
Feladatok a 4. hétre. Eredményekkel és teljesen kidolgozott
megoldásokkal az 1 (a)–(e) és a 4. feladatokra

1. Határozzuk meg következő differenciálegyenletek általános megoldását
a próba függvény módszerrel.

(a) y′′ − 3y′ − 4y = 3e2t

(b) y′′ − 3y′ − 4y = 2 sin t

(c) y′′ − 3y′ − 4y = −8t cos(2t)

(d) y′′ − 3y′ − 4y = 3e2t + 2 sin t − 8t cos(2t)

(e) y′′ − 3y′ − 4y = 2e−t

2. Határozzuk meg az alábbi differenciálegyenlet általános megoldását:

(a) y′′ − 2y′ − 3y = 3e2t

(b) y′′ + 2y′ + 5y = 3 sin(2t)

(c) y′′ − 2y′ − 3y = −3te−t

(d) y′′ + 2y′ + y = 2e−t

3. Határozzuk meg a kezdetiérték probléma megoldását:

y′′ + 4y = t2 + 3t, y(0) = 0, y′(0) = 2.

4. Határozzuk meg az alábbi differenciálegyenlet általános megoldását:

y′′ + 4y = 3 csc t, (csc t = 1/ sin t)

5. Határozzuk meg az alábbi két differenciálegyenlet megoldását a kons-
tans variációs módszerrel majd a próba függvény módszerrel is.

(a) y′′ − 5y′ + 6y = 2et.

(b) 4y′′ − 4y′ + y = 16et/2.

6. Határozzuk mega következő differenciálegyenlet általános megoldását:

y′′ + y = tan t, 0 < t <
π

2
.
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7. Határozzuk mega következő differenciálegyenlet általános megoldását:

4y′′ + y = 2 sec(t/2), −π < t < π (sec t = 1/ cos t).

8. Tekintsük a következő differenciálegyenletet:

t2y′′ − t(t + 2)y′ + (t + 2)y = 2t3, t > 0.

Először ellenőrizzük le, hogy az

Y1 = t, Y2 = tet

függvények a megfelelő t2y′′−t(t+2)y′+(t+2)y = 0 homogén egyenlet
fundamentális megoldását adják. Ezek után határozzuk meg az eredeti
inhomogén egyenlet általános megoldását!

Eredmények

1. Mivel
yi,alt = Yh,alt + yi,p (1)

ezért először a homogén részt oldjuk meg:

Y ′′ − 3Y ′ − 4Y = 0.

A karakterisztikus egyenlet r2 − 3r − 4 = 0. Ennek gyökei:

r1 = −1, r2 = 4. (2)

Az általános megoldás.

Yh,alt = c1e
−t + c2e

4t. (3)

Vegyük észre, hogy a baloldal és így a homogén rész általános megoldása
közös a következő 5 feladatban.

1a. Mivel 2 nem gyöke a karakterisztikus egyenletnek ezért az y = yi,p

partikuláris megoldást
y = c · e2t

alakban keressük. A c konstans meghatározásához az y = c · e2t függvényt
vissza helyettesítjük az y′′ − 3y′ − 4y = 3e2t egyenletbe. Ehhez először
kiszámoljuk:

y′ = 2ce2t, y′′ = 4ce2t.
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Vissza helyettesítés után kapjuk:

(4c − 3 · 2c − 4 · c) · e2t = 3e2t.

Innen c = −1/2. Vagyis

y = yi,p = −
1

2
e2t.

Ez és (3) együttesen azt adja, hogy

yi,alt = c1e
−t + c2e

4t −
1

2
e2t

1b. Csak az y = yi,p partikuláris megoldást meghatározása van hátra,
hiszen az Yh,alt megoldást már előbb meghatároztuk. Az y = yi,p megoldást
keressük

y = A cos t + B sin t

alakban. Vagyis meg kell határozni az A és B konstansokat úgy hogy y =
A cos t + B sin t egy megoldása legyen az

y′′ − 3y′ − 4y = 2 sin t. (4)

egyenletnek. Ehhez kiszámoljuk az y = A cos t + B sin t első és második
deriváltját:

y′ = −A cos t + B sin t, y′′ = −A cos t − B sin t.

A (4) egyenletbe való vissza helyettesítés után:

(−5A − 3B) cos t + (3A − 5B) sin t = 2 sin t.

A cos t és a sin t együtthatói mindkét oldalon meg kell hogy egyezzenek:

−5A − 3B = 0

3A − 5B = 2.

Tehát: A = 3/17 és B = −5/17. Ezért

yi,p =
3

17
cos t −

5

17
sin t.
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Ez, (1) és (3) együttesen adja, hogy

yi,alt = c1e
−t + c2e

4t

︸ ︷︷ ︸

Yh,alt

+
3

17
cos t −

5

17
sin t

︸ ︷︷ ︸

yi,p

.

1c. Meg kell határoznunk az A, B konstansokat úgy, hogy yi,p = Aet cos(2t)+
Bet sin(2t) az y′′−3y′−4y = −8t cos(2t) differenciálegyenlet egy megoldása
legyen. Ehhez kiszámoljuk az első és második deriváltat:

y′ = (A + 2B) et cos(2t) + (−2A + B) et sin(2t),

y′′ = (−3A + 4B) et cos(2t) + (−4A − 3B) et sin(2t).

