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Fontos tudnivalók 
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Az analízis vizsga részét képezi egy egyszerű komplex függvénytani feladat megoldása is. 
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Ez a kiadvány a Creative Commons Nevezd meg! – Ne add el! 4.0 Nemzetközi licenc alá tartozik. 

A licenc megtekintéséhez látogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra. 

A kiadványban szereplő tartalmi elemek 

harmadik személytől származó véleményt, értesülést tükröznek. 
Az esetlegesen előforduló tárgyi tévedésekből fakadó visszás helyzetek 

kialakulásáért, illetve azok következményeiért a kiadó nem vállal felelősséget!  



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 3 / 72 2014. június 5. 

Tartalomjegyzék 

Szóbeli vizsga tételjegyzék ....................................................................................................... 4 

Kidolgozott tételek, tételvázlatok ............................................................................................ 6 
1. tétel .................................................................................................................................... 6 

2. tétel .................................................................................................................................. 10 

3. tétel .................................................................................................................................. 13 

4. tétel .................................................................................................................................. 15 

5. tétel .................................................................................................................................. 18 

6. tétel .................................................................................................................................. 21 

7. tétel .................................................................................................................................. 24 

8. tétel .................................................................................................................................. 26 

9. tétel .................................................................................................................................. 28 

10. tétel ................................................................................................................................ 30 

11. tétel ................................................................................................................................ 33 

12. tétel ................................................................................................................................ 36 

13. tétel ................................................................................................................................ 38 

14. tétel ................................................................................................................................ 40 

15. tétel ................................................................................................................................ 42 

16. tétel ................................................................................................................................ 45 

17. tétel ................................................................................................................................ 47 

18. tétel ................................................................................................................................ 50 

19. tétel ................................................................................................................................ 52 

20. tétel ................................................................................................................................ 55 

21. tétel ................................................................................................................................ 57 

22. tétel ................................................................................................................................ 59 

23. tétel ................................................................................................................................ 61 

24. tétel ................................................................................................................................ 64 

Feladatok a komplex függvénytan témaköréből ................................................................. 66 

Jegyzetek ................................................................................................................................. 69 
 



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 4 / 72 2014. június 5. 

Szóbeli vizsga tételjegyzék 

1. tétel: Hatványsorok. Konvergencia tartomány (B). Konvergencia sugár meghatározása 

(B). Taylor sor. Elemi függvények Taylor sora:   ,    ( ),    ( ). 

2. tétel: Függvénysorozatok, függvénysorok. Konvergencia típusok: pontonkénti és egyen-

letes. Összegfüggvény folytonossága (B), deriváltja és integrálja. 

3. tétel: Fourier sor. Fourier együtthatók, valós alak. Derivált függvény Fourier sora (B). 

Fourier sor konvergenciája. Fourier együtthatók nagyságrendje (B), Parseval 

egyenlőség. 

4. tétel: Kétváltozós függvények értelmezése, ábrázolása. Folytonosság, sorozatfolytonos-

ság. Bolzano tétel magasabb dimenzióban (B). Egyenletes- és Lipschitz-folytonos-

ság. 

5. tétel: Függvény határértéke. Parciális deriváltak. Geometriai jelentés. Parciális deri-

váltak és folytonosság (B). Parciális deriválások sorrendje, felcserélhetősége. 

6. tétel: Teljes differenciálhatóság. Kapcsolat a parciális deriváltakkal. Folytonosság és 

differenciálhatóság (B) Érintősík. Normálvektor. Iránymenti derivált (B).  

7. tétel: Második derivált, Hesse mátrix. Láncszabály, speciális esetek. Másodrendű Tay-

lor formula kétváltozós függvényre (B). 

8. tétel: Lagrange féle középérték tétel (B). Implicit függvény tétel. Implicit függvény 

deriválása. Lokális és globális szélsőérték. Szükséges feltétel lokális szélsőértékre 

(B). 

9. tétel: Stacionárius pont. Nyeregpont. Elégséges feltétel lokális szélsőértékre. Feltételes 

szélsőérték, feladat megfogalmazása. Szemléletes jelentés. 

10. tétel: Lagrange-féle multiplikátor szabály. Függvény rendszerek, Koordináta-transzfor-

máció. Jacobi mátrix. Jacobi determináns. Invertálhatóság. Inverz rendszer deri-

váltja (B).  

11. tétel: Riemann integrál két dimenzióban. Kettős integrál kiszámítása. Integrálás téglalap 

alakú tartományon (B). Integrálás normáltartományon, a síkon. 

12. tétel: Polárkoordináták. Áttérés polárkoordinátákra kettős integrálban. Hármas in-

tegrál: intervallumon és normál tartományon. Általános helyettesítés kettős és hár-

mas integrálban. 

  



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 5 / 72 2014. június 5. 

13. tétel: Hengerkoordináták. Gömbi polárkoordináták. Áttérés Jacobi determinánsa (B). 

Tömegközéppont meghatározása. Kétváltozós függvény felszínének kiszámítá-

sa. 

14. tétel: Improprius integrál, nem korlátos függvény. Hatványfüggvény integrálja az egy-

ségkörben (B). Integrálhatóság feltétele nem korlátos függvényre. 

15. tétel: Improprius integrál nem korlátos tartományon. Példa: harang-görbe integrálja. (B). 

Vonal(görbe) definíciója   -ben és   -ban. Kétváltozós valós függvény integ-

rálja vonal mentén. 

16. tétel: Vektormező integrálja görbe mentén. Szemléletes jelentés. Potenciálkeresés. 

Potenciál létezésének szükséges (B) és elégséges feltétele (vonalintegrállal). 

17. tétel: Fourier sor komplex alakja. Fourier transzformáció. Alaptulajdonságok (B). 

Inverz Fourier transzformáció. Parseval egyenlet (B). Konvolúció. Konvolúció 

FT-ja. 

18. tétel: Magasabb rendű lineáris differenciálegyenlet. Függvények függetlensége. 

Wronski determináns (B). Homogén LDE. Megoldások struktúrája (B). Kezdeti 

érték- és peremérték feladat. 

19. tétel: Állandó együtthatós: homogén LDE megoldásai. Kapcsolat a karakterisztikus 

polinommal (B). Inhomogén LDE. Megoldások struktúrája. Inhomogén LDE 

megoldása. Állandók variálása. 

20. tétel: Inhomogén LDE megoldása: Próbafüggvények. Differenciálegyenlet rendszerek. 

Állandó együtthatós lineáris DER megoldása (B).    értelmezése, speciális ese-

tek. 

21. tétel: Komplex függvény, ábrázolás. Kanonikus alak. Komplex függvény differenciál-

hatósága. Cauchy-Riemann egyenletek (B). 

22. tétel: Elemi függvények:   , alaptulajdonságok. (B). Elemi függvények:   ( ) alaptu-

lajdonságok. (B),    ( ),    ( ), hatványfüggvény. 

23. tétel: Harmonikus függvények (B). Harmonikus társ. Komplex vonalintegrál, alaptulaj-

donságok. Integrál kiszámítása. Cauchy-féle alaptétel. Általánosítás.  

24. tétel: Cauchy-féle integrálformula. Taylor sorfejtés analitikus függvényre (B). Laurent 

sorfejtés. Zérus és pólus. 
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Kidolgozott tételek, tételvázlatok 

1. tétel: Hatványsorok. Konvergencia tartomány (B). Konver-

gencia sugár meghatározása (B). Taylor sor. Elemi függ-

vények Taylor sora:   ,    ( ),    ( ). 

Hatványsorok 

Definíció A hatványsor: 

∑   (    )
 

 

   

      

Ahol      rögzített. 

Konvergencia tartomány (B) 

Definíció Adott egy hatványsor: 

∑    
 

 

   

 

Ennek konvergencia halmaza (konvergencia tartománya, „ahol konvergens”): 

  {    ∑     

 

   

   } 

Állítás A konvergencia halmaz tulajdonságai: 

1.)     

2.) Ha    , akkor minden  -re, melyre | |  | |, igaz, hogy    . 

3.) Ha    , akkor minden  -re, melyre | |  | |, igaz, hogy    . 

Bizonyítás 1.) Triviális. 

 2.) Az | |  | | feltétel miatt teljesül az is, hogy | |   | |, ahol      . 

Mivelhogy   eleme a konvergencia halmaznak, ezért a  -vel felírt hatványsor 

∑    
 

 

   

   

 sora korlátos, azaz   , hogy |   
 |    minden  -re. Ekkor fölhasználva a 

bizonyítás elején megállapított összefüggést: 

|    |  |    |  
|  |

|  |
     

 3.) Ha  -ben konvergens volna, akkor az előző megállapítás miatt az | |  | | 
miatt  -ban is konvergens volna, ami viszont ellentmondás.   
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Konvergencia sugár meghatározása (B) 

Definíció Tegyük fel, hogy létezik    , melyre     és     . A hatványsor kon-

vergencia sugara      {| |     } 
Ha   { }, akkor    . 

Ha    , akkor     

Az      esetben a konvergencia sugár meghatározása a gyökkritériummal lehetséges, a 

„szereposztás”       
 .  

Állítás Tegyük fel, hogy a       √|  |    határérték létezik (esetleg   ). Ekkor: 

 1.)     esetén    . A hatványsor mindenütt konvergens. 

 2.)     esetén    . 

 3.)       esetén   
 

 
. 

Bizonyítás 1.)       √|  |  | |     | |     

2.)       √|  |  | |          

3.)       √|  |  | |    | |   . Ezért | |  
 

 
 esetén  | |   . A sor kon-

vergens.   

A konvergencia sugár meghatározható még a hányados kritérium módszerével is, hasonló 

szereposztással. 

Állítás Tegyük fel, hogy a       
|    |

|  |
   határérték létezik (esetleg   ). Ekkor: 

 1.)     esetén    . A hatványsor mindenütt konvergens. 

 2.)     esetén    . 

 3.)       esetén   
 

 
. 

Bizonyítás 

     
   

|
     

   

    
|  | |     

   

|    |

|  |
  | |  

{
 

      | |  
 

 
           

     | |  
 

 
          

 

  

Általános eset 

Általában a hatványsort egy    pont körüli tekintjük, alakja: 

∑   (    )
 

 

   

 

A konvergencia halmaznak itt is három típusa lehet: 

   {  } 
     

    (         )  

A konvergencia sugarat ugyan úgy határozzuk meg, mint a speciális (    ) esetben. 
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Taylor sor 

A hatványsorok a konvergencia halmaz belsejében: 

- folytonosak 

- differenciálhatók 

- összeadhatók, skalárszorozhatók 

- összeszorzás NEM lehetséges 

 

Legyen  ( )  ∑   (    )
  

    és        körüli hatványsor. 

