeivel, az u pontban pedig nullaval. E

kozépértéktétel szerint tehat valoban létezik olyan w, amilyennek a 1étezését allitottuk. (I

7.3. Tétel (a 2. L’Hospital-szabaly). Legyen I nyilt intervallum, u pedig ennek vagy eleme, vagy végpontja (azaz
u € I'), legyenek F és G az I\{u} halmazon értelmezett differencidlhatd figgvények. Ha a |G| figguény hatdrértéke az
u helyen 400, van olyan pozitiv r szim, melyre minden x € INB(u,r) esetén G'(x) # 0 , és létezik a lim, F'/G' =: v,
akkor u torléddsi pontja az F/G figguény értelmezési tartomdnydnak, és ott e fiigguény hatdrértéke v-vel egyenld.

Bizonyitas. Elég a koévetkezs két allitast bizonyitani: 1. Ha u nem bal végpontja az I intervallumnak, akkor
egy bal oldali pontozott kdrnyezetében a G fliggvény értéke mindeniitt nullatol kiilonbozs, és az F/G fiiggvény bal
oldali hatarértéke az u helyen v; 2. Ha w nem jobb végpontja az I intervallumnak, akkor egy jobb oldali pontozott
kornyezetében a G fliggvény értéke mindeniitt nullatol kiilonbo6zs, és az F/G fiiggvény jobb oldali hatarértéke az u
helyen v.

1. A G fiiggvénynek az I NB_ (u, r) nyilt intervallumra valo lesziikitése szigortian monoton, mert a derivaltja minden
pontban nullatol kiilonbozd (lasd az altalanositott Rolle-tétel elétt bizonyitott 6.3. Lemmaét), ezért az u helyen van
hatérértéke, ez csakis 400 vagy —oo lehet, mert a |G| fiiggvény hatarértéke az u helyen +oo. Ebbol kovetkezik
egy olyan p € (0,r] szam létezése, melyre minden z € I N B_(u,p) esetén G(z) # 0. Ezek utan elég az F/G
fiiggvénynek az I N B_ (u,p) intervallumra valo leszikitésével foglalkozni, errdl bizonyitani, hogy hatarértéke az u
helyen v. Ezt a fliggvényhatarértékre vonatkozo atviteli elv kiegészitésének felhasznalaséaval tessziik: azt igazoljuk,
hogy ha az u-hoz tarté szigortian monoton (névs) (z,) sorozat minden tagja az I N B_(u,p) intervallumban van,
akkor lim(F(x,)/G(x,)) = v. Minthogy a (G(z,)) sorozat szigortian monoton és hatarértéke +o0o vagy —oo, Stolz
tétele szerint elég azt bizonyitani, hogy

lim F(ang1) — F(an) _
n—00 G(znt1) — G(zn)
Ebbdl a célboél alkalmazzuk a Cauchy-féle kozépértéktételt minden n pozitiv egész esetén az F', G fiiggvényeknek arra

a lesztikitésére, melyeknek az értelmezési tartomanya az [, 2,1 1] intervallum. Igy kapunk egy olyan (w,,) sorozatot,
melyre minden n esetén x,, < w, < Tpt1 < Wp+1 < u (tehat ez is u-hoz tartd szigortan monoton névs sorozat) és

F($n+1) - F(xn) F/(wn)
G(Tp1) — G(n) G’ (wy,) '

Es minthogy a jobb oldalon 4ll6 sorozat hatarértéke a hatarértékre vonatkozo atviteli elv szerint v, a bizonyitas elején
megfogalmazott 1. allitas igazolasat befejeztiik.

A 2. allitas bizonyitasa hasonl6an végezhets: bal oldali pontozott kornyezetek helyett jobb oldaliakkal, illetve
szigoriian novs sorozatok helyett szigortan fogyo sorozatokkal, stb. (S6t, valojaban a 2. allitas az 1. allitas kovetkez-
meényének is tekinthetd.) O

8. Tobbszor differencialhaté fiiggvények

Emlékeztetiink réa, hogy a derivalt fliggvény fogalmat a fejezet elején értelmeztiik (1.14).
A valos valtozos valos értéki fiiggvények magasabb rend derivaltjait rekurziv moédon értelmezziik:

8.1. Definicié (Magasabb rendi derivalt fliggvények). Legyen [ egyvdltozds valds fiigguény és n olyan pozitiv
egész, amelyre értelmezett az f fiigguénynek az f) : int D(f) >— R n-edik derivdlt fiigguénye (valdjébann =1, 2, és 3
esetén az fN), f@) £G) jelslések helyett inkdbb az f', f", f jeloléseket szokds haszndlni). Ha az utdbbinak létezik a
kordbban definidlt értelemben vett derivdlt figguénye (vagyis van legaldbb egy olyan u € int D(f™) pont, ahol az f™
fiigguény differencialhato, akkor az (f(”))/ derivdlt fligguényt az f fiigguény n+ 1-edik derivdlt fiigguényének nevezzik,
FtY _gyel jeldljik, és az f("+1)(u) helyettesitési értéket az f fligguény u pontban vett n + 1-edik derivdltjanak is
nevezziik. Végezetil dllapodjunk meg abban is, hogy f nulladik derivdltjan magdt az f fligguényt értjik, s az a kijelentés,
hogy f az u pontban (a H halmazon) nullaszor differencidlhato, jelentse azt, hogy u eleme (H része) [ értelmezési
tartomdnydnak.

8.2. Definicié (T6bbszoros differencialhatosag egy pontban, illetve nyilt halmazon). Az a kijelentés, hogy
f azu helyen n-szer differencidlhatd, azt jelenti, hogy u eleme az n-edik derivdlt fligguény értelmezési tartomdnydnak,
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az pedig, hogy f a H nyilt halmazon n-szer differencidlhatd, azt jelenti, hogy f a H halmaz minden egyes pontjdiban
n-szer differencidlhatd, specidlisan abban az esetben, ha az utobbi kijelentés H := D(f) mellett teljesil, az f fliggvényt
roviden n-szer differencidlhatonak nevezzik. Hasonldan, az a kijelentés, hogy f az u pontban [a H nyilt halmazon] n-
szer folytonosan differencidlhato, azt jelenti, hogy egyrészt f az u pontban [a H nyilt halmazon] n-szer differencidlhatd,
mdsrészt az ) fiigguény folytonos az u pontban [a H halmaz minden egyes pontjdban/.

Az n-szer differencidlhato” vagy az ,,m-szer folytonosan differencialhaté” lehet olyan fiiggvény jelzéje is, melynek
értelmezési tartomanya zart vagy félig nyilt intervallum (az n = 1 esetet illetGen lasd a 1.13. definiciot). A definicio
lényege egyszertien annyi, hogy ilyenkor a végpontbeli egy oldali derivaltat derivaltnak tekintjiik:

8.3. Definicid. Legyen J zdrt vagy félig nydt intervallum, f : J — R és n pozitiv egész. Annak a mondatnak a
jelentését, hogy f n-szer differencidghats [f n-szer folytonosan differencidlhatd] n szerinti rekurzidval lehet megadni,
éspedig ugy, hogy ezzel egyitt megadjuk a kiterjesztett n-edik derivdlt értelmezését is. f egyszer differencidlhatd, ha
egyrészt f differrencidlhaté J minden egyes belsd pontjaban, mdsrészt ha u € J végpontja J-nek, akkor f azu pontban
egy oldalrol differencidlhato. Az f figguény kiterjesztett értelemben vett elsd derivdlt figgvényén ilyenkor a derivdlt
figgvénynek azt a J-n értelmezett kiterjesztését értjik, amelynek az értéke u € J \ int J esetén f-nek az u-beli egy
oldali derivdltjdval egyenld. Ha ez a figguény még folytonos is, akkor azt mondjuk, hogy f (egyszer) folytonosan
differencidlhatd. Hasonldan, ha az f kiterjesztett értelemben vett n-edik derivdlt figguénye (egyszer) differencidlhato,
akkor f-et n+1-szer differencidlhatonak nevezziik, és ha f ilyen, akkor a kiterjesztett értelemben vett n+1-edik derivdlt
fligguénye J minden egyes belsé pontjihoz az ottani n + 1-edik derivdltat, mig egy u € J \ int J ponthoz a kiterjesztett
értelemben vett n-edik derivdlt fliggvénynek az u-beli eqy oldali derivdltjat rendeli. Ha ez a kiterjesztett értelemben vett
n + l-edik derivdlt fiigguény folytonos, akkor azt mondjuk, hogy f n + 1-szer folytonosan differencidlhato.