Vissza helyettesítve az y′′ − 3y′ − 4y = −8t cos(2t) egyenletbe kapjuk, hogy

10A + 2B = 8

2A − 10B = 0.

A megoldások: A = 10/13 and B = 2/13. Tehát

yi,p =
10

13
et cos(2t) +

2

13
et sin(2t).

Ez, (1) és (3) együttesen adja, hogy:

yi,alt = c1e
−t + c2e

4t

︸ ︷︷ ︸

Yh,alt

+
10

13
et cos(2t) +

2

13
et sin(2t)

︸ ︷︷ ︸

yi,p

.

1d. Vegyük észre, hogy az egyenlet jobboldala az előző három egyenlet
jobboldalainak az összege. Használva, hogy az egyenletünk lineáris ez azt
jelenti, hogy az általános az előző három egyenlet partikuláris megoldásainak
megoldásainak összegeként kapjuk ezen egyenlet egy partikuláris megoldá-
sát:

yi,p = −
1

2
e2t +

3

17
cos t −

5

17
sin t +

10

13
et cos(2t) +

2

13
et sin(2t)

Tehát az általános megoldás:

yi,alt = c1e
−t + c2e

4t

︸ ︷︷ ︸

Yh,alt

+−
1

2
e2t +

3

17
cos t −

5

17
sin t +

10

13
et cos(2t) +

2

13
et sin(2t)

︸ ︷︷ ︸

yi,p

.
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1e. Használva (2)-et látjuk, hogy a −1 egyszeres gyöke a karakterisztikus
polinomnak. Ezért egy partikuláris megoldást

y = (At + B)e−t

alakban keresünk. Vagyis meg kell találnunk az A és B konstansokat, me-
lyekre az y = (At + B)e−t függvény az y′′ − 3y′ − 4y = 2e−t egyenletnek
megoldása lesz. Először kiszámoljuk a deriváltakat:

y′ = (A − B)e−t − Ate−t, y′′ = (−2 A + B)e−t + Ate−t.

Vissza helyettesítés után adódik, hogy A = −2/3, B = 0. Így az y′′ − 3y′ −
4y = 2e−t egyenlet egy partikuláris megoldása

yi,p = −
2

3
te−t.

Ez, (1) és (3) együttesen adja, hogy:

yi,alt = c1e
−t + c2e

4t

︸ ︷︷ ︸

Yh,alt

+−
2

3
te−t

︸ ︷︷ ︸

yi,p

.

2a. y = c1e3t + c2e−t − e2t

2b. y = c1e−t cos(2t) + c2e−t sin(2t) + 3

17
sin(2t) − 12

17
cos(2t)

2c.y = c1e3t + c2e−t 3

16
te−t + 3

8
t2e−t

2d.y = c1e−t + c2te−t + t2e−t.
3. y = 7

10
sin(2t) − 19

40
cos(2t) + 1

4
t2 − 1

8
+ 3

5
et

4.Az általános megoldást a

yi,alt = Yh,alt + yi,p (5)

formula adja mivel az egyenlet lineáris. Az egyenlet homogén része:

Y ′′ + 4Y = 0.

Ennek karakterisztikus polinomja r2 + 4r = 0. A karakterisztikus polinom
gyökei:

r1 = 2i, r2 = −2i.

A homogén rész általános megoldása:

Yh,alt = c1 cos(2t) + c2 sin(2t). (6)
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Az y = yi,p partikuláris megoldás meghatározásához a konstans variációs
módszert kell használnunk. Vagyis meg kell határozni azon c1(t), c2(t) kons-
tansokat, melyekre:

y = c1(t) cos(2t) + c2(t) sin(2t) (7)

egy megoldása az y′′ + 4y = 3 csc t egyenletnek. Ehhez a következő algebrai
egyenletet kell megoldanunk:

c′
1
(t) cos(2t) + c′

2
(t) sin(2t) = 0

−2c′
1
(t) sin(2t) + 2c′

2
(t) cos(2t) = 3 csc t.

Az első egyenletből adódik, hogy

c′
2
(t) = −c′

1
(t)

cos(2t)

sin(2t)
.

Ezt a második egyenletbe vissza helyettesítve:

c′
1
(t) = −

3 csc t sin(2t)

2
= −3 cos t.

Ezt az utolsó előtti egyenletbe vissza írva:

c′
2
(t) =

3

2
csc t − 3 sin t.

Integrálás után kapjuk:

c1(t) = −3 sin(t), c2(t) =
3

2
ln | csc t − cot t| + 3 cos t.

(Az integráláskor adódó konstansokat elhagyjuk mert csak egyetlen parti-
kuláris megoldásra van szükségünk.) Ezért

y = yi,p = (−3 sin(t)) · cos(2t) + (
3

2
ln | csc t − cot t| + 3 cos t) · sin(2t).

Használva az (5) és a (6) formulákat kapjuk, hogy

yi,alt = c1 cos(2t) + c2 sin(2t)

+ (−3 sin(t)) · cos(2t) + (
3

2
ln | csc t − cot t| + 3 cos t) · sin(2t).

5a. y = c1e2t + c2e3t + et.
5b. y = c1et/2 + c2tet/2 + 2t2et/2.
6. y = c1 cos t + c2 sin t − (cos t) ln(tan t + sec t).
7. y = c1 cos(t/2) + c2 sin(t/2) + t sin(t/2) + 2 [ln cos(t/2)] cos(t/2).
8. y = c1t + c2tet − 2t2.
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