     
   

√|  |
 

    
   

|
    

  
|     

 

 
  

Ekkor   akárhányszor differenciálható, éspedig 

 ( )( )  ∑   (   )    (     )     (    )
   

 

   

 

|    |    esetén. 
 

Fordítva: 

Adott   függvény előállítható-e hatványsor alakban? Ha    körül előáll, akkor 

  (         )    (  )    

Definíció Az   függvény analitikus   -ban, ha  (  ) számsorozat, hogy 

 ( )  ∑   (    )
 

 

   

 |    |    

Állítás Ha létezik hatványsor-előállítás, akkor az egyértelmű. 

Bizonyítás Legyen     . Ekkor  (  ) hatványsora: 

 (  )  ∑   (    )
 

 

   

              

Ennek deriváltja: 

 ( )(  )  ∑   (   )    (     )     (    )
   

 

   

       

   
 ( )(  )

  
 

Így tehát a hatványsor-előállítás egyértelmű.   

Következmény 

Az analitikus függvények egyértelműen előállíthatók hatványsorral   Taylor sor. A 

 ( )  ∑
 ( )(  )

  
 (    )

 

 

   

 

alakú sor az   függvény    középpontú Taylor sora. A nem analitikus függvények hatványso-
ra csak közelítés. 
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Elemi függvények Taylor sora:   ,    ( ),    ( ) 

Állítás Az  ( )     függvény Taylor sora 

   ∑
  

  

 

   

     

Állítás Az  ( )     ( ) függvény      körüli Taylor sora 

   ( )    
  

  
 

  

  
   ∑

(  ) 

(    ) 
      

 

   

     

Páratlan függvény, így Taylor sorában csak páratlan számok szerepelnek. 

Állítás Az  ( )     ( ) függvény      körüli Taylor sora 

   ( )    
  

  
 

  

  
   ∑

(  ) 

(  ) 
    

 

   

     

Páros függvény, így Taylor sorában csak páros számok szerepelnek. 
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2. tétel: Függvénysorozatok, függvénysorok. Konvergencia típu-

sok: pontonkénti és egyenletes. Összegfüggvény folyto-

nossága (B), deriváltja és integrálja. 

Függvénysorozatok, függvénysorok 

Definíció Adottak az                  függvények, melyek értelmezési tartománya 

közös. Ezek sorozatát függvénysorozatnak nevezzük. Jele: (  ) 

Definíció Az (  ) függvénysorozat határértéke az       függvény, ha 

   
   

  ( )   ( )      

Definíció Adottak az        függvények, melyek értelmezési tartománya közös. A 
(∑  ) függvénysor összege      , ha     -re 

∑   ( )

 

   

  ( ) 

Konvergencia típusok: pontonkénti és egyenletes 

Függvénysorozatra 

Tétel (Cauchy-kritérium) Az (  ) függvénysorozat pontosan akkor konvergens, ha 

    -hoz és     -hez     (   ) küszöbindex, amelyre        ese-

tén |  ( )    ( )|   . 

Definíció Az (  ) függvénysorozat pontonként konvergens  -hez, ha      és     -

hoz     (   ), melyre      esetén |  ( )   ( )|   . 

Definíció Az (  ) függvénysorozat egyenletesen konvergens  -hez, ha     -hoz 

    ( ), melyre      esetén |  ( )   ( )|   ,     -re. 

Következmény 

Ha a konvergencia egyenletes, akkor pontonkénti is. 

Tétel (Elégséges feltétel egyenletes konvergenciára) Adottak          függvények. 

Tegyük fel, hogy         ( )   ( ) pontonkénti határérték. Tegyük fel to-

vábbá, hogy a függvények korlátosak, és |  ( )   ( )|    ,     . Ekkor 

           esetén a fenti konvergencia egyenletes. 

Függvénysorra 

Tétel (Cauchy-kritérium függvénysorokra) A (∑  ) függvénysor pontosan akkor kon-

vergens, ha      esetén     -hoz     (   ), melyre  

|∑   ( )

 

   

|           

Definíció A függvénysor konvergenciája egyenletes, ha a részletösszegek sorozata egyen-

letesen konvergens, azaz 

  ( )  ∑   ( )

 

   

 

jelöléssel    egyenletesen konvergál  -hez. 



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 11 / 72 2014. június 5. 

Tétel (Weierstrass-féle elégséges feltétel) Adottak az        függvények, melyek 

értelmezési tartománya közös. Tegyük fel, hogy a (∑  ) függvénysor tagjai kor-

látosak, éspedig    korlátja |  ( )|    ,     . Tegyük fel továbbá, hogy 
∑   

 
     . Ekkor a konvergencia egyenletes. 

Összegfüggvény folytonossága (B), deriváltja és integrálja 

Tétel (Összegfüggvény tulajdonságainak megállapítására) Tegyük fel, hogy az 

       függvények folytonosak. Tegyük fel, hogy (∑  ) egyenletesen konver-

gens  -ben. Ekkor   ∑   is folytonos. 

Bizonyítás Legyen      tetszőleges. Ahhoz, hogy megállapítsuk, hogy   folytonos-e   -

ban, be kell látni, hogy      esetén | ( )   (  )|   , ha   és    elég köze-

li. 

Bontsuk föl a végtelen összeget két részre: 

 ( )  ∑   ( )

 

   

   ( )    ( )    ( ) 

ahol   ( ) az  -edik részletösszeg,   ( ) pedig a maradék. 

Legyen     tetszőleges. A Cauchy-kritérium miatt     ( ), melyre 

     esetén 

| ( )  ∑   ( )

 

   

|  |  ( )|  
 

 
      

Ezért 

|  ( )    (  )|  
 

 
      

Az    véges sok folytonos függvény összege, ezért folytonos. Tehát a fenti 

   -hoz     , ha |    |   , akkor 

|  ( )    (  )|  
 

 
 

Így amennyiben |    |   , akkor 

| ( )   (  )|  |  ( )    ( )  (  (  )    (  ))|   

 |  ( )    (  )|  |  ( )    (  )|  
 

 
 

 

 
   

tehát   folytonos   -ban.   

Tétel (Integrálhatóság) Adottak az        integrálható függvények és       

függvény. Tegyük fel, hogy 

∑   ( )

 

   

  ( ) 

és a konvergencia egyenletes. Legyen        . Ekkor az összegfüggvény is in-

tegrálható: 

∫  ( )   
 

 

 ∑ ∫   ( )   
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Tétel (Deriválhatóság) Adottak az        differenciálható függvények, és     
  függvény. Tegyük fel, hogy a 

∑   ( )

 

   

  ( ) 

pontonként konvergens  -ben. Tegyük fel, hogy a deriváltakból álló függvénysor 
is egyenletesen konvergens: 

∑   
 ( )

 

   

  ( ) 

és  ( ) folytonos. Ekkor   függvény differenciálható, és   ( )   ( ) 
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3. tétel: Fourier sor. Fourier együtthatók, valós alak. Derivált 

függvény Fourier sora (B). Fourier sor konvergenciája. 

Fourier együtthatók nagyságrendje (B), Parseval egyenlő-

ség. 

Fourier együtthatók, valós alak 

Definíció Az            függvény Fourier együtthatóit így definiáljuk: 

   
 

 
∫  ( )    (  )    

 

  

           

   
 

 
∫  ( )    (  )    

 

  

         

feltéve, hogy a fenti integrálok léteznek. 

Fourier sor 

Definíció Adott          szerint periodikus függvény. Tegyük fel, hogy   integrálható 

a        intervallumon. Az  ( ) függvény Fourier sora (formálisan): 

  
  

 
∑(     (  )       (  ))

 

   

 

ahol    és    a most definiált Fourier együtthatók. 

Derivált függvény Fourier sora (B) 

Tétel Legyen       valós függvény    szerint periodikus és tegyük fel, hogy a 
       intervallumon a függvény véges sok pont kivételével folytonos. Ezenkívül 
tegyük fel, hogy a szakadási pontok elsőfajú szakadások, és hogy véges sok pont 

kivételével   differenciálható. Ekkor az    függvény Fourier sora tagonkénti de-

riválással kiszámítható: 

   ∑(         (  )          (  ))

 

   

 

Bizonyítás Az    függvény Fourier együtthatóit jelölje    és   . Ekkor    Fourier sora: 

   
  

 
 ∑(     (  )       (  ))

 

   

 

ahol a definíciót felhasználva: 

   
 

 
∫   ( )    (  )    

 

  

 
 

 
([ ( )    (  )]

  

 

 ∫  ( )  (     (  ))   
 

  

)   

   
 

 
∫  ( )    (  )    

 

  

      

A fenti egyenletben az első tag azért tűnik el, mert      szerint periodikus.   
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Fourier sor konvergenciája 

Tétel (Fourier sorok alaptétele) Legyen          szerint periodikus függvény. 

Feltesszük, hogy   szakaszosan folytonosan differenciálható a        interval-

lumon, legfeljebb véges sok szakadási hellyel, amelyek első fajú szakadások. Ha 

   szakadási pont, akkor itt a függvényérték legyen 

 (  )  
 (    )   (    )

 
 

Ekkor 

 ( )  
  

 
 ∑(     (  )       (  ))

 

   

 

Fourier együtthatók nagyságrendje (B) 

Tegyük fel, hogy            folytonosan differenciálható véges sok pont kivételével. 

Ekkor előállítható Fourier sora segítségével: 

 ( )  
  

 
 ∑(     (  )       (  ))

 

   

 

Megvizsgáljuk, hogy mit mondhatunk a fenti végtelen sor konvergenciájának sebességéről. 

Legyen     tetszőleges. Induljunk ki az alábbi egyenlőtlenségből: 

  
 

 
∫ ( ( )  (

  

 
 ∑(     (  )       (  ))

 

   

))
 

  

 

   

Végezzük el a jobboldalon a négyzetre emelést és így folytassuk a fenti egyenlőséget: 

  
 

 
∫   ( )   

 

  

  
  

 

 

 
∫  ( )   

 

  

  

  ∑ (  

 

 
∫  ( )    (  )    

 

  

   

 

 
∫  ( )    (  )    

 

  

)

 

   

  

 
  

 

 

 

 
∫     

 

  

 ∑ (  
 ∫     (  )    

 

  

   
 ∫     (  )    

 

  

)

 

   

  

 
 

 
∫   ( )   

 

  

 
  

 

 
 ∑(  

    
 )

 

   

 

Ezzel beláttuk az ún. Bessel egyenlőtlenséget: 

  
 

 
 ∑(  

    
 )

 

   

 
 

 
∫   ( )   

 

  

 

teljesül minden     esetén. 