8.4. Definicié (végtelen sokszor differencialhato fliggvény). Az a kijelentés, hogy az f figguény végtelen soks-
zor differencidlhato az u pontban, illetve a H(C int D(f)) nydt halmazon, azt jelenti, hogy f minden pozitiv egész
n esetén n-szer differencidlhaté az w pontban, illetve a H halmazon. A H = D(f) esetben most is kimaradhat a
mondatbdl az, hogy ,a D(f) halmazon”.

8.5. Feladat. Bizonyitandd, hogy az aldbbi fliggvények mindegyike végtelen sokszor differencidlhato: a raciondlis
tortfigguények, az exponencidlis fiigguények, a logaritmusfiigguények, a pozitiv szamok halmazdn értelmezett hatvany-
fiigguények, bdrmely hatvanyfiggvénynek a pozitiv szamok halmazdra vald leszikitése, cos, sin, tg, ctg, arctg, arcctg,
arccos |(—1,1), arcsin |(_1 1y, ch, sh, th, cth, arch | o), arsh, arth, arcth.

8.6. Feladat. Ha n pozitiv egész, f és g ugyanazon nyilt halmazon értelmezett valds vdltozos valds értékd fliggvények,
és mindkét fiigguény n-szer differencidlhato az u pontban, akkor f + g is, fg is, és minden valds ¢ szam esetén cf is
n-szer differencidlhato az u helyen, tovdbbd

n

(70 ) = 10+ P00, (1970 =3 (1) 10w, ()" w) = of Vo)

i=0
Altaldnositsuk az Gsszegre vonatkozo dllitdst tobb tagi dsszegre is!

8.7. Megjegyzés. A szorzat n-edik derivdltjara vonatkozoé formuldt Leibniz-formuldnak szoktdk nevezni, teljes in-
dukcidval torténd bizonyitdsdt elvégezhetjik péddul gy, hogy a binomidlis tétel teljes indukcids bizonyitdsdt mdsoljuk.

A hatvanyfliggvények derivalasi szabéalyanak alkalmazaséval igen konnyen oldhat6é meg az alabbi

8.8. Feladat. Legyen u tetszéleges valds szdm, k pozitiv egész, és f : R — R az a fiigguény, amely minden egyes
valds z-hez az (x —u)* szamot rendeli. Bizonyitandd, hogy ekkor minden i € 0,k — 1 esetén fO(u) = 0; f®) (u) = k!,
tovdbbd ha x tetszdleges valds szam, akkor az f(i)(x) derialt minden k-ndl nagyobb i egész esetén nulldval, i = k
esetén pedig k!-sal egyenld.

8.9. Definicié (n-edrendben kicsi fiiggvény). Legyen n nemnegativ egész, f egyvdltozds valds fiigguény ésu € R
torloddsi pontja f értelmezési tartomdnydnak. Ekkor az a kijelentés, hogy f az u helyen n-edrendben kicsi, azt jelenti,

hogy
o f(x)
;IEL (x —u)™

=0.

8.10. Tétel. Legyen n pozitiv egész, f olyan egyvdltozds valds fiigguény, amely egy u pont valamely kérnyezetében
n—1-szer, és az u helyen n-szer differencidlhatd, végiil tegyiik fel, hogy minden n-nél nem nagyobb nemnegativ k egész
esetén f®)(u) = 0. Ekkor f azu helyen n-edrendben kicsi.
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Bizonyitas. n szerinti teljes indukciét alkalmazunk. Ha n = 1, akkor az &llitds az u-beli derivalt definiciojabol
kovetkezik. Legyen n olyan pozitiv egész, melyre az allitas igaz és f olyan egyvaltozos valos fliggvény, amely egy u
pont valamely U kornyezetében n-szer, és az u pontban n+1-szer differencialhato. Ekkor az f/ fiiggvényre alkalmazhato
az indukcios feltevés, ezért f’ az u helyen n-edrendben kicsi. Legyen ¢ tetsz6leges pozitiv szam, § pedig olyan pozitiv
szam, amelyre minden ¢ € B(u,d) esetén t € U és

1o |
(t—u) ’
Ezek utan elég azt igazolni, hogy minden z € B(u, ) esetén
f(x)
@i | =%

Legyen tehat x € B (u,9), I, az az intervallum, melynek végpontjai u és z, és alkalmazzuk a Lagrange-féle kozépér-
téktételt f-nek I.-re valo lesziikitésére: az I, intervallum belsejében taldlhato olyan c,, melyre

fl=)
1 _ pie,),
s amely persze I\ {u} C B(u,d) miatt benne van a B (u, d) pontozott kornyezetben, ezért — felhasznalva azt is, hogy
¢y az u és x pontok kozott van, s ennélfogva |c; — ul/|z —u| < 1,
f(z) flx) 1 flea)  (ca—uw)" f'(ca)
(z —u)ntt x—u(x—u)” (cz —uw)™ (x—u)” (ce —u)

adodik. 0

9. A lokalis Taylor-formula és kovetkezményei

9.1. Definicié (Taylor-polinomok). Ha n nemnegativ egész, az eqyvdltozds valds f fiigguény n-szer differencidlhato
az u pontban (ezn = 0 esetén csak annyit jelentsen, hogy értelmezett az u pontban) és i € 0,n, akkor az f fiiggvény
u ponthoz tartozé n-edik Taylor-polinomja a

() (y
1) =3 Tyt
k=0

hozzdrendeléssel értelmezett Tj)n polinomfiiggvény.
9.2. Allitas. Az iménti definicidban megfogalmazott feltételek mellett minden i € 0,n esetén (T{n)(’)(u) = fO(u).
Bizonyitas. Lasd a 8.8., 8.6. feladatokat. (]

9.3. Megjegyzés. A kivetkezd szakaszban (10.4) megmutatjuk, hogy a legfeljebb n-edfoki polinomfiigguények kozott
TS az egyetlen olyan p polinomfiiggvény, amelyre teljesiil az, hogy

VieOn P () = fD ().

9.4. Tétel (lokalis Taylor-formula — két valtozatban). Legyen n pozitiv egész és tegyiik fel, hogy az egyvdltozds
valds f fligguény az u pont eqy kérnyezetében n — 1-szer, az u pontban pedig n-szer differencidlhato. Ekkor

@) =T @) M@ -Tha@) 1,
;ILIL @ =0 és ;IEL @ = ﬁf (u).

Bizonyitas. 8.6. és 8.8. szerint az f — qu,n fiiggvényre alkalmazhato az el6zé szakasz tétele, tehat ez a fiiggvény az
u helyen n-edrendben kicsi. A tétel masodik allitasa egyenértékii az elsGvel, hiszen egyenértékii azzal, hogy az
f(@) =TI, ()

u,n— 1 n
i e A

fliggvény hatarértéke az u helyen nulla, viszont ez utébbi fliggvény azonos az
f@) =T (=)
(z —u)"

fiiggvénnyel (szorozzuk és osszuk a masodik tagot (z — w)"-nel, majd hozzunk kézds nevezore). a
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9.5. Definicio. Ha n pozitiv egész, u € R, f valds vdltozds valds értéki figgvény, és minden i € 0,n —1 f() =0,
akkor azt mondjuk, hogy u az f fiiggvénynek legaldbb n-szeres gyok(hely)e. Ha rdaddsul létezik az f n-edik derivdltja
is az u helyen, de az mdr nem nulla, akkor azt mondjuk, hogy u az f-nek pontosan n-szeres gyok(hely)e.

A lokalis Taylor-formula segitségével be tudjuk bizonyitani a kritikus hatarértékek cimid szakasz els§ tételének
(,eyenge L'Hospital-szabély”) alabbi egyszert altalanositasat:

9.6. Tétel. Tegyiik fel, hogy u belsd pontja a H szamhalmaznak, f és g a H halmazon értelmezett és az u pontban
n-szer differencidlhato fiigguények, u az f-nek legaldbb n-szeres gyoke, a g-nek pedig pontosan n-szeres gyoke. Ekkor
f/g értelmezett az u egy pontozott kirnyezetében és lim, f/g = f™ (u)/g™ (u).

Bizonyitas. Minthogy u legalabb n-szeres gyoke mind az f, mind a g fliggvénynek, minden = € D(f/g) esetén

n f(x)_Tg,n—1(?E)

flx) _ @—w)n
R

A lokalis Taylor-formula szerint a szamlalo hatarértéke f() (u), a nevezdé g™ (u), a tétel feltétele szerint a nevezd
hatéarértéke nem nulla, ebbdl a tétel mindkét allitasa kovetkezik. O

A szakasz tovabbi tételeiben a valamely pontban tobbszor differencialhato fliggvény lokalis viselkedését vizsgaljuk,
a szoban forgd pont a derivalt tobbszoros gyokhelye lesz.

9.7. Tétel. Legyen n pozitiv egész, az f fiigguény valamely u pont egy kérnyezetében n—1-szer, magdban az u pontban
n-szer differencidlhato, végil tegyiik fel, hogy minden i € 1,n — 1 esetén f(i)(u) =0.

1. Ha f-nek lokdlis szélséértéke van az u helyen és n pdratlan, akkor f() (u) = 0.
2. Ha f-nek lokdlis minimuma [mazimuma/ van az u helyen és n pdros, akkor f(u) >0 [f(™ (u) < 0].
3. Han pdros és £ (u) >0 [f)(u) < 0, akkor f-nek az u helyen szigori lokdlis minimuma [mazimuma] van.

Bizonyitas. A lokalis Taylor-formula szerint

£ () = nt T L@ =)

T—U T — u)”

Mindegyik allitas a fliggvényhatarérték és rendezés kapcsolatardl szolo tétel egyszert kovetkezménye:

1. Az emlitett tétel az x — (n!)(f(z) — f(u))/(z—u)™ figgvénynek mind a D(f)N(—oo0,u), mind a D(f)N(u, +00)
halmazra valo lesziikitésére alkalmazhato, ebbdl azt kapjuk, hogy e két fiiggvény egyikének hatéarértéke az u helyen
nemnegativ, a mésikdé nempozitiv, de minthogy mindkét (egy oldali) hatarértéknek meg kell egyeznie a leszikités
nélkiili fiiggvény hatarértékével, az f(™ (u) szammal, az csak nulla lehet.

2. Az z— (n))(f(x) = f(u))/(z —u)™ fiiggvénynek az u egy pontozott kornyezetében felvett értékei nemnegativak
[nempozitivak|, ezért az u-beli hatarértékérsl is ugyanez mondhato.

3. Az imént is vizsgalt fliggvényrdl ezuttal azt tudjuk, hogy u-beli hatarértéke pozitiv [negativ|, ebbdl kiovetkezik,
hogy az u egy pontozott kirnyezetében felvett értékei is ugyanilyen elgjeltiek. Es minthogy kozben a tort nevezéje e
pontozott kdrnyezet minden pontjaban pozitiv, a tort elGjele megegyezik a szamlalo elGjelével. ]

9.8. Tétel. Legyen n pozitiv egész, az [ fligguény valamely u pont egy kornyezetében n— 1-szer, magdban az u pontban
n-szer differencidlhatd, végiil tegyiik fel, hogy minden i € T,n — 1 esetén f®)(u) = 0.

1. Ha f azu pontban nové [fogyd] és n pdratlan, akkor f((u) >0 [f0)(u) <0].
2. Ha f névd [fogyd] az u pontban és n pdros, akkor f(u) = 0.
3. Ha n paratlan és £ (u) >0 [f™)(u) < 0], akkor f az u pontban szigorian noévd [fogyd].

Bizonyitas vazlata. A lokalis Taylor-formula szerint

@) =T, @) 1 fl@) = fw) 1
(n) _ im J =n! lim .
F) = i e e = T

Innentdl kezdve az el6z6 bizonyités 1ényegében sz6 szerint méasolhato. O
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10. Kozépértéktételek II.

10.1. Tétel (n-edrendii altalanositott Rolle-tétel). Legyen n pozitiv egész, ¢ nyilt intervallumon értelmezett
n-szer differencidlhato fiigguény és u € R az intervallum egyik végpontja. Tegyiik fel egyrészt azt, hogy o-nek az
intervallum mindkét végpontjdban létezik hatdrértéke és ez a két hatarérték egyenld egymdssal, mdsrészt azt, hogy
minden egyes k € T,n — 1 esetén lim, *) = 0. Ekkor az intervallumban van olyan pont, ahol ¢ n-edik derivdltja
nulldval egyenld.

Bizonyitas. n szerinti teljes indukcioval. Az n = 1 esetet mar bizonyitottuk (altalanositott Rolle-tétel). Legyen n
olyan pozitiv egész, amelyre igaz a tétel, h : (a,b) — R pedig olyan n + 1-szer differencialhaté fiiggvény, melynek
a két végpontban létezik hatarértéke, lim, h = limy h, tovabba amelyre u = a vagy u = b, és minden k € 1,n
esetén lim, h*) = 0. Az altalanositott Rolle-tétel szerint van olyan v € (a,b), ahol h derivaltja nulla. Legyen
¢ a h' fiiggvénynek az a lesziikitése, melynek értelmezési tartomanya az u és v végpontok altal meghatarozott I
nyilt intervallum. Ez a fiiggvény nyilvan n-szer differencialhaté, minden k € 0,7 — 1 esetén lim, o*) = 0, tovabba
lim, o = 0. Az utobbit azért allithatjuk, mert A’ a v helyen n-szer — tehat legalabb egyszer — differencialhato,
ezért ott folytonos is, és (lévén v nem-izolalt pontja az (a,b) intervallumnak) igy 0 = h/(v) = lim, h’ = lim, A/|; =
lim, (h|7)" = lim, ¢. Erre a fliggvényre tehat alkalmazhato az indukeios feltétel: az I intervallum valamely pontjaban
az n-edik derivaltja nulla, ezért a h fliggvény n + 1-edik derivaltja ebben a pontban nulla. [l

10.2. Tétel (Taylor-formula Lagrange-féle maradéktaggal). Ha n pozitiv egész, I C R nemelfajuld interval-
lum, w € intI és f : I — R folytonos, I belsejében n-szer differencidlhatifigguény, akkor minden u-tdl kilonbozd
I-beli v szdmhoz taldlhato u és v kozott olyan w szdm, amelyre

)

n!

f) =T, 1 (v) (v —u)"
Bizonyitas. Rogzitstink egy v € I'\ {v} szdmot, u és v kozll a kisebbiket jeloljiik a-val, a nagyobbikat b-vel. Az el6z6

() — 5 (2 — u)™ hozzarendeléssel értelmezett ¢

tételt fogjuk alkalmazni az (a, b) intervallumon az z — f(z) — T 5

u,n—1
fiiggvényre, ahol a ¢ valos szamot gy hatarozzuk meg, hogy lim, ¢ = 0 legyen, vagyis c az f(v)—Tin_1 (v) = Sv—u)"
egyenlet egyetlen megoldésa. f m-szer differencidlhato, a polinomfiiggvények pedig végtelen sokszor, ezért ¢ n-szer
differencialhaté I belsejében. Ugyancsak f n-szer differencialhato voltabol kapjuk, hogy az f(*) fiiggvény minden
k € 0,n — 1 esetén folytonos, ezért az u helyen van hatarértéke és ez megegyezik a helyettesitési értékével. Ebbdl, a
hatvanyfiiggvények differencialasi szabalyabol, és egyéb egyszert differencialési szabalyokbol kévetkezik, hogy minden
n-nél (kisek))b nemnegativ k-ra lim, ¢*) = 0. Ezzel megmutattuk, hogy ¢ teljesiti az el6z6 tétel feltételeit. Az
c(z—u)"

x — =—— polinomfiiggvény n-edik derivéltja a konstans c fiiggvény, a Tinfl polinomfiiggvényé — 1évén a fokszama

kisebb mint n — azonosan nulla, kévetkezésképp (™) = f(") —¢, igy az el6z6 tételbsl éppen az adodik, amit allitottunk.
|

Mig a lokalis Taylor-formula arrol szol, hogyan kozeliti a TJ’ » Taylor-polinom az f fliggvényt a v pont kozelében
egy-egy rogzitett n esetén, a legutobbi tétel segitségével jonéhany esetben azt is lehet bizonyitani, hogy rogzitett, és
esetleg v-t6l tavol 1év6 = pontra az n — Tgi () sorozat konvergal az f(z) szamhoz. Erre a szituaciora az els példaval
az alabbi tételben talalkozunk, a kovetkez§ kettével pedig a trigonometrikus fiiggvények targyalasa soran.