Parseval egyenlőség 

Tétel (Parseval egyenlőség) A Fourier együtthatókra teljesül az alábbi egyenlőség: 

  
 

 
 ∑(  

    
 )

 

   

 
 

 
∫   ( )   
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4. tétel: Kétváltozós függvények értelmezése, ábrázolása. Folyto-

nosság, sorozatfolytonosság. Bolzano tétel magasabb di-

menzióban (B). Egyenletes- és Lipschitz-folytonosság. 

Kétváltozós függvények értelmezése, ábrázolása 

Adott      tartomány.       kétváltozós függvény, amely   elemeihez egy valós szá-

mot rendel. Értelmezési tartományát   -fel jelöljük, értékkészletét   -fel. 

Függvény megadása azt jelenti, hogy megadjuk az értelmezési tartományt és a hozzárendelés 

módját. Ez mindig egyértelmű. 

Elnevezések: (   ): független változó,  : függő változó 

Legegyszerűbb példák: 

1. Lineáris függvény 

 (   )          

ahol         rögzítettek. Értelmezési tartománya   . 

2. Másodfokú polinom 

 (   )                      

ahol               rögzítettek. Értelmezési tartománya   . 

3. Polinomok 

Polinomokat két dimenzióban úgy definiálunk, mint monomiálok összege. Egy 

monomiál általános alakja: 

        

Együtthatója      , foka a benne lévő fokok összege:    . Egy polinom fokát 

úgy definiáljuk, mint a legmagasabb fokú monomiáljának foka. 

4. További kétváltozós függvények konstrukciója az ismert egyváltozós függvényekkel. 

Ábrázolás 

Miként az egyváltozós függvényeket görbe segítségével tudjuk reprezentálni, úgy a kétválto-

zós függvényt felületként fogjuk megadni. Ehhez tekintjük a háromdimenziós koordináta-

rendszert, melyben a koordinátatengelyek     és  . A függvény értelmezési tartományának 

tetszőleges (   ) pontja fölött kijelöljük azt a   pontot, melynek harmadik koordinátája 

   (   ). Ha (   ) pontok bejárják   -et, akkor   pontok egy felületet fognak megadni. 

Tehát az       függvényt a térben az (     ) számhármasok írják le, ahol    (   ). 

Az {(     )     (   ) (   )   } pontok felületet alkotnak a térben. 

A háromdimenziós ábrázolás nem mindig megfelelő. A szintvonalakkal történő ábrázolással 

egy síkban lehet ábrázolni azokat az (   ) pontokat, melyekre  (   )    valamely rögíztett 

    mellett. 
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 Az  (   )        függvény Az  (   )           
 függvény 

 felülete és szintvonalai felülete és szintvonalai 

Folytonosság, sorozatfolytonosság 

Definíció Legyen    (     ) az   függvény értelmezési tartományának egy pontja. Az 

  függvény folytonos az (     ) pontban, ha tetszőleges    -hoz létezik egy 

    szám, melyre 

 (   )     √(    )  (    )    

esetén teljesül, hogy 

| (   )   (     )|    

Definíció Azt mondjuk, hogy az   függvény sorozatfolytonos az értelmezési tartomány    

pontjában, ha minden (  )     sorozatra, melyre 

   
   

      

teljesül, hogy  

   
   

 (  )   (  ) 

Tétel Az   függvény akkor és csak akkor folytonos   -ban, ha ott sorozatfolytonos. 

Definíció Ha egy függvény értelmezési tartományának egy pontjában nem folytonos, ak-

kor ott szakadása van. 
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Bolzano tétel magasabb dimenzióban (B) 

Tétel (Bolzano tétel) Legyen       folytonos függvény, melynek értelmezési tarto-

mánya      összefüggő. Legyen a tartomány két tetszőleges pontja   (   ) 
és    (     ), melyekre 

   (   )   (     )    

Ekkor tetszőleges   (   ) számhoz létezik egy olyan   (     )    pont, 

melyre  (     )   . 

Bizonyítás Az   tartomány összefüggő, ezért létezik  -t és   -t összekötő  -beli folytonos 
görbe. Ez azt jelenti, hogy létezik olyan 

          

  ( ( )  ( ))
 

függvény, melyre 

 ( )  (   )  ( )  (     ) 

és az ( ( )  ( )) koordináta-függvények folytonosak. Vezessük be az  ( )  

 ( ( )  ( )) valós függvényt.           folytonos, melyre  ( )    és 

 ( )   . Így az egydimenziós folytonos függvényekre ismert Bolzano tétel 

miatt létezik olyan   (   ), melyre  ( )   . Ezért    ( )    pontra 

 ( )   .   

Egyenletes- és Lipschitz-folytonosság 

Definíció Legyen       adott függvény,      tartomány. Azt mondjuk, hogy   

egyenletesen folytonos  -ben, ha tetszőleges     –hoz     , hogy ha 

       pontokra ‖    ‖   , akkor | ( )   (  )|   . 

A    ( ) számot az  -hoz tartozó folytonossági modulusnak hívjuk. 

Definíció Az       kétváltozós függvény Lipschitz-folytonos, ha létezik egy olyan 

    szám, melyre | ( )   (  )|    ‖    ‖ teljesül minden        
pontra. 

Az   számot Lipschitz-konstansnak hívjuk. 

Állítás Ha   egyenletesen folytonos  -en, akkor   minden pontjában folytonos. Ha   

Lipschitz-folytonos egy tartományban, akkor ott egyenletesen is folytonos. 
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5. tétel: Függvény határértéke. Parciális deriváltak. Geometriai 

jelentés. Parciális deriváltak és folytonosság (B). Parciális 

deriválások sorrendje, felcserélhetősége. 

Függvény határértéke 

Definíció Legyen       kétváltozós valós függvény,    (     )     az értelmezési 

tartomány egy torlódási pontja. Azt mondjuk, hogy az   függvény határértéke a 

   (     ) pontban  , azaz 

   
(   ) (     )

 (   )    

ha minden    -hoz lézetik     szám, hogy ha  

(   )      √(    )  (    )    

akkor | (   )   |   . 

Állítás  

   
(   ) (     )

 (   )    

pontosan akkor teljesül, ha     (     )          sorozatra, melyre 

   
   

      

teljesül, hogy 

   
   

 (  )    

Parciális deriváltak 

Definíció Legyen       kétváltozós valós függvény. Legyen (     ) az   halmaz belső 
pontja. Ha létezik a  

   
    

 (    )   (     )

    
 

véges határérték, akkor ezt a mennyiséget a függvény   szerinti parciális deri-

váltjának nevezzük az (     ) pontban. Ezt így jelöljük:  

  
 (     ) 

 

  
 (     ) 

Ha létezik a  

   
    

 (    )   (     )

    
 

véges határérték, akkor ezt a mennyiséget a függvény   szerinti parciális deri-

váltjának nevezzük az (     ) ponban. Ezt így jelöljük:  

  
 (     ) 

 

  
 (     ) 

Ha a parciális deriváltfüggvényeknek létezik parciális deriváltja, akkor másodrendű parciális 

deriváltat kapunk: 

 

  
(

 

  
 (   ))  

  

    
 (   )     

  (   )     
   

  
 (     )    

 (   )
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Geometriai jelentés 

A parciális deriválás értelmezhető a következőképpen is. Rögzített    mellett definiáljuk az 

  ( )   (    ) egyváltozós függvényt. Ha (     )     ( ), akkor    belső pontja    ér-

telmezési tartományának. Ekkor   
 (     )    

 (  ). Ez hasonlóan igaz rögzített   -ra is. 

Az ilyen, rögzített    konstans menti parciális derivált geometriai jelentése a függvény felüle-

téből az   -ban átmenő, az   -síkra merőleges síkkal vett metszetének, – mely egy egyválto-

zós függvény – a deriváltja. A parciális deriváltak tehát a felületekhez   és   irányból húzott 
érintősíkok meredekségét adja meg. 

 

Parciális deriváltak és folytonosság (B) 

Tétel (Lagrange-féle középértéktétel) Legyen           folytonos illetve belső 

pontjaiban differenciálható függvény. Ekkor van olyan        , melyre 

 ( )   ( )

   
   ( ) 

Tétel Legyen       kétváltozós valós függvény, (     )     ( ). Tegyük fel, hogy 

az   
  és   

  parciális deriváltak léteznek (     ) valamely      környezeté-

ben. Tegyük fel továbbá, hogy a parciális deriváltak itt korlátosak, azaz 

|  
 (   )|    és |  

 (   )|    tetszőleges (   )   -ra. Ekkor az   függvény 

folytonos az (     )-ban. 

Bizonyítás Legyen (   )  (         ). Nézzük meg a függvény megváltozását. A 

háromszög-egyenlőtlenséget alkalmazva azt kapjuk, hogy 

| (         )   (     )|   

 | (         )   (       )|  | (       )   (     )| 

A Lagrange-féle középértéktételből következik, hogy 

 (         )   (       )    (    )    (  )   

   
 (  )    

 (       )  

ahol    a második metszetfüggvénye  -nek. A második tag hasonlóan írható: 

 (       )   (     )    (    )    (  )   

  
 (  )    

 (     )  
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Így a kezdeti egyenlőtlenséget folytatva: 

 |  
 (     )|  | |  |  

 (     )|  | |   (| |  | |) 

Tehát | (         )   (     )|   (| |  | |)    √     , ez pedig 

maga a Lipschitz-féle feltétel, tehát a függvény folytonos (     )-ban.   

Parciális deriválások sorrendje, felcserélhetősége 

Tétel Legyen       kétváltozós valós függvény, (   )     ( ). Ha a pont egy 

környezetében léteznek az    
   és    

   másodrendű parciális deriváltak, és az 

adott pontban folytonosak is, akkor itt a deriválások sorrendje felcserélhető, 

azaz    
  (   )     

  (   ). 
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6. tétel: Teljes differenciálhatóság. Kapcsolat a parciális derivál-

takkal. Folytonosság és differenciálhatóság (B) Érintősík. 

Normálvektor. Iránymenti derivált (B).  

Teljes differenciálhatóság 

Definíció Egy  ( ) függvény kisordó  -ban, ha  

   
   

 ( )

 
   

Ezt úgy jelöljük, hogy  ( )   ( ). 

Definíció Legyen       kétváltozós függvény, és (   )     ( ). Azt mondjuk, hogy 

az   függvény differenciálható (   )-ban, ha léteznek olyan       számok, 
melyekre 

 (         )             (√       ) 

teljesül elegendően kicsi    és    mellett, ahol       függetlenek   -től és 

  -tól. 