10.3. Tétel. Minden valds x szdm esetén

Bizonyitas vazlata. Ha x = 0, akkor az egyenlGség nyilvanval6. Legyen tehat a tovabbiakban x tetszéleges 0-t6l
kiilonb6z6 valos szam.

A Lagange-maradéktagos Taylor-formula szerint (u := 0, f := exp) minden pozitiv egész n-hez talalhato x és 0 kozott
olyan w,,, amelyre

k

n—1 2
oy
k!
k=0

ol _ uilal”
= "~ T5P (@) = S < e

O

Most tériink ra annak a Taylor-polinomok definidldsa utan tett 9.3. megjegyzésnek a bizonyitasara, amely az
ottanihoz képest kissé altalanosabban igy fogalmazhato:
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10.4. Allitas. Bdrmely valds u-hoz, barmely nemnegativ egész n-hez, és barmely n + 1 tagi valds (coyc1y...,cC
sorozathoz legfeljebb eqy olyan legfeljebb n-edfoki p polinomfiigguény taldlhatd, melyre minden k € 0,n esetén p(k)(u)
Ck -

n)

Bizonyitas. Tegyiik fel, hogy van legalabb két ilyen polinomfiiggvény és a kiilonbségiiket jeldljiik g-vel. Ekkor tehat
g nem azonosan nulla, legfeljebb n-edfoki polinomfiiggvény, melyre minden k € 0, n esetén ¢ (u) = 0. Azt ugyan az
algebrabol is lehet tudni, hogy ilyen polinom(fiiggvény) nem létezik, de most ezt a kivetkezképpen is bizonyithatjuk:
lévén g legfeljebb n-edfoku polinomfiiggvény, az n + 1-edik derivalt fiiggvénye az azonosan nulla fliggvény, tehat ha x
tetsz6leges u-t6l kiillonboz6 valos szam, akkor x és u kozott van olyan v valés szam, melyre

g™ (v)

n+1l __
(n+1)! =0

9(z) = g(z) =T, (z) = (= u)

11. Konvex fiiggvények

11.1. Tétel. Legyen az I C R nemelfajuld intervallum bal végpontja a, jobb végpontja b, tovdbbd f : I — R konvex
figgvény. Ekkor 1. f-nek az I N (a,b] intervallum minden pontjiban van bal oldali derivdltja és az I N [a,b) inter-
vallum minden pontjdban van jobb oldali derivdltja, II. f az (a,b) intervallum minden pontjaban balrdl is, jobbrol is
differencidlhato, tovdbbd minden (a,b)-beli v pontban f’ (v) < f\ (v), III. mind az f', mind az f' figgvény monoton
novd, IV. az (a,b) intervallumban csak megszamldlhato sok olyan pont lehet, ahol f nem differencidlhato.

Bizonyitas. 1. A konvex fliggvények jellemzéseir6l szolo tétel szerint f mindegyik kiilonbségihdnyados-fliggvénye
monoton novs, ezért létezik egy oldali hatarértéke minden olyan pontban, ahol a létezésének kérdése egyaltalan
felvethetd.

II. Legyen v € (a,b), jeldljiik a K/ fiiggvény (a,v)-re, illetve (v,b)-re valo lesziikitésének értékkészletét A-val, illetve
B-vel. A K/ fiiggvény monoton névs volta miatt barmely a € A és b € B esetén a < b, vagyis B minden eleme fels§
korlatja A-nak és A minden eleme als6 korlatja B-nek. Ismét a monoton fliggvény egy oldali hatarértékérsl szolo tétel
szerint f’ (v) = sup A és f (v) = inf B, az el6bb mondottakbol kévetkezGen minden b € B esetén sup A < b, vagyis
sup A als6 korlatja B-nek, ezért nem nagyobb, mint inf B.

III. A II. allitds miatt most mar elég annyit bizonyitani, hogy ha u € I, v € I és u < v, akkor f/ (u) < f’ (v). Ez
ismét a monoton fliggvény egy oldali hatarértékeirdl szolo tételbdl kovetkezik:

fl(u) = thr% K = ianﬂm(u#oo) < Kf(v) = K/ (u) <sup K1{|m(,oo’v) = 1i£% K/ =f (v).

IV. Minden monoton névé fiiggvény szakadasi pontjainak halmaza megszamlalhato, ezért a III. allitas miatt elég azt
igazolni, hogy ha egy v pontban f nem differencialhato, akkor az f! fiiggvény nem folytonos a v helyen. A IIL. allitas
alapjan mondhatjuk, hogy f’ (v) < fi(v). Ha az f! fiiggvény akarcsak balrol folytonos lenne a v helyen, akkor
létezne olyan u € (a,v) , melyre f’ (v) < f/ (u) lenne, ami ellentmondana az el6z6 bekezdésben bizonyitottaknak.

O

11.2. Megjegyzés. Igazolhatd, hogy ha egy f : (a,b) — R fliggvényre teljesiilnek a I1.-III. dllitdsok, akkor [ konvex.

11.3. Tétel (a differencialhaté konvex fliggvények jellemzései). Legyen az I C R nemelfajuld intervallum bal
végpontja a, jobb végpontja b, tovdbbd f : I — R olyan folytonos figgvény, amely differencidlhatd az (a,b) intervallum
minden pontjdban. FEkkor az aldbbi kijelentések egymdssal egyenértékiek: 1. f konvex, 2. f' monoton névé az (a,b)
intervallumon, 8. ha u € (a,b) ésx € I\ {u}, akkor

f@) = fu) + f(u)(z — w).

Bizonyitas. 1.=3. Korabban bizonyitott tétel szerint f konvex voltabél kovetkezik, hogy K monoton novs. Es
minthogy e fiiggvény hatarértéke az u helyen f’(u), a K7 (x) — f'(u) kiilonbség az u-nél kisebb x-ekre nempozitiv, az
u-nal nagyobbakra pedig nemnegativ. Ebbdl kivetkezik, hogy minden z € I\ {u} esetén

fz) = fw)

r—Uu

fl@) = fu) = flu)(z —u) = — f'(w)| (z —u) = [K](z) - f'(w)](z —u) >0.

3.=2. Legyen a < v < w < b, igazoljuk, hogy f/'(v) < f/(w). A 3. allitast elGszor az (z,u) := (w,v), masodszor az
(z,u) := (v, w) szereposztéassal alkalmazva, majd az igy adodo két egyenlStlenséget osszeadva ezt kapjuk:

0= f(W(w=v)+ f(w)w-w), azaz [ (v)(w-v)<f(w)(w-0v)
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2.=1. A konvex fiiggvények jellemzéseirsl szolo tétel szerint f konvex voltara példaul abbol is kévetkeztethelink,
hogy minden szigortian monoton n6vs I-beli (u, v, w) harmasra K (u) < KJ(w). Vegyiink tehat egy I-beli szamokbol
alkotott tetsz6leges szigortian névé (u, v, w) harmast. A Lagrange-féle kozépértéktételbol és f/ monoton névs voltabol
kovetkezik, hogy — alkalmas s € (u,v) és t € (v, w) szamokkal — K/ (u) = f'(s) < f'(t) = K{ (w). O

11.4. Megjegyzés. Az iménti bizonyitds 1.= 3. része akkor is megismételhetd, ha u végpontja az I intervallumnak
és ott az f egy oldalrdl differencidlhato, feltéve hogy f'(u) helyébe az u-beli egy oldali derivdltat képzeljik — azzal a
minimadlis vdltoztatdssal, hogy ekkor az x < u, x > u esetek kozil az egyikrél nem kell beszélni. Hasonlot kiegészitést
lehet fiizni a bizonyitds 3.= 2. részéhez is, ugyhogy az intervallumon értelmezett differencidlhato konver fiiggvényeknek
még a kiterjesztett értelemben vett derivdlt fiiggvénye is monoton névd.