Kapcsolat a parciális deriváltakkal, folytonosság és differenciálhatóság (B) 

Definíció Ha az   függvény differenciálható az (   ) pontban, akkor ebben a pontban a 

derivált egy kétdimenziós vektor lesz, melyet gradiensnek nevezünk: 

      (   )  (  
 (   )   

 (   )) 

Ha az   függvény egy    halmaz minden pontjában differenciálható, akkor a 

deriváltfüggvény              típusú lesz. 

Tétel Ha   differenciálható az (   ) pontban, akkor ott folytonos is és léteznek az 
adott pontban vett parciális deriváltak. Továbbá a fenti definícióban szereplő 

konstansokra    (   ),     
 (   ),     

 (   ). 

Bizonyítás Válasszunk        -t. Ekkor a definícióban szereplő egyenlet szerint: 

 (   )                

Tehát   megegyezik a helyettesítési értékkel. Ez alapján könnyen beláthatjuk a 
folytonosságot: 

   
    
    

 (         )   

    
    

       
    

         
    
    

 (√       )    

Most igazoljuk, hogy az  -ra vonatkozó állítást. Legyen     . Ekkor az 

egyenlet így alakul: 

 (      )       (   )   (|  |) 

Ez alapján számoljuk ki a parciális deriváltat: 

   
    

 (      )   (   )

  
    

    
(  

 (|  |)

  
)    

  



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 22 / 72 2014. június 5. 

Tétel Legyen       kétváltozós valós függvény, (   )     ( ). Tegyük fel, hogy 

az   
 (   ) és   

 (   ) parciális deriváltak léteznek egy környezetben és folyto-

nosak ebben a pontban. Ekkor   differenciálható (   )-ban. 

Bizonyítás A Lagrange-féle középértéktételt alkalmazva azt kapjuk, hogy 

 (         )   (   )   

  (         )   (      )   (      )   (   )   

  
 (          )     

 (        )   

valamely    ,      konstansokkal.  
A parciális deriválás folytonossága miatt: 

  
 (          )    

 (   )    (     ) 

  
  (        )    

 (   )    (  ) 
ahol 

   
       

  (     )       
    

  (  )    

Így az előző egyenlőségbe visszahelyettesítve azt kapjuk, hogy 

 (         )   (   )    
 (   )     

 (   )             

azaz differenciálható.   

Érintősík, normálvektor 

A derivált geometriai jelentése is hasonló az egydimenziós esethez. Ha a függvény differenci-

álható egy pontban, akkor a pont közelében a függvény értékét az érintősík segítségével köze-

líthetjük. A sík megadásához megadjuk egy pontját – ez (       (     )) – és megadjuk a 

sík meredekségét, ami a két parciális derivált. Az érintősík egyenlete: 

   (     )    
 (     )(    )    

 (     )(    ) 

Ezt átírva a megszokott alakba: 

  
 (     )(    )    

 (     )(    )  (  )(    )    

ahol     (     ). Ebből az egyenletből leolvasható, hogy a sík egyik normálvektora 

  (  
 (     )   

 (     )   ) 

Iránymenti derivált (B) 

Definíció Legyen        ). Az    irányú iránymenti deriváltat így értelmezzük: 

   (   )  
 

  
 (   )     

   

 (      ( )        ( ))   (   )

 
 

ha ez a határérték létezik. 

Definíció Adott egy      irány, melyre ‖ ‖  √  
    

   . A   iránymenti derivál-

tat egy (   ) pontban így értelmezzük: 

   (   )     
   

 (           )   (   )

 
 

ha ez a határérték létezik. 

Állítás Tegyük fel, hogy az   függvény differenciálható (   )-ban. Ekkor itt létezik az 

iránymenti derivált tetszőleges        ) esetén, és 

   (   )    
 (   )    ( )    

 (   )    ( ) 
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Bizonyítás A differenciálhatóság miatt 

 (      ( )        ( ))   

  (   )    
 (   )    ( )    

 (   )    ( )   (| |) 

ha | | elegendően kicsi. Ebből következik, hogy 

 (      ( )        ( ))   (   )

 
  

   
 (   )    ( )    

 (   )    ( )  
 (| |)

 
 

melynek határértékeként az állítást kapjuk.   
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7. tétel: Második derivált, Hesse mátrix. Láncszabály, speciális 

esetek. Másodrendű Taylor formula kétváltozós függvényre 

(B). 

Második derivált, Hesse mátrix 

Definíció Tekintsük az       kétváltozós függvényt, és legyen (     ) belső pontja  -

nek. Azt mondjuk, hogy   kétszer differenciálható ebben a pontban, ha a függ-

vény differenciálható a pont egy környezetében, és az   
 (   ) és az   

 (   ) 

parciális derivált függvények is differenciálhatóak az (     ) pontban. 

Definíció Ha a függvény kétszer differenciálható, akkor értelmezhetőek az    
  (     ), 

   
  (     ),    

  (     ) és az    
  (     ) másodrendű parciális deriváltak. Ezek-

ből áll a 

 (     )  [
   

  (     )    
  (     )

   
  (     )    

  (     )
] 

mátrix, mely a függvény második deriváltja. A fenti mátrixot az adott ponthoz 

tartozó Hesse mátrixnak hívjuk. 

Láncszabály, speciális esetek 

1. speciális eset 

A külső függvény egyváltozós           

Az egy darab belső függvény kétváltozós            

Tétel (1. speciális eset) Tegyük fel, hogy   differenciálható az (   )     ( ) pont-

ban, és   differenciálható az    (   ) pontban. Ekkor az összetett függvény 
is differenciálható és a parciális deriváltak: 

  
 (   )    ( (   ))  

 (   ) 

  
 (   )    ( (   ))  

 (   ) 

2. speciális eset 

A külső függvény kétváltozós            

A két darab belső függvény egyváltozós             

Tétel (2. speciális eset) Tegyük fel, hogy   és   differenciálhatóak a      ( ) pont-

ban, és   differenciálható az (   )  ( ( )  ( )) pontban. Ekkor az összetett 

függvény is differenciálható, és deriváltja: 

  ( )    
 ( ( )  ( ))  ( )    

 ( ( )  ( ))  ( ) 

3. speciális eset 

A külső függvény kétváltozós            

A két darab belső függvény kétváltozós             

Tétel (Láncszabály) Tegyük fel, hogy     differenciálhatók (   )-ban, és   is diffe-

renciálható az (   )  ( (   )  (   )) pontban. Ekkor   is differenciálható 

(   )-ban, és parciális deriváltjai: 

  
 (   )    

 ( (   )  (   ))  
 (   )    

 ( (   )  (   ))  
 (   ) 

  
 (   )    

 ( (   )  (   ))  
 (   )    

 ( (   )  (   ))  
 (   ) 
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Másodrendű Taylor formula kétváltozós függvényre (B) 

Legyen       kétváltozós függvény, amely elegendően sokszor differenciálható valamely 
(     ) pontban. Adjunk becslést az  (   )   (     ) különbségre az (     ) pontbéli 

deriváltak felhasználásával. 

A fenti feladatra egy megoldást az érintő sík alapján tudunk adni, eszerint 

 (   )   (     )    
 (     )(    )    

 (     )(    ) 

Ez megfelel az elsőfokú Taylor polinomnak. 

Magasabb fokú Taylor polinomot úgy adjuk meg, hogy visszavezetjük feladatot az egyválto-

zós esetre. 

Legyen 

 ( )   (             ) 

ahol 

                

Ekkor           elegendően sokszor differenciálható valós függvény,  ( )   (     ), 
 ( )   (   ). Az   függvény     pont körüli Taylor formuláját fogjuk használni. Ehhez 
szükségünk lesz a deriváltakra: 

 ( )     (     ) 

  ( )     
 (             )     

 (             )   

   ( )     
  (             )(  )      

  (             )      

                 
  (             )(  )  

Ekkor a másodrendű Taylor formula így írható: 

 (   )   (     )        (     )  (
  
  

)  
 

 
(     )   (     )  (

  
  

)     

ahol   a Hesse-mátrix. 
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8. tétel: Lagrange féle középérték tétel (B). Implicit függvény té-

tel. Implicit függvény deriválása. Lokális és globális szél-

sőérték. Szükséges feltétel lokális szélsőértékre (B). 

Lagrange féle középérték tétel (B) 

Tétel (Lagrange féle középérték tétel) Adott      ,      függvény, és az 
(     )     ( ) pont. Tegyük fel, hogy létezik konvex   környezete (     )-
nak melyben   differenciálható. Legyen továbbá egy (     )    pont, és 

        ,         . Ekkor    (   ), amelyre 

 (     )   (     )        (     )  (
  
  

) 

ahol          , és           

Bizonyítás Vezessük be az alábbi egyváltozós függvényt: 

 ( )   (             ) 

Ekkor           folytonos és differenciálható, továbbá  ( )   (     ) és 

 ( )   (   ). Erre a függvényre alkalmazva az egyváltozós Lagrange-féle 

középértéktételt; létezik        , melyre 

 ( )   ( )    ( )    

Mivel a láncszabály alkalmazásával rögzített  -re 

  ( )    
 (             )     

 (             )   

ezért 

  ( )    
 (             )⏟              

(     )

     
 (             )   

amiből a tétel állítása következik.   

Implicit függvény tétel, implicit függvény deriválása 

Tétel (Implicit függvény tétel) Tegyük fel, hogy az   kétváltozós függvény differenciál-

ható az (     ) pont egy környezetében, és ebben a pontban  (     )   . 

Ezen felül feltesszük, hogy   
 (     )    (azaz az érintősík nem párhuzamos az 

   síkkal). Ekkor létezik egy kétdimenziós intervallum 

        (         )  (         ) 

hogy minden      esetén az  (   )    egyenletnek pontosan egy    ( ) 
megoldása van, és     . Tehát létezik egy         valós függvény, mely a 
következő tulajdonságokkal rendelkezik: 

  (  )     

  ( )           

  (   ( ))          

   
 (   ( ))          

Továbbá   differenciálható   -ben, és deriváltja: 

  ( )   
  

 (   ( ))

  
 (   ( ))
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Lokális és globális szélsőérték 

Definíció Legyen       kétváltozós függvény,     . Az (     )    lokális maxi-

mum, ha létezik a pontnak olyan   környezete, hogy  (   )      -re 

 (   )   (     ) 

Az (     )    lokális minimum, ha létezik a pontnak olyan   környezete, hogy 

 (   )      -re 

 (   )   (     ) 

Definíció Legyen       kétváltozós függvény,     . Az (     )    globális ma-

ximum, ha  (   )     esetén 

 (   )   (     ) 

Az (     )    globális minimum, ha  (   )     esetén 

 (   )   (     ) 

Szükséges feltétel lokális szélsőértékre (B) 

Tétel (Szükséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az   függ-

vénynek (     )-ban lokális szélsőértéke van, és tegyük fel, hogy a függvény itt 

differenciálható. Ekkor       (     )  (   ), azaz 

  
 (     )      

 (     )    

Bizonyítás Jelölje   ( )   (    ) a kétváltozós függvény egyik metszetfüggvényét. Ekkor 

   lokális szélsőértéke   -nek, ezért   
 (  )   , másrészt   

 ( )    
 (    ).   
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9. tétel: Stacionárius pont. Nyeregpont. Elégséges feltétel lokális 

szélsőértékre. Feltételes szélsőérték, feladat megfogal-

mazása. Szemléletes jelentés. 

Stacionárius pont, nyeregpont 

Definíció Ha       (     )  (   ), akkor (     ) stacionárius pont. 

Definíció Azt a stacionárius pontot, melyben szélsőérték nincs, nyeregpontnak nevezzük. 

Elégséges feltétel lokális szélsőértékre 

Tétel (Elégséges feltétel lokális szélsőérték létezésére) Tegyük fel, hogy az (     ) 
pont stacionárius pontja  -nek, és itt   kétszer differenciálható. Ha ebben a 
pontban 

   
  (     )   

  (     )  (   
  )

 
(     )    

akkor a pontban lokális szélsőérték van. Ha emellett    
  (     )   , akkor lo-

kális minimum, ha    
  (     )   , akkor lokális maximum van. Ha 

   
  (     )   

  (     )  (   
  )

 
(     )    

akkor nincs szélsőérték. Ha pedig 

   
  (     )   

  (     )  (   
  )

 
(     )    

akkor a szélsőérték létezésének eldöntéséhez további vizsgálat szükséges. 

Feltételes szélsőérték, feladat megfogalmazása 

Minta feladat: Legyen adott   -ben egy  (   )    görbe. Határozzuk meg, hogy a görbe 

mely pontja van az origóhoz legközelebb. Ez azt jelenti, hogy meg kell határozni a 

   (     ) 

értéket, ahol   és   változók nem függetlenek, hanem fennáll a  (   )    összefüggés. 

Definíció A feltételes optimalizálás feladatát a következőképpen értelmezzük. Legyen 

adott az       kétváltozós differenciálható függvény. Ennek tekintjük meg-
szorítását egy olyan halmazon, melyet egy implicit függvény ad meg, ahol 

 (   )    összefüggés teljesül. Tömören a feladat tehát 

   
{(   )  (   )  }

 (   ) 

Tétel (Szükséges feltétel) Tegyük fel, hogy az  (   ) függvény differenciálható, és 

feltételes szélsőértéke van az (     ) pontban a  (   )    feltétel mellett. Te-

gyük fel, hogy       (   )  (   ). Ekkor létezik olyan      konstans, mely-

re 

  
 (     )      

 (     )    

  
 (     )      

 (     )    
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Szemléletes jelentés 

Képzeljünk el egy olyan ábrát, ahol egyszerre látható a  (   )    feltétel, és az  (   )    

szintvonalak, különböző   értékek mellett. Amely  -re van közös pont, ott van megoldása a 

{
 (   )   

 (   )   
 

egyenletrendszernek. Mivel   folytonos (hisz differenciálható is), ezért a szintvonalak is mo-

noton módon változnak. Így azt a szintvonalat keressük, ami „utoljára” metszi a  (   )    

görbét. Ebben az (   ) pontban a görbék érintik egymást, az érintők megegyeznek, azaz 

  
 (   )

   (   )
 

  
 (   )

  
 (   )

 

Ez a képlet ismerős az implicit függvény deriválásából. Átrendezve a képletet azt kapjuk, 

hogy létezik olyan   valós szám, melyre 

  
 (   )

  
 (   )

 
  

 (   )

  
 (   )

   

Tehát szemléletesen azt várjuk, hogy ha (   ) feltételes szélsőérték, akkor létezik olyan  , 
melyre 

  
 (   )     

 (   )    

  
 (   )     

 (   )    

teljesül. 

  



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 30 / 72 2014. június 5. 

10. tétel: Lagrange-féle multiplikátor szabály. Függvény rendsze-

rek, Koordináta-transzformáció. Jacobi mátrix. Jacobi de-

termináns. Invertálhatóság. Inverz rendszer deriváltja (B).  

Lagrange-féle multiplikátor szabály 

Definiáljuk az  (     )   (   )    (   ),          háromváltozós függvényt. Ha 

(     ) megoldása a feltételes szélsőérték feladatnak, akkor van olyan   , melyre (        ) 

stacionárius pontja  (     )-nak. 

Tekintsük az alábbi feltételes optimalizálási feladatot 

   
{ (   )  }

 (   ) vagy    
{ (   )  }

 (   ) 

Ehelyett tekinthetjük az 

 (     )   (   )    (   ) (   )         

függvény feltétel nélküli szélsőérték feladatát. 

Függvény rendszerek 

Ha egyszerre több függvényt tekintünk, akkor függvényrendszerekről beszélünk. Tekintsük 

most azt a speciális esetet, hogy a függvények száma megegyezik a változók számával. Le-

gyen      egy tartomány, ahol adott két függvény,        . A függvényrendszer, amit 

tekintünk: 

   (   ) 

   (   ) 

Ezt úgy értelmezhetjük, mint    térbeli leképezés, mely az (   ) ponthoz a (   )   (   ) 
pontot rendeli hozzá. Ezt a        leképezést szokás vektormezőnek is hívni. 

Koordináta-transzformáció 

A fenti függvényrendszerek koordináta-transzformációk. Az   függvény változói   és  , az   

függvény koordinátafüggvényei pedig   és  . Ekkor az   függvény az alábbi hozzárendelést 

valósítja meg: 

(   )  (   ) 

Példa 

A polárkoordinátákat Descartes koordinátákká képező függvényt függvényrendszerként így 

definiálhatjuk: 

(   )  (   ) 
ahol 

      ( )   (   ) 

      ( )   (   ) 

Jacobi mátrix, Jacobi determináns 

Definíció A fenti rendszerhez tartozó Jacobi mátrixot így definiáljuk: 

 (   )  [
  

 (   )   
 (   )

  
 (   )   

 (   )
]  [

      (   )

      (   )
] 

A fenti mátrix determinánsát Jacobi determinánsnak hívjuk: 

 (   )    
 (   )  

 (   )    
 (   )  

 (   ) 



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 31 / 72 2014. június 5. 

Invertálhatóság 

Az   -beli leképezés invertálható, ha a leképezés injektív, azaz különböző  -beli pontokhoz 

a képtérben különböző (   ) pontok tartoznak. Ekkor a fenti rendszer invertálható: 

   (   ) 

   (   ) 

Inverz rendszer deriváltja (B) 

Tétel Tegyük fel, hogy a Jacobi determináns nem nulla, azaz a    (   ) és 

   (   ) által alkotott függvényrendszer Jacobi mátrixa nem szinguláris az 

értelmezési tartomány egy (     ) belső pontjában. Ekkor az (     ) egy kör-

nyezetében a vektormező invertálható. Továbbá, ebben a környezetben az inverz 
rendszer deriváltja így írható: 

 (   )  ( (   ))
  

 

ahol (   ) és (   ) egymás képei. Speciálisan, az inverz függvényrendszer Ja-
cobi determinánsa reciproka az eredeti függvényrendszer Jacobi determinánsá-

nak. 

Bizonyítás Helyettesítsük be az inverz függvényrendszer koordinátafüggvényeit leíró 

egyenleteket a függvényrendszert definiáló egyenletekbe: 

   ( (   )  (   )) 

   ( (   )  (   )) 

Mivel feltettük, hogy   és   is differenciálhatóak, ezért deriválhatjuk a fenti 

azonosságokat   és   szerint. 

Deriváljuk mindkét egyenletet   szerint, majd pedig   szerint. A áttekinthetőbb 
jelölés kedvéért az argumentumokat nem írjuk ki. Ezt kapjuk: 

    
   

    
   

  

    
   

    
   

  

    
   

    
   

  

    
   

    
   

  

Az első egyenletet szorozzuk meg   
 -szel, a másodikat pedig   

 -szel, majd pe-
dig vonjuk ki egymásból az egyleteket. 

  
    

   
   

    
   

   
  

    
   

   
    

   
   

  

Ebből 

  
  

  
 

  
   

    
   

 
 

Teljesen hasonlóan a többi deriváltat is megkapjuk 
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Bevezetve a     
   

    
   

  jelölést, a fenti képletek így írhatók: 

  
  

  
 

 
   

   
  

 

 
   

   
  

 

 
   

  
  

 

 
 

Ez összhangban van azzal, hogy    -es mátrix inverze a következőképp szá-
molható: 

[
  
  

]
  

 
 

     
 [

   
   

] 

Ekkor a most kiszámolt parciális deriváltakat a Jacobi mátrixba beírva: 

  [
  

   
 

  
   

 ]  
 

 
 [

  
    

 

   
   

 ] 

Ez a   mátrix pedig éppen inverze  -nek.   
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11. tétel: Riemann integrál két dimenzióban. Kettős integrál kiszámí-

tása. Integrálás téglalap alakú tartományon (B). Integ-

rálás normáltartományon, a síkon. 

Riemann integrál két dimenzióban 

Definíció Ha az   kétdimenziós terület mértékét közelítő alsó és felső mértékek határérté-
ke megegyezik, azaz 

   
   

  
 ( )     

   
  

 ( )   ( ) 

akkor   Jordan-mérhető. 

Állítás Ha   egy            függvény alatti terület, akkor 

 ( )  ∫  ( )   
 

 

 

Legyen        folytonos függvény, ahol      korlátos, zárt és mérhető tartomány. 

Legyen egy mérhető és nem átfedő felosztása  -nek: 

  ⋃  

 

   

 

Ekkor 

       { (   )  (   )    } 

       { (   )  (   )    } 

Definíció Az alsó közelítő összeg 

   ∑    (  )

 

   

 

A felső közelítő összeg 

   ∑    (  )

 

   

 

Definíció Ha        folytonos,      korlátos és zárt, akkor a Riemann integrál 

   
   

      
   

   ∬ (   )   
 

 ∬ (   )  (   )
 

 

Kettős integrál kiszámítása 

Tétel Minden         esetén értelmezzük a 

 ( )  ∫  (   )   
 

 

 

függvényt,          . Ekkor 

∫  ( )   
 

 

 ∬ (   )   
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A tétel állítása fordítva is igaz, ha definiáljuk a 

 ( )  ∫  (   )   
 

 

 

függvényt,          , akkor   is integrálható, és 

∫  ( )   
 

 

 ∬ (   )   
 

 

Integrálás téglalap alakú tartományon (B) 

A fenti tétel következménye, hogy téglalap alakú tartományon (intervallumon) az integrálás a 

következőképpen néz ki. 