11.5. Tétel (a differencialhaté szigortian konvex fiiggvények jellemzései). Legyen az I C R nemelfajuld in-
tervallum bal végpontja a, jobb végpontja b, tovdibbd f : I — R olyan folytonos fiigguény, amely differencidlhato az
(a,b) intervallum minden pontjiban. Ekkor az aldbbi kijelentések egymdssal egyenértékiek: 1. f szigorian konver,
2. [ szigordan monoton nové az (a,b) intervallumon, 3. ha u € (a,b) és x € I\ {u}, akkor

f@) > fu) + f(u) (@ —w).

11.6. Kovetkezmény (a kétszer differencialhato (szigortian) konvex fiiggvények). Legyen az I C R nemel-
fagulo intervallum, f : I — R olyan folytonos fiigguény, amely kétszer differencidlhato az I intervallum minden
belsd pontjdban. FEkkor a kivetkezd két kijelentés egymdssal eqyenértékid: 1. f konvex, 2. f mdsodik derivdltja az I
intervallum minden belsé pontjiban nemnegativ. Az aldbbi kijelentések szintén egymdssal egyenértékiek: 1. [ szi-
gorian konvex, 2. f mdsodik derivdltja az I intervallum minden belsd pontjaban nemnegativ, és I-nek nincs olyan
nyilt részintervalluma, amelyen f" azonosan nulla volna.

Az utobbi allitas felhasznalasaval (is) ellendrizhetd, hogy az alabbi fliggvények mindegyike szigortian konvex:
az Osszes exponencialis fliggvény, az 1-nél kisebb alapu logaritmusfiiggvények, az id-In fiiggvény, akarmelyik 1-nél
nagyobb kitevGjd hatvanyfliggvénynek a nemnegativ szamok halmazéra vald lesztikitése, akarmelyik negativ kitevsji
hatvanyfliggvénynek a pozitiv szimok halmazara valo lesziikitése, a ch fiiggvény, a sh [jo o), @ th|(_s 0, minden
k egész esetén a szinusz fiiggvény lesziikitése a [(2k — 1), 2k7] intervallumra és a koszinusz fliggvény lesztikitése a
[(2k + 1/2)m, (2k + 3/2)7] intervallumra, stb. Hasonloan, szigortian konkav példaul az dsszes 1-nél nagyobb alapi
logaritmusfiiggvény, és mindazon hatvanyfiiggvényeknek a nemnegativ szamok halmazara valo lesziikitése, amelyeknek
a kitevGje a (0, 1) intervallumban van (igy példaul a négyzetgyokfiiggvény).

Megemlitjiik az el6z6 bekezdésben mondottak néhany egyszertd kivetkezményét. Az alabbi tételek koziil az els6ben
az exponencialis fiiggvény szigora konvexitasat, a masodikban a hatvanyfiiggvények (lesztikitésének) szigorian konvex,
illetve szigortan konkav voltat hasznéljuk.

11.7. Tétel (stilyozott mértani, illetve szaimtani k6zép). Ha n 1-nél nagyobb egész, minden k € 1,n esetén az

ag, br, tr szdmok mindegyike pozitiv, t1 +to+...+1t, = 1, tovdbbd mind az ay,...,a,, mind a bi/tl, ceey b:/t" szdmok

kozott van két kilonbozd, akkor
n n
I. Haff’ < Ztkak,
k=1 k=1

k=1 k=1

Bizonyitas. 1. Legyen minden k € 1,n esetén z := Inay. Az In fiiggvény injektiv volta miatt az z; szdmok kozott
is van két kiilonbozé.

n

ﬁ alk = H (e™)* = ﬁ ek — exp <Xn: tk.zk> < zn:tkem’“ = Zn:tkak,
k=1 k=1 k=1 k=1 k=1

k=1

az egyenlGtlenség az exponencidlis fliggvény szigoru konvexitédsa miatt teljesiil, az egyenlGségek pedig xj definicidja,
illetve a hatvanyozas azonossagai miatt.
1

II. Legyen ay := b;’“ és alkalmazzuk az 1. allitast. O
11.8. Megjegyzés. Az I. egyenldtlenség bal, illetve jobb oldaldn lévd szamokat az aq, . .., a, szamokty, ..., t, ,stulyok-
kal” képezett sulyozott mértani, illetve szdmtani kozepének szoktdk nevezni; a ty = --- = t, = 1/n esetben megkapjuk

a kozonséges mértani, illetve szdmtani kozepet.
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11.9. Megjegyzés. Az el6z6 tétel bizonyitdsdbol kiolvashato, hogy az ottani I. egyenldtlenség eqyenértéki az expo-
nencidalis fiigguény szigori konvexitdsdval: a kévetkeztetés iranya kénnyen megfordithato, vagyis az I. egyenldtlenségbdl
kévetkezik az exponencidlis fliigguényre vonatkozo Jensen-egyenldtlenség.

11.10. Tétel. Ha n 1-nél nagyobb egész, minden k € 1,n esetén az ap szimok mindegyike pozitiv, tovdbbd az
Qi,...,0a, Szdmok kézott van két killonbozd, akkor a nulldtdl kilénbozd szamok halmazdn értelmezett

L& g
x— | = z =:
(23) =0
k=1
fiigguény szigorian monoton névd.

Bizonyitas. Azt kell bizonyitanunk, hogy ha a nullatol kiilonb6z6 u és v szamok koziil v a nagyobb, akkor

(1) < (hEa)
— =1

Ha v pozitiv, akkor ez egyenértékd azzal, amit tigy kapunk, hogy mindkét oldalt v-edik hatvanyra emeljiik:

1
v

n

1 & ! v
<n2a}:> < EZ(‘I%)“ )
k=1

k=1

az utobbi pedig negativ u esetén a negativ (v/u) kitevéjt hatvanyfiiggvény RT-ra valo lesziikitésének, pozitiv u
esetén az 1-nél nagyobb kitevsji hatvanyfiiggvény R -ra valo lesztkitésének szigorti konvexitasabol kovetkezik. Ha
v negativ, akkor megint mindkét oldalt v-edik hatvanyra emelve

I T I
(13a) > iy,
adodik, ekkor v/u € (0,1), igy az utobbi egyenlstlenség a (0, 1)-beli kitevsji hatvanyfiiggvény R -ra valo lesziikitésé-
nek szigorian konkav voltabol kiévetkezik. Természetesen mindhérom alkalommal kihasznaltuk azt, hogy ha az ay

szamok kozott van két kiilonbozd, akkor az aj szamok kozott is van — ez abbol kdvetkezik, hogy az u kitevsjid
hatvanyfiiggvény a pozitiv szamok halmazéan szigortian monoton, tehat injektiv. O

11.11. Megjegyzés. Vegyiik észre, hogy a tételben szerepld hatvdinykdzepekkel a fiiggvényhatdrérték targyaldsa sordn
mdr taldlkoztunk (f(x) az aq,...,a, szdmok x kitevdji, vagy x-edik hatvdnykozepe).

11.12. Definicié. Tegyiik fel, hogy az [ figgvény differencidlhaté az uw € int D(f) pontban. Az u pontrdl akkor
mondjuk, hogy inflerids pontja az f-nek, ha van olyan r pozitiv szdm, melyre f|(y—, ) szigorian konkdv és f|qy uir)
szigorian konvex, vagy forditva. u-rdl akkor mondjuk, hogy gyengébb értelemben vett inflexids pontja f-nek, ha az
f- Tj)l fiigguény az u pontban szigorian lokdlisan novd vagy szigorian lokdlisan fogyd.

11.13. Megjegyzés. Minthogy a ¢ := f — Tl{’l fiigguény az u helyen a 0 értéket veszi fel, e fiigguény u-beli szigorian
novd, illetve fogyd volta egy olyan pozitiv r szam létezésével egyenértéki, melyre egyrészt B(u,r) C D(f), mdsrészt a
u—r<x<u<y<u+r feltételeknek eleget tevd (x,y) pdrok mindegyikére

fla)<Tl(x) é fly)>TI (), dletve  f(z)>Tl(x) és fly) <TIi(y)

A gyengébb értelemben vett inflexids pont esetében tehdt arrdl van szd, hogy [ grafikonja az (u, f(u)) pontban dtmetszi
az e pontban a grafikonhoz hizott érintdt.