Tétel Tegyük fel, hogy              ,       integrálható függvény. Ekkor 

∬ (   )   
 

 ∫ (∫  (   )   
 

 

)    
 

 

 ∫ (∫  (   )   
 

 

)  
 

 

 

Bizonyítás Mivel   integrálható, ezért az egyenletes felosztásokat tekintve bármely    -

hoz létezik   küszöbindex, hogy ha      , akkor 

|∑(∑ (     )

 

   

 
   

 
)  

   

 

 

   

 ∬ (   )   
 

|    

Ha a fenti egyenletben    , akkor az első tagban 

∑ (     )  
   

 

 

   

  (  )  ∫  (    )   
 

 

 

Ha    , akkor pedig az egész összeg határértékére 

∑ (  )  
   

 

 

   

 ∫  ( )   
 

 

 

  

Integrálás normáltartományon, a síkon 

Definíció Egy      részhalmaz   szerinti normáltartomány a síkon, ha   a következő 

tulajdonságokkal rendelkezik: 

 létezik egy       intervallum, 

 léteznek               szakaszonként folytonos függvények, melyekre 

   ( )    ( ) minden  -re és 

  {(   )          ( )      ( )} 

Hasonlóan,      részhalmaz   szerinti normáltartomány a síkon, ha létezik 

egy       intervallum és léteznek               szakaszonként folytonos 

függvények, melyekre   ( )    ( ) minden  -ra és 

  {(   )          ( )      ( )} 

 



Matematikai analízis II. — PPKE ITK 

 

szóbeli vizsga 1405 35 / 72 2014. június 5. 

Tétel Legyen    -szerinti (illetve   szerinti) normáltartomány a síkon. Tegyük fel, 

hogy az   függvény integrálható  -en. Ekkor 

∬ (   )   
 

 ∫ ∫  (   )   
  ( )

  ( )

   
 

 

 

illetve 

∬ (   )   
 

 ∫ ∫  (   )   
  ( )

  ( )
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12. tétel: Polárkoordináták. Áttérés polárkoordinátákra kettős 

integrálban. Hármas integrál: intervallumon és normál tar-

tományon. Általános helyettesítés kettős és hármas integ-

rálban. 

Polárkoordináták 

Definíció Egy adott (   )     pont polárkoordinátái (   ), melyeket így definiálunk: 

 : a pont origótól vett távolsága 

 : az origóból az adott pontba mutató vektornak az   tengely pozitív részével 

bezárt szöge. 

Így tehát a polárkoordinátákra      { } és        ). 

Áttérés polárkoordinátákra kettős integrálban 

Kettős integrálban a polárkoordinátákra való áttérés az általános helyettesítés egy speciális 

esete. Az áttéréshez szükség van a koordináta-transzformációra, mely polárkoordinátákra való 

áttérés esetén 

      ( ) 

      ( ) 
A Jacobi determináns: 

 (   )  |
   ( )      ( )

   ( )     ( )
|        ( )       ( )    

Így a megfelelő integrál-transzformáció 

∬ (   )  (   )
 

 ∬  (    ( )      ( ))      (   )
  

 

Hármas integrál: intervallumon és normál tartományon 

Tekintsünk egy háromdimenziós      tartományt és egy ezen értelmezett      , 

 (     ) függvényt. A kettős integrálhoz hasonlóan definiálható 

∭ (     )   
 

 

hármas integrál. 

Tétel Tegyük fel, hogy                     háromdimenziós téglalap, azaz 

  {(     )                         }, ahol             végesek és 

valósak. A tartomány zárt és korlátos. Legyen       korlátos függvény. Ek-
kor 

∭ (     )   
 

 ∫ ∫ ∫  (     )   
 

 

  
 

 

  
 

 

 

Definíció Az   tartomány (   ) sík szerinti normáltartomány, ha a következő alakú: 

  {(     )  (   )      (   )      (   )} 

ahol           adott folytonos függvények, melyekre   (   )    (   ) 

minden (   )    esetén. 
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Állítás Legyen   a feni definícióban szereplő normáltartomány, és       ezen ér-

telmezett integrálható függvény. Ekkor 

∭ (     )   
 

 ∬∫  (     )   
  (   )

  (   )

  
 

 

Ha              , akkor 

∭ (     )   
 

 ∫ ∫ ∫  (     )   
  (   )

  (   )

  
 

 

  
 

 

 

Általános helyettesítés kettős és hármas integrálban 

Kettős integrálra 

Tétel Adott egy       integrálható függvény, ahol   korlátos, zárt, mérhető tarto-
mány. Tekintsünk egy 

   (   ) 

   (   ) 

transzformációt, melyről feltesszük, hogy Jacobi mátrixa sehol sem szinguláris, 

azaz 

 (   )  [
  

 (   )   
 (   )

  
 (   )   

 (   )
] 

jelöléssel     (   )     -ben. Legyen továbbá 

   {(   )  ( (   )  (   ))   } 

Ekkor 

∬ (   )  (   )
 

 ∬  ( (   )  (   ))   (   )  (   )
  

 

Hármas integrálra 

Tétel Legyen   korlátos és zárt taromány   -ban, és       integrálható függvény. 

Tekintsünk egy 

   (     ) 

   (     ) 

   (     ) 

transzformációt, melyről feltesszük, hogy Jacobi mátrixa sehol sem szinguláris, 

azaz 

 (     )  [

  
   

   
 

  
   

   
 

  
   

   
 
] 

jelöléssel     (     )   . Ekkor 

∭ (     )  (     )
 

  

 ∭  ( (     )  (     )  (     ))  | (     )|  (     )
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13. tétel: Hengerkoordináták. Gömbi polárkoordináták. Áttérés 

Jacobi determinánsa (B). Tömegközéppont meghatározá-

sa. Kétváltozós függvény felszínének kiszámítása. 

Hengerkoordináták 

Definíció Egy adott (     )     pont hengerkoordinátái (     ), melyeket így definiá-

lunk: (   ) a pont    síkra vett vetületének polárkoordinátái,   pedig a harma-
dik Descartes koordináta: 

      ( ) 

      ( ) 

    

Gömbi polárkoordináták 

Definíció Egy adott (     )     pont gömbi koordinátái (     ), melyeket a követke-

zőképp definiálunk: 

 : a pont origótól vett távolsága;   √         

 : a pontba mutató helyvektor és a   tengely pozitív része által bezárt szög 

        

 : a pontba mutató helyvektor    síkra vett vetületének az   tengely pozitív ré-

szével bezárt szöge.        ) 

A gömbi koordinátákkal tehát az (     ) pont így írható le: 

      ( )    ( ) 

      ( )    ( ) 

      ( ) 

Áttérés Jacobi determinánsa (B) 

Hengerkoordinátákra való áttéréskor 

A hengerkoordináta-leképezés Jacobi determinánsa 

 (     )  |
   ( )      ( )  
   ( )     ( )  

   

|   

   |
     ( )  
    ( )  

|    |
   ( )  
   ( )  

|    |
   ( )      ( )

   ( )     ( )
|   

      ( )       ( )    

Gömbi koordinátákra való áttéréskor 

A gömbi koordináta-leképezés Jacobi determinánsa 

 (     )  |

   ( )    ( )     ( )    ( )      ( )    ( )

   ( )    ( )     ( )    ( )     ( )    ( )

   ( )      ( )  

|   
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    ( )  |
    ( )    ( )      ( )    ( )

    ( )    ( )     ( )    ( )
|   

      ( )  |
   ( )    ( )      ( )    ( )

   ( )    ( )     ( )    ( )
|   

    |
   ( )    ( )     ( )    ( )

   ( )    ( )     ( )    ( )
|   

    ( )  (     ( )    ( )     ( )       ( )    ( )     ( ))   

     ( )  (     ( )     ( )       ( )     ( ))   

    ( )       ( )    ( ) (    ( )      ( ))⏞            
 

  

     ( )       ( ) (    ( )      ( ))⏟            
 

  

      ( ) (    ( )      ( ))⏟            
 

      ( ) 

Tömegközéppont meghatározása 

Egy kétdimenziós inhomogén tömegeloszlású lemez, melynek alakja     , tömegközép-

pontjának helye a       ,  (   ) sűrűségfüggvény ismeretében kiszámolható a követke-
zőképp: 

A lemez tömegét egy kettős integrál adja meg, 

  ∬ (   )   
 

 

A tömegközéppont   és   koordinátáinak meghatározásához szükség van még a nyomatékok 

meghatározására. Az   szerinti nyomaték   , az   szerinti nyomaték    így számolható: 

   ∬   (   )   
 

 

   ∬   (   )   
 

 

Ezután a tömegközéppont koordinátái 

   
  

 
    

  

 
 

Kétváltozós függvény felszínének kiszámítása 

Legyen adott egy        függvény,     . Ennek felülete egy 3 dimenziós felület: 

  {(     (   ))  (   )   }     

Ennek nagysága a következőképp számolható: 

 ( )  ∬ √     
 (   )     

 (   )  (   )
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14. tétel: Improprius integrál, nem korlátos függvény. Hatvány-

függvény integrálja az egységkörben (B). Integrálhatóság 

feltétele nem korlátos függvényre. 

Improprius integrál, nem korlátos függvény 

Tegyük fel, hogy   nem korlátos függvény, azaz pontosabban, hogy       folytonos, ki-
véve néhány pontot, ahol nincs véges határértéke. Tekintsük a következő tartománysorozatot: 

               

ahol az   függvény folytonos az    tartományon, és 

   
   

 (  )   ( ) 

Definíció A függvény improprius értelemben integrálható, ha létezik az alábbi határérték 

     
   

∬  (   )  (   )
  

 

és független az (  ) halmaz-sorozat megválasztásától. 

Tétel Tegyük fel, hogy létezik olyan – a definícióban szereplő – (  ) sorozat, amelyre 

∬ | (   )|  (   )
  

   

valamely  -től független   valós számra. Ekkor   improprius értelemben integ-
rálható. 

Hatványfüggvény integrálja az egységkörben (B) 

Legyen  

 (   )  
 

(√     )
  

valamely     mellett, és az integrál tartomány 

  {(   )           } 

A függvény a (   ) pontban nincs értelmezve, környezetében nem korlátos. 

 
A hatványfüggvény felülete az origó középpontú egységkörlapon. 
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Az   tartományt közelítsük az alábbi módon: 

   {(   )  
 

 
 √       } 

Ekkor 

∬  (   )  (   )
  

 ∫ ∫         
  

 

  
 

 
 

   ∫
 

    
   

 

 
 

   ∫
 

    
   

 

 

 

Ez az utóbbi integrál pontosan akkor konvergens, ha      , azaz    . Ebből az követ-

kezik, hogy a hatványfüggvény     esetén improprius értelemben integrálható a lyukas 
egységkörön. Ez alapján megfogalmazhatjuk az elégséges feltételt improprius integrál létezé-

sére. 

Integrálhatóság feltétele nem korlátos függvényre 

Tétel Tegyük fel, hogy       folytonos függvény nem korlátos az   mérhető tarto-
mány valamely pontjának környezetében, legyen ez például az origó. Tegyük fel, 

hogy 

| (   )|  
 

(√     )
  

teljesül valamely       és     számra, minden (   )    esetén. Ekkor 

  improprius értelemben integrálható. 
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15. tétel: Improprius integrál nem korlátos tartományon. Példa: ha-

rang-görbe integrálja. (B). Vonal(görbe) definíciója   -

ben és   -ban. Kétváltozós valós függvény integrálja 

vonal mentén. 

Improprius integrál nem korlátos tartományon 

Definíció Tegyük fel, hogy létezik  -nek olyan közelítése, melyre          ,    
mérhető tartomány, és 

⋃  

 

   

   

Ekkor tudjuk, hogy minden  -re létezik az 

∬  (   )  (   )
  

 

integrál. Ha 

   
   

∬  (   )  (   )
  

 

létezik és független az (  ) halmaz-sorozat megválasztásától, akkor azt mond-

juk, hogy   improprius értelemben integrálható, és 

∬ (   )   
 

    
   

∬  (   )    
  

 

Tétel Tegyük fel, hogy létezik egy olyan – a definícióban szereplő – (  ) sorozat, 
melyre 

∬ | (   )|  (   )
  

   

azaz az integrálok egyenletesen korlátosak minden  -re. Ekkor   improprius ér-

telemben integrálható, és tetszőleges másik (  ) tartomány-sorozat esetén, mely 
kielégíti a fenti feltételeket 

   
   

∬  (   )    
  

 ∬ (   )   
 

 

Példa: harang-görbe integrálja (B) 

Legyen  (   )         
, az integrálási tartomány az egész tér,     . Ez a függvény köz-

ismert néven a harag görbe. Felületét a következő ábra szemlélteti: 
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Válasszuk az alábbi tartomány-sorozatot: 

   {(   )          } 

Nyilván    korlátos és zárt tartomány. A megfelelő tartomány polárkoordinátákkal: 

  
  {(   )              } 

Ekkor 

∬        

  

 ∬      
  (   )

  
 

   ∫      
   

 

 

   ∫      
   

 

 

 

Így az improprius integrál értéke: 

∬        
  (   )

  
   ∫      

   
 

 

   [
     

 
]
 

 

   

Vonal(görbe) definíciója   -ben és   -ban 

Definíció (Síkbeli Jordan görbe) Adott         egy véges intervallum, és adott két va-

lós függvény ezen az intervallumon:            , melyekről feltesszük, hogy 

folytonosan differenciálhatóak az (   ) intervallumban. 

Legyen            az a vektorértékű függvény, melynek ezek a koordináta 

függvényei: 

 ( )  [
 ( )

 ( )
]        

A   függvény értékkészlete a      (kétdimenziós) Jordan görbe: 

  { ( )         } 

Definíció (Térbeli Jordan görbe) Adott         egy véges intervallum, és adott három 

valós függvény ezen az intervallumon:              , melyekről feltesszük, 

hogy foltonosan differenciálhatóak az (   ) intervallumban. 

Legyen            az a vektorértékű függvény, melynek ezek a koordináta 

függvényei: 

 ( )  [
 ( )

 ( )

 ( )
]        

A   függvény értékkészlete a      (háromdimenziós) Jordan görbe: 

  { ( )         } 

Kétváltozós valós függvény integrálja vonal mentén 

Legyen adott a síkban egy   Jordan görbe, melyet   függvénnyel paraméterezünk: 

  { ( )        } 

ahol  ( )  ( ( )  ( )),        . Feltesszük, hogy   sima görbe. Legyen      egy 

olyan tartomány, mely tartalmazza a   görbét. 

Adott egy        függvény. A feladat az, hogy meghatározzuk az alábbi felület nagysá-
gát: 

  {( ( )  ( ))       ( ( )  ( ))           } 
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Ehhez tekintsük a görbe egy felosztását: 

               

a görbén a megfelelő osztópontok    (     )            , ahol     (  ) és     (  ). 
Ekkor a felület felszíne közelítve: 

  ∑ (     )  ‖(     )  (         )‖

 

   

 

Ez alapján a vonalintegrál határátmenettel megkapható: 

  ∫ (   )   
 

 ∫  ( ( )  ( ))  √   ( )     ( )   
 

 

 

Definíció Az   függvény vonalintegrálját a   görbe mentén így értelmezzük: 

∫ (   )   
 

 ∫  ( ( )  ( ))  √   ( )     ( )   
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16. tétel: Vektormező integrálja görbe mentén. Szemléletes jelen-

tés. Potenciálkeresés. Potenciál létezésének szükséges (B) 

és elégséges feltétele (vonalintegrállal). 

Vektormező integrálja görbe mentén 

Legyen   { ( )        } háromdimenziós Jordan görbe. Legyen továbbá   egy három-

dimenziós vektormező       , ahol     .   koordinátafüggvényeit jelölje       
      . 

 (     )  [

  (     )

  (     )

  (     )
] 

Feltesszük, hogy   differenciálható  -ben. Feltesszük azt is, hogy    . Az egyszerűség 

kedvéért jelöljük    pontjait röviden:   (     ) 

A görbe mentén vett vonalintegrál jelölése 

∫ ( )   
 

 

Tétel (Vonalintegrál kiszámítása) A fenti jelölésekkel és feltételekkel 

∫ ( )   
 

 ∫ 〈 ( ( ))  ̇( )〉   
 

 

  

 ∫   ( ( )  ( )  ( ))   ̇( )  
 

 

 ∫   ( ( )  ( )  ( ))   ̇( )  
 

 

  

 ∫   ( ( )  ( )  ( ))   ̇( )  
 

 

 

ahol  ̇ jelöli a   függvény koordináták szerinti deriváltját. 

Szemléletes jelentés 

A vonalintegrál matematikai modelljének fizikai háttere a következőképpen képzelhető el: 

Adott egy vektortér, ami a tér pontjaiban megadja az ott ható erő nagyságát és irányát. Fel-

tesszük, hogy egy egységnyi tömegű részecske a   görbe mentén mozog. A görbe menti in-
tegrál ebben a vektormezőben a részecske mozgatásának munkáját adja meg. 

Potenciálkeresés 

Adott egy háromváltozós, valós értékű függvény      ,     . Ha a függvény differen-

ciálható a tartományban, akkor gradiense vektormező:            . Ennek „fordítottja”, 

hogy ha adott egy        vektormező, akkor vajon létezik-e olyan       differenciál-

ható függvény, melyre         . 

Definíció Az   vektormező potenciálos (konzervatív), ha létezik   differenciálható skalár-

függvény, melyre         . 
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Potenciál létezésének szükséges (B) és elégséges feltétele (vonalintegrállal) 

Tétel Adott az   vektormező egy      egyszeresen összefüggő tartományon.  -nek 

pontosan akkor létezik potenciálja, ha minden  -beli zárt görbe mentén az   

vektormező vonalintegrálja  . 

Bizonyítás A bizonyítás során csak azt igazoljuk, hogy ha van potenciál, akkor tetszőleges 

zárt görbe mentén integrálva az integrál értéke nulla. 

∫ ( )   
 

 ∫ 〈 ( ( ))  ̇( )〉   
 

 

 ∫ 〈      ( ( ))  ̇( )〉   
 

 

  

 ∫
 

  
 ( ( ))   

 

 

  ( ( ))   ( ( )) 

Ha a görbe zárt, akkor ez azt jelenti, hogy     és így  ( )   ( ), vagyis az 

integrál valóban nulla.   
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17. tétel: Fourier sor komplex alakja. Fourier transzformáció. 

Alaptulajdonságok (B). Inverz Fourier transzformáció. 

Parseval egyenlet (B). Konvolúció. Konvolúció FT-ja. 

Fourier sor komplex alakja 

Az Euler-formula szerint 

       ( )      ( ) 

Ebből következik, hogy 

       (  )     (  )      (  )     ( )      ( ) 

ezért a trigonometrikus függvények kifejezhetők komplex alakban: 

   ( )  
        

 
 

   ( )  
        

  
 

Az  -edik Fourier polinom: 

  ( )  
  

 
 ∑(     (  )       (  ))

 

   

 

Helyettesítsük be a trigonometrikus függvények komplex alakjait: 

  ( )  
  

 
 ∑   

        

 
   

        

  

 

   

 ∑    
   

 

    

 

ahol az    együttható: 

   
      

 
     

   
      

 
     

Tétel Tegyük fel, hogy   előáll 

 ( )  ∑       

 

    

 

alakban. Ekkor: 

   
 

  
∫  ( )        

 

  

 

Fourier transzformáció 

Tegyük fel, hogy az       valós értékű függvény kielégíti az alábbi feltételeket: 

1. Tetszőleges     véges intervallum esetén   leszűkítése az   intervallumra véges sok 
pontot kivéve folytonosan differenciálható. 

2. Ha    szakadási pont, akkor ez a szakadás elsőfajú, és itt a függvényérték 

 (  )  
 (    )   (    )
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3. A függvény abszolút integrálható, azaz 

∫ | ( )|   
 

  

   

Definíció Ha   teljesíti a fenti feltételeket, akkor az   Fourier transzformáltja az az 

 ̂     komplex értékű függvény, melyet így definiálunk: 

 ̂( )  
 

√  
∫  ( )        

 

  

 

A Fourier transzformált jelölése  (   )   ̂( ) 

Alaptulajdonságok (B) 

Tétel A Fourier transzformált alaptulajdonságai: 

1. A hozzárendelés lineáris, azaz 

 (    )    (   )  (     )   (   )   (   ) 

2.  ( ) folytonos függvény 

3. (Átskálázás) 

 ( (  )  )  
 

 
 ( ( ) 

 

 
)         

4. (Idő megfordítása) 

 ( (  )  )   ( ( )   ) 
5. (Idő eltolás) 

 ( (    )  )         ( ( )  ) 

6. (Frekvencia eltolás) 

 (     ( )  )   ( ( )    ) 

Bizonyítás 1. Ez könnyen látható, mivel az integrál lineáris operátor 

2. Ez abból következik, hogy a Fourier transzformáltat folytonos függvények 

egyenletes határértékeként tudtuk meghatározni 

3.   