11.14. Allitas. Ha u inflexids pontja f-nek, akkor gyengébb értelemben vett inflexids pontja is az f-nek.

Bizonyitas. A szigortian konvex/konkav fiiggvények kiilonbségihanyados-fiiggvényeinek szigorian monoton névé/fogyo
voltabol kovetkezik, hogy ha u inflexios pontja f-nek, akkor az

fz) = f(u)

r—u

= 1)@= ) (= ) - 1(0) = P - 0) = ) - T (0)
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szorzat elss tényezGjének el§jele u egy pontozott kornyezetén beliil allando és nem nulla: ha f az (u—r, u] intervallumon
szigoriian konkav és az [u,u 4 r) intervallumon szigortian konvex, akkor ez az el§jel pozitiv, a masik esetben negativ,
igy az u r sugart kornyezetébdl vett x szamokra f(z) — Tjjl(x) elGjele az els6 esetben megegyezik x — u elGjelével, a
masodik esetben az x — u elGjelével ellentétes. Ebbdl kovetkezik, hogy az f — qu@ fiiggvény az els6 esetben szigortian
nove, a masodik esetben szigortan fogy6 az u pontban. ]

11.15. Tétel. Legyen n 1-nél nagyobdb egész, f az u pont eqy kérnyezetében n — 1-szer, magdban az u pontban n-szer
differencidlhato, tovdbbd tegyiik fel, hogy minden i € 2,n — 1 esetén f@(u) = 0.

1. Ha u gyengébb értelemben vett inflexids pontja az f-nek és n pdros, akkor f)(u) =0,
2. Han pdratlan és ) (u) # 0, akkor u inflexids pontja az f-nek.

Bizonyitas. 1. A lokalis Taylor-formula, illetve a t6bbszorosgyok-feltétel szerint

=nlli
T—u (z —u)n o (x —u)n

£ () = it lim L Tl () f(@) = fw) = () — u)

A gyengébb értelemben vett inflexios pont definiciojabol kévetkezik, hogy az utolso lim,_,,, jelet kovets szorzat elsd
tényezGje u-ban elGjelet valt, a mésodik tényezs elGjele viszont u egy pontozott kornyezetén beliil allandd és nem
nulla, igy a szorzat hatarértékének létezésébdl, illetve ennek ama kovetkezményébdl, hogy a bal oldali hatarérték
megegyezik a jobb oldali hatarértékkel, azt kapjuk, hogy ez a hatarérték nulla.

2. A potbeli szigoru novekedés/fogyas n-edrendii elégséges feltétele (9.8.3.) szerint az f” fliggvény az u pontban
szigortian lokalisan n6vs, illetve fogyo — attol fiiggGen, hogy f()(u) pozitiv, vagy negativ. Azaz van olyan r pozitiv
szam, melyre f”(z) elGjele az elsS esetben az (u—r, u)-beli z-ekre negativ és az (u, u+r)-beli z-ekre pozitiv, a masodik
esetben forditva, igy az els6 esetben f|(,_ ) szigorian konkav és f|(, ,+r) konvex, a masodik esetben forditva. [

12. A trigonometrikus fiiggvények és a m szam

A koszinusz- és a szinuszfiiggvény, valamint a 7w szam értelmezésére és néhany alapvetd tulajdonsaganak igazolasara a
kozépiskolaban geometriai modszereket szoktak hasznalni. Ennek a targyalasmodnak egy precizebb valtozata tanul-
ményozhat6 példaul Csaszar Akos Valos Analizis cimii tankonyvének 1.4.54. szakaszaban (ez az 1. kitet 138. oldalan
kezdddik és a 142. oldalan fejezédik be).

A koszinusz- és a szinuszfliggvény néhany ismert tulajdonsagabol most dsszeallitunk egy olyan minimélis elemszama
feltételrendszert, amely elvileg alkalmas a (cos, sin) fiiggvénypar definidlasara. Ez a feltételrendszer (C, S) € RExRE
fliggvénypéarokra vonatkozik, és az alabbi négy feltételt tartalmazza:

(a) Y€ R C%*(z) + S*(x) = 1,
(b) V(z,y) € R® Oz +y) = C(x)Cly) — S(z)S(y),
(c) V(z,y) € R Sz +y) = S()C(y) + C(2)S(y),
(d IrcRT Vre(0,r) 0< C(x) és 0< S(z) <z < Sx)/C(x).

Az a tény, hogy létezik olyan fiiggvénypar, amelyik teljesiti ezt a négy feltételt, szinte kozismertnek nevezhetd (miként
az is, hogy a legnagyobb olyan r pozitiv szam, amellyel a (d) feltétel teljesiil, 7/2-vel egyenls). Geometriai eszkozokkel
torténd bizonyitasa megtalalhaté az imént emlitett konyvrészletben, de ismert t6bb geometriamentes bizonyitésa is,
ezek kozil az egyikkel fogunk megismerkedni.

Lényegesen sziikebb korben ismert viszont, hogy a (C,S) = (cos, sin) par az egyetlen ilyen fliggvénypéar. Az, hogy
legfeljebb egy ilyen par létezhet, kiolvashato az alabbi tétel (1) allitasabol, mig annak a bizonyitasat, hogy létezik ilyen
fliggvénypér, a hatvanysorok targyalasa soran fogjuk befejezni. Hangsulyozzuk, hogy a koszinusz-szinusz fliggvénypéar
bevezetésével egyiitt sor keriil a m szdm ugyancsak geometriamentes bevezetésére is.

12.1. Tétel (a trigonometrikus fiiggvények néhany tulajdonsaga). Ha egy (C,S) € R® x R® fiigguénypdr
teljesiti a fenti (a), (b), (c), (d) feltételeket, akkor az aldbbiakat is teljesiti:

(e) C(0) =1, S(0) =0, (f) C pdros, S pdratlan fiiggvény,

(g9) barmely (u,v) valds szdmpdrra

C(v)—C(u)=—25<“‘g“>s<“;“) é S@)—S@):M(”é“)S(“Q“),
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(h) C folytonos a 0 helyen,

(i) S differencidlhaté a O helyen és S'(0) =1,

(5) C is, S is folytonos fiiggvény,

(k) C is, S is differencidlhato figgvény, minden u € R esetén C'(u) = —S(u), és S"(u) = C(u)

(1) minden valds v-re

2k 2k+1

Jim, 2 () g =€) 6 Jim ) () gy = S,

k=0 (%)' k=0

(m) azok kozott az v pozitiv szdmok kozott, amelyekre teljesil a (d) feltétel, van legnagyobb, ez a C fiigguény legkisebb
pozitiv gydke,

ennek kétszeresét m-vel jeldlve,
(n) S a|—m/2,7/2] intervallumon szigorian monoton novd, C a [0, 7] intervallumon szigorian monoton fogyd, S/C
a (—7/2,7/2) intervallumon szigorian monoton névd, és C/S a (0,7) intervallumon szigordan monoton fogyd;
(0) a C, S figguények 2w szerint, mig az S/C, C/S figguények m szerint periodikusak.

Bizonyitas.(e) Ha (b)-t és (a)-t az x := y := 0 szereposztassal alkalmazzuk, azt kapjuk, hogy a k := C'(0) szdm a
2id? —id —1 polinomfiiggvény egyik gyoke, vagyis k = 1 vagy k = —1 /2. Indirekt uton folytatjuk: tegyiik fel, hogy
k = —1/2. Ebbdl és (a)-bol (xz = 0) azt kapjuk, hogy S(0) # 0, igy a (c)-bdl az = := y := 0 szereposztassal adodo
S(0) = 25(0)C(0) egyenlet mindkét oldalat eloszthatjuk az S(0) szammal, tehat azt kapjuk, hogy —1 = 2k = 1.
k = 1-bél és (a)-bol persze rogton kévetkezik, hogy S(0) =

(f) Minden valés a szamra

®)

(C(z) — C(—2))? + [S(z) + S(—)]? ¥ 2 — 20(2)C(~2) + 25(2)S(~2) ¥ 2 — 20(—z + 2) =2 — 20(0) L 0

(g) A kozépiskolaban megismert modon az x := (v 4 u)/2, y := +(v — u)/2 szereposztasokkal kaphatjuk (b)-bdl az
els6, (¢)-bdl a masodik azonossagot.
(h) Ha az imént bizonyitott azonossagok koziil az els6t olyan (u,v) parokra alkalmazzuk, amelyek teljesitik a 0 <
u < v < 0 egyenlstlenségeket, akkor arra kovetkeztethetiink, hogy C szigortiian monoton fogyo a [0, ) intervallumon,
hiszen ilyen (u,v) parok esetén (v + u)/2 és (v — u)/2 egyarant benne van a (0,0) intervallumban, igy (d) miatt S
értéke ezeken a helyeken pozitiv. Ennek a lesztikitett fiiggvénynek a monotonitasa miatt C-nek létezik a 0 helyen a
jobb oldali hatarértéke. A C fiiggvény péaros volta miatt ez az A jobb oldali hatarérték egyszersmind a hatarértéke
is a C flggvénynek, igy azt kell bizonyitanunk, hogy A = 1. (d)-bdl kévetkezik, hogy A nem lehet negativ, ezért
elég azt igazolni, hogy A € {—1/2,1}, vagyis elég azt igazolni, hogy A gyoke a 2id* —id —1 polinomfiiggvénynek. A
masodik és a harmadik szakasz egyszerii tételeibsl kovetkezik, hogy az x +— 2C?(x) — C(2z) — 1 fiiggvény hatarértéke
a 0 helyen 242 — A — 1, viszont a (b) és (a) feltételek szerint (y := x) ez az azonosan nulla fiiggvény, igy hatarértéke
0.
(i) Legyen ¢ tetsz6leges pozitiv szam. A C fiiggvény 0-beli folytonossaga miatt vehetiink egy olyan & € (0, r] pozitiv
szamot, melyre minden x € (0,0) esetén 1 —e < C(x) < 1. Ezek utan a (d) feltételbdl kévetkezik, hogy ezekre az x
szamokra

S(x)

x

l-e<C(x) < <1,

végiil az S/ id fiiggvény péaros voltabol kovetkezik (lasd (f)-t), hogy ezek az egyenlStlenségek akkor is teljesiilnek, ha
€ (—9,0).

(j) S paratlan, igy (d)-bsl kovetkezik, hogy minden x € (—r,7) esetén |S(x)| < |z|. Legyen u € R, € € R, és legyen

v az u kézéppontt, min{r, ¢} kornyezet tetszGleges eleme. Ekkor — felhasznalva egyrészt a (g) azonossagokat, masrészt

azt, hogy (a) kovetkeztében mind a C, mind az S fiiggvény értékkészlete rész a [—1, 1] intervallumnak —

|C’(U)—C(u)|:2‘5’(”;”)‘-’5(02u>‘§|v—u|<5,

|S(v)—S(u)|:2’C<U;u>‘~‘5(v;u)‘§|v—u|<e.

(k) Ismét a (g) azonossagokat alkalmazzuk.

Clz) - Cu) :_S<x2u> .S<x—;—u>’

T—Uu r—u

2



Szilagyi Tivadar Differencidlszamitas 21

itt a jobb oldal els§ tényez6jének hatarértéke az u helyen 1, hiszen ez az S/ id kiils6, és az injektiv x — (z —u)/2 belss
fiiggvény kompozicidja és a belss fiiggvény hatarértéke az u helyen 0, a masodik tényez6é S(u), mert ez a folytonos
S kiilss, és az © — (x + u)/2 belss fiiggvény kompozicidja és a belss fliggvény hatarértéke az u helyen u-val egyenld.

r—Uu

S(x) —S(u) S(g) .C(z%—u),

o 2

T—u r—u

2

itt a jobb oldal els§ tényezGjének hatéarértéke az w helyen 1, hiszen ez az S/ id kiils6, és az (injektiv) x — (z — u)/2
belss fiiggvény kompozicioja és a belss fiiggvény hatéarértéke az u helyen 0, a mésodik tényezéé C(u), mert ez a
(folytonos) C kiils§ és az injektiv x — (x + u)/2 belsé fliggvény kompozicitja, és a bels6 fiiggvény hatarértéke az u
helyen u-val egyenl6.

(1) Az allitas v = 0 esetén nyilvanvalo, ezért a tovabbiakban feltehetjiik, hogy v # 0. (k)-bol kovetkezik, hogy mind
a C, mind az S fiiggvény kétszer differencialhato, és C7 = —C, §7 = —§, ebbdl az, hogy C is, S is haromszor
differencialhato, és C""" = S, S = —C, ebbél pedig az, hogy mind a C, mind az S négyszer differencialhato, és
Cc®W =, S® = S. Ezek utan egyszeri teljes indukcioval adodik, hogy minden pozitiv egész n-re mind a C, mind az
S fiiggvény 4n — 3-szor is, 4n — 2-sz0r is, 4n — 1-szer is és 4n-szer is differencialhato (igy mindkeét fiiggvény végtelen
sokszor differencialhat6), tovabba hogy minden valés u-ra mind az n — C(u), mind az n — S (u) sorozat
4 szerint periodikus, és mindkét sorozat abszolut értéke 2 szerint periodikus. Ebbél (v := 0) azt kapjuk, hogy a
bizonyitandé allitdsok igy fogalmazhatok at: lim, e |C(v) — Ty, (v)| = 0, illetve limy, o0 [S(v) — T§ 41 (V)] = 0.
A Lagrange-maradéktagos Taylor-formula szerint minden pozitiv egész n-hez talalhato a 0 és a v k6zott olyan w,,
melyre

C(2n+1)(w )||U|2n+1 |,U|2n+1
(az utolso egyenltlenség abbol kivetkezik, hogy a |C (" +1)| = | S| fiiggvény minden értéke a [0, 1] intervallumban van),

¢s a majoréns sorozat nullsorozat, hiszen egy (" /n!) alaki sorozat részsorozata. Az (]S(v) — Ty, 1 (v)]) sorozat

nulldhoz tartasa ugyanigy igazolhat6, a maradéktagban ezuttal a |S (2”+2)| fliggvény szerepel, de ez is megegyezik az
|S| figgvénnyel.

(m) Jelolje A azoknak az r pozitiv szamoknak a halmazat, amelyekre minden x € (0,r) esetén C(z) > 0, mig
B azokét, amelyekre teljesiil (d). (d) értelmezése alapjan nyilvanvalo, hogy B C A, most igazoljuk, hogy A C B.
Ehhez mar hasznalhatjuk azt a tényt, hogy a vizsgalt (C,S) fiiggvényparunk teljesiti a (k) feltételt. Abbol, hogy
S(0) = 0 és minden z € [0,7) esetén S’(x) = C(x) > 0, kovetkezik, hogy S|jo,,) szigortian monoton noévd, igy az S
fiiggvény a (0, r) intervallumon valéban csak pozitiv értékeket vesz fel. Ebbél, és a C? + S? = 1 azonossaghol kapjuk,
hogy C a (0,r) intervallumon mindeniitt 1-nél kisebb (és —1-nél nagyobb) értéket vesz fel, vagyis itt a 0 helyen is
folytonos x — x—S(x) fiiggvény derivaltja pozitiv, aminek koszonhetSen ez a fliggvény a [0, r) intervallumon szigortan
monoton névé, kovetkezésképp a (0, r) intervallumon csak pozitiv értékeket vesz fel. Ugyanigy bizonyithatjuk az utolso
egyenl6tlenséget is, ezuttal elég az © — S(x)/C(z) — = fliggvényrdl bizonyitani, hogy a derivaltja a (0, r) intervallum
minden pontjaban pozitiv: ez a derivalt egy x € (0,7) pontban (C?(z) + S?(z))/C?(z) — 1 = 1/C?(x) — 1, és mint
azt az imént lattuk, |C(z)| < 1.

Marmost (sup B =)sup A € A(= B) igazolasa céljabol csak annyit kell megjegyezni, hogy egy sup A-nal kisebb x
pozitiv szam esetén C(x) azért pozitiv, mert — a fels6 hatar definicioja szerint — van z-nél nagyobb A-beli elem.

Most azt igazoljuk, hogy a C' fliggvény értékkészletének alsd hatara negativ. Ez egyenértékii egyrészt azzal, hogy
van negativ szam az értékkészletében, masrészt C paros volta ((f)) és C(0) = 1 > 0 ((e)) miatt azzal is, hogy C a
pozitiv szamok halmazéan felvesz negativ értéket is, amibol persze kovetkezik, hogy az A(= B) halmaz fels6 hatara
pozitiv valos szam. Indirekt tton okoskodunk: tegyiik fel, hogy i := inf R(C) > 0, legyen ¢ tetsz6leges pozitiv szam, u
pedig olyan valos szam, melyre 0 <4 < C(u) < i+¢e. Ekkor (b)-bdl, (a)-bdl és az alsé hatar definiciojabol kovetkezik,
hogy i < C(2u) = 2C%(u) —1 < 2(i +¢)? — 1. Az e — 2(i +¢)? — i — 1 polinomfiiggvény folytonossiaga miatt, éspedig
a O-beli elGjeltartdsa miatt ebbdl azt kapjuk, hogy 0 < 2i2 —i — 1 = (2i + 1)(i — 1), tehat (tekintettel az indirekt
feltevésre) i > 1, ebbsl R(C) C [—1,1] miatt adodik, hogy C az azonosan 1 fiiggvény, igy (a) miatt S az azonosan
nulla fiiggvény, ami ellentmond (d)-nek.

Végiil C'(sup A) = O-ra indirekt uton lehet kovetkeztetni abbol, hogy (a folytonos) C fiiggvény lokalisan elGjeltarto
a sup A pontban: emiatt C'(sup A) > 0 esetén lézetne olyan § > 0, melyre C' értéke minden (0,sup A + §)-beli helyen
pozitiv lenne, vagyis az A halmaznak lenne sup A-nal nagyobb eleme, ha pedig C(sup A) < 0 lenne, akkor sup A nem
lehetne eleme az A-nak.

(n) A bizonyitas (m) részének elsG bekezdése ismételhets az r = 7/2 szereposztassal.

(0) Abbol, hogy /2 gydke a C fiiggvénynek, eldszor (a) és (b) segitségével kapjuk azt, hogy C(7) = 20?(w/2)—1 =
—1, (c) segitségével azt, hogy S(w) = 25(7w/2)C(7/2) = 0, az utoébbiakbol (b) és (c) felhasznalasaval azt, hogy minden
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valos z-re C(x + ) = —C(z) és S(x + ) = —S(x). Az utobbiakbol egy osztéassal kapjuk az S/C fliiggvényre vonat-
kozo allitas bizonyitasat, illetve kiilon-kiilon kétszer alkalmazva Sket, kapjuk a 27 szerinti periodicitasra vonatkozo
allitasokét. O

Az alabbi tételt a hatvanysorok térgyaldsa soran bizonyitjuk:

12.2. Tétel. Minden valds x esetén léteznek az aldbbi hatdrértékek:

_ n . a2k . n . w2kt _
nler;o Z(—l) on] =:cosx ¢€s nh_)rr;@ Z(—l) e =:sinz,
k=0 k=0
az igy értelmezett cos, sin fiigvények differencidlhatok, cos’ = —sin, sin’ = cos, cos0 =1 és sin0 = 0.

A kovetkezd tételbdl kideriil, hogy ilyen moédon valéban a kivant fliiggvényeket értelmezziik:

12.3. Tétel. Ha az dsszes valds szdmok halmazdt énmagdba képezd C, S figguények teljesitik az (e), (k) feltételeket,
akkor teljesitik az (a), (b), (c), (d) feltételeket is.

Bizonyitas. (a) Minthogy a C? + S? fiiggvény a 0 helyen (e) szerint az 12 + 02 = 1 értéket veszi fel és a derivaltja
minden valos z helyen egyenls —2C (x)S(x)+2S(x)C(x) = 0-val, ez a fiiggvény sziikségképpen az azonosan 1 fiiggvény.
(b) és (c) igazolasa céljabol elég azt bizonyitani, hogy minden valds y esetén az

R> 2 [C(2)C(y) — S(@)S(y) — Clz + ) + [S(2)C(y) + C(2)S(y) — S(w +y)]* = fy(x)

figgvény az azonosan nulla fiiggvény. f, azonosan nulla volta abbol kivetkezik, hogy egyrészt f,,(0) = [C(y)—C(y)]*+
[S(y) — S(y)]* = 0, mésrészt — miként az (k) alapjén konnyen ellérizhets — f; azonosan nulla.

(d) bizonyitasaban az r pozitiv szamot valasszuk gy, hogy a 0 szam r sugari kornyezetében minden valos z-re
C(z) > 0 legyen. Ilyen szam a valamely pontban folytonos fliggvény lokalis el§jeltartasarol szolo tétel szerint létezik,
hiszen C'(0) = 1 > 0, és C differencialhato a 0 helyen. Innentdl kezdve a 12.1. Tétel (m) részének bizonyitasabol lehet
masolni egy részt: annak a bizonyitasat, hogy (lasd az ottani jeloléseket) A C B.

O

A koszinusz- és a szinuszfliggvény definiciojat kovetheti természetesen a tangens- és a kotangensfiiggvény értelme-
zése: tan := tg := sin / cos, cot := ctg := cos / sin.
A 12.1.Tétel (n) allitasara alapozva be lehet vezetni az arkuszfiiggvényeket:

arccos := (cos |[0,7r])_1, arcsin := (sin |[,,r/2’,r/2])_1, arctg := (tg |(,,T/277T/2))_1, arcctg := (ctg |(077T))_1,

melyeket — kissé pongyola szohasznalattal — a trigonometrikus fliggvények inverzeinek szoktak nevezni.

Szamos apro allitast lehetne még bizonyitani a trigonmetrikus fliggvényekrsl, de mi most mér csak egy dolgot
néziink meg részletesen, azt, hogy mit lehet allitani differencidlhatosiag szempontjabdl a tangens és a kotangens
fliggvényrsl, tovabbé a trigonometrikus fiiggvények inverzeirdl:

12.4. Tétel. A tangens- és a kotangensfigguény differencidlhato, minden u € D(tg), illetve u € D(ctg) esetén
tg/(u) = 1/ cos®u és ctg'(u) = —1/sin? u.

Bizonyitas. A 2.2. Tételbdl és az el6zd lemméabol kovetkezik a differencidlhatosag ténye és a két formula érvényessége
is:

cos2u + sin®u 1
tg'(u) = =
g - 2 - 2 )
cos? u cos? u
() —sin?u — cos® u 1
ctg'(u) = - = —— .
sin? sin® u O

12.5. Allitas. Az arcsin és arccos fiigguények minden u € (—1,1) pontban differencidlhatdk,

1
arcsin’(u) = ———= = — arccos’(u),

V1 —u?

tovdbbd arcsin’, (—1) = arcsin’_(1) = 400 és arccos’, (—1) = arccos’ (1) = —oc.
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Bizonyitas. Alkalmazzuk az inverz derivaltjarol szol6 tételt (3.4.) a g := sin|[_r /2 x/2), és a g := cos ||, fliggvényre,
legyen elGszor v := arcsinu, illetve v := arccos u, mésodszor v := —1, harmadszor v := 1. Minthogy a cos fiiggvény a
[—7/2,7/2] intervallumon és a sin fiiggvény a [0, 7] intervallumon csak nemnegativ értékeket vesz fel,

1
= cosv = V1 —sin?v = /1 — (sin(arcsinu))? = /1 — u2,

arcsin’ (u)

illetve

1
arccos’ (u)

= —sinv = —/1 — cos?v = —/1 — (cos(arccos u))2 = —/1 — u2,

innen reciprokokra attérve adodik az els6 két allitas.

A végpontokban vett egy oldali derivaltakra vonatkozo allitdsok kozvetleniil kévetkeznek a 3.4. Tételbdl, hiszen a
Sin |[_r/2,x/2) fliggvény szigortian monoton névé, derivéltja a két végpontban nulla, a cos [jo - fliggvény szigortan
monoton fogyo és a derivaltja a két végpontban nulla. O

12.6. Megjegyzés. Hasonldan bizonyithato a kovetkezd dllitds is (a bizonyitdst a Kedves Olvasd feltétlenil gondolja

végig): minden u € R esetén
1
arctg’ (u) = T = —arcctg (u).