 ( (  )  )  
 

√  
∫  (  )        

 

  

   √  ∫  ( )   
 
 
  

 
  

 

  

 

Az integrálásban a      helyettesítést hajtottuk végre. 

4.   

 ( (  )  )  
 

√  
∫  (  )        

 

  

 
 

√  
∫  ( )    (   )

 

  

  

 
 

√  
∫  ( )   (  )    

 

  

 

Az integrálban az      helyettesítést hajtottuk végre. 

5.   

 ( (    )  )  
 

√  
∫  (    ) 

       
 

  

  

 
 

√  
∫  ( )    (    )   

 

  

 

Az integrálásban az        helyettesítést hajtottuk végre 
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6.   

 (     ( )  )  
 

√  
∫      ( )        

 

  

 
 

√  
∫  ( )   (   )    

 

  

 

  

Inverz Fourier transzformáció 

Tétel Tegyük fel, hogy   teljesíti az 1., 2., 3. feltételeket. Ekkor   előállítható Fourier 
transzformáltja segítségével: 

 ( )  
 

√  
∫  ̂( )       

 

  

 

Ez az inverz Fourier transzformáció. 

Parseval egyenlet (B) 

Tétel (Parseval egyenlet) Ha az 1., 2., 3. feltételek teljesülnek és a Fourier sor egyen-

letesen konvergens, akkor 

∫ | ( )|    
 

  

 ∫ | ̂( )|
 
   

 

  

 

Bizonyítás A bizonyításban fel fogjuk használni mind a Fourier transzformáció, mind pedig 

az inverz Fourier transzformációt. Kiindulunk a fenti egyenlőség baloldalából, és 

az szorzat két  ( ) tényezőjének egyikébe az inverz Fourier transzformáltat ír-

juk. 

∫   ( )   
 

  

 ∫  ( )
 

√  
∫  ̂( )       

 

  

  
 

  

 

Az egyenletes konvergencia miatt az integrálás sorrendje fölcserélhető: 

∫   ( )   
 

  

 ∫  ( )
 

√  
∫  ̂( )       

 

  

  
 

  

 ∫  ̂( )
 

√  
∫  ( )      

 

  

   
 

  

  

 ∫  ̂( )
 

√  
∫  ( )        

 

  

  
 

  

 ∫  ̂( ) ̂( )
 

  

   ∫ | ̂( )|
 

 

  

   

mivel  ̂( )   ̂(  ).   

Konvolúció, konvolúció FT-ja 

Definíció Adott két valós függvény,        . Feltesszük, hogy mindkettő abszolút 

integrálható. A két függvény konvolúciója az         függvény, melyet 
így értelmezünk: 

(   )( )  ∫  ( ) (   )   
 

  

 

Állítás Konvolúció az időtartományban és a frekvenciatartományban: 

 (     )  √    (   )   (   ) 

 (   )   (   )  
 

√  
  (     ) 
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18. tétel: Magasabb rendű lineáris differenciálegyenlet. Függvé-

nyek függetlensége. Wronski determináns (B). Homogén 

LDE. Megoldások struktúrája (B). Kezdeti érték- és pe-

remérték feladat. 

Magasabb rendű lineáris differenciálegyenlet 

Jelölje   ( ) azon  -n értelmezett folytonos függvények halmazát, melyek  -szer folytono-

san differenciálhatók. Legyen   egy olyan operátor, amely egy  -szer differenciálható függ-

vényhez egy folytonos függvényt rendel a következőképpen: 

    ( )   ( )( )    ( ) (   )( )      ( ) ( ) 

ahol         adott folytonos függvények. Az   operátor lineáris, azaz 

                         

tetszőleges         ( ) és       esetén. 

Homogén differenciálegyenlet esetén az       -nak keressük megoldását, inhomogén eset-

ben az       ( ) egyenlet megoldását keressük, ahol  ( )   . 

Függvények függetlensége 

Definíció Adott   darab függvény,           , közös     értelmezési tartománnyal. 
Ezek lineárisan függetlenek, ha a függvények valamely lineáris kombinációja 

 ( )      ( )      ( )        ( ) 

csak úgy lehet azonosan   a   halmazon, ha 

             

Wronski determináns (B) 

Definíció Legyenek az         valós függvények (   )-szer differenciálhatóak. A 
Wronski determinánst a következőképpen definiáljuk: 

              

[
 
 
 

  ( )   ( )    ( )

  
 ( )   

 ( )    
 ( )

    

  
(   )

( )   
(   )( )    

(   )( )]
 
 
 

 

Állítás Tegyük fel, hogy         függvények lineárisan összefüggőek, és legalább 
(   )-szer differenciálhatóak. Ekkor             . 

Bizonyítás Mivel a függvények lineárisan összefüggők, ezért               úgy, 

hogy valamelyik     . Legyen ez   . Ekkor    kifejezhető a többi függvény 
segítségével: 

    
  

  
     

  

  
   

Ugyanígy deriváltjai is kifejezhetők, ugyanilyen együtthatókkal: 

  
   

  

  
  

    
  

  
  

  

A többi derivált hasonlóan kifejezhető. Ekkor a mátrix első oszlopa előáll a többi 

lineáris kombinációjaként, így a mátrix szinguláris, vagyis determinánsa  .   
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Állítás Ha          -szer differenciálhatók az egész  -n, akkor            ponto-

san akkor nulla, ha         függvények lineárisan összefüggők. 

Homogén LDE 

A homogén lineáris differenciálegyenletek esetében a már definiált        egyenlet megol-
dását keressük. 

Megoldások struktúrája (B) 

Tétel Az        egyenletnek létezik   darab lineárisan független megoldása: 

       . Továbbá tetszőleges   megoldás felírható ezek lineáris kombinációja-
ként: 

              

Bizonyítás Az első részt speciálisan fogjuk belátni (lásd a 19. tételben,  ( ) polinomra) 

A második rész bizonyításához írjuk fel az           függvények Wronski de-
terminánsát: 

                [

      

    
    

 

    

 ( )   
( )

   
( )

] 

Mivel                     , ezért a mátrix utolsó sora előáll a többi 

lineáris kombinációjakét, sorai lineárisan összefüggőek, tehát a determináns  . 

Az utolsó   oszlop azonban lineárisan független, így az első oszlop felírható a 

többi lineáris kombinációjaként.   

Kezdeti érték- és peremérték feladat 

Tekintsünk egy  -ed rendű lineáris differenciálegyenletet,       . Legyen      tetszőle-
ges belső pont. 

Kezdeti érték feladat 

Olyan megoldást keresünk, melyre 

 (  )     

  (  )     

  
    (  )     

Peremfeltétel feladat 

Olyan megoldást keresünk, melyre 

 (  )     

 (  )     

  
 (  )     
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19. tétel: Állandó együtthatós: homogén LDE megoldásai. Kap-

csolat a karakterisztikus polinommal (B). Inhomogén 

LDE. Megoldások struktúrája. Inhomogén LDE megol-

dása. Állandók variálása. 

Állandó együtthatós: homogén LDE megoldásai, kapcsolat a karakterisztikus 

polinommal (B) 

Tekintsük az       ( )     
(   )          egyenletet, ahol           adott 

valós számok. Speciális megoldásokat keresünk, melyek 

 ( )      

alakúak. Ekkor   ( )        …  ( )( )        . 

Ezeket visszahelyettesítve azt kapjuk, hogy 

        (      
              )    

A jobboldalon álló függvény csak úgy lehet  , hogyha a zárójelben szereplő polinom nulla. 

Definiáljuk a differenciálegyenlethez tartozó karakterisztikus polinomot a következőképpen: 

 ( )        
         

Ez egy valós együtthatós polinom, melynek a komplex számsíkon   darab gyöke van, multip-

licitásokkal együtt. 

Első eset 

Tegyük fel, hogy  ( ) gyökei valósak, és mind egyszeresek. Legyenek ezek        . Ekkor 

fel tudjuk írni a homogén egyenlet   megoldását 

  ( )       

  ( )       

  

  ( )       
és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás: 

 ( )  ∑        

 

   

      

Második eset 

Tegyük fel, hogy  ( ) gyökei valósak, viszont az   darab   -szeres (       ) gyök. 

Legyen minden      -szeres gyöke a karakterisztikus polinomnak. Ekkor így tudjuk felírni a 
homogén egyenlet megoldásait: 

   ( )          ( )                  
            

  
   ( )          ( )                  

            

és ezek lineárisan független rendszert alkotnak. Ekkor az általános megoldás: 

 ( )  ∑ ∑              
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Harmadik eset 

Tekintsük azt az esetet, amikor a polinomnak komplex gyökei vannak. Ekkor ha        

egy gyöke a karakterisztikus polinomnak, akkor konjugáltja,        is gyök. Két alap-

megoldást kapunk tehát: 

  ( )        ( )      

Mivel   komplex szám, ezért ezek komplex függvények lesznek. Tudjuk, hogy ezek tetszőle-
ges lineáris kombinációja ismét megoldás lesz. Keresünk olya lineáris kombinációt, amely 

valós értékű. Definiáljuk a következő alapmegoldásokat: 

  ( )  
  ( )    ( )

 
       (  ) 

  ( )  
  ( )    ( )

  
       (  ) 

Ezek a megoldások is – nyilvánvalóan – lineárisan függetlenek. Az általános megoldás ezek 

összege. 

Negyedik eset 

A negyedik eshetőség az, hogy többszörös komplex gyökök állnak elő. Ekkor a komplex 

gyököknél megismert módszert és a többszörös gyököknél megismert felírást ötvözve kell 

alkalmazni. 

Inhomogén LDE. Megoldások struktúrája 

Az inhomogén lineáris differenciálegyenletek esetében a már definiált       ( ) egyenlet 

megoldását keressük,  ( )   . 

Tétel Ha    és    megoldásai az 

 ( )( )    ( ) (   )( )      ( ) ( )   ( ) 

inhomogén egyenletnek, akkor         a homogén egyenlet megoldása. Ha 

   a homogén, az    pedig az inhomogén egyenlet megoldásai, akkor      
   szintén megoldása az inhomogén egyenletnek. 

Inhomogén LDE megoldása: Állandók variálása 

Legyen az        homogén egyenlet   darab lineárisan független megoldása        . Az 
inhomogén egyenlet egyetlen megoldását keressük a következő alakban: 

 ( )    ( )  ( )      ( )  ( ) 

A fenti megoldásban szereplő függvényekre az alábbi feltételeket tesszük: 

  
        

      

  
   

      
   

    

  

  
   

(   )
     

   
(   )

   

  
   

(   )
     

   
(   )

  ( ) 

Így az együtthatók deriváltjaira adott   darab egyenlet. A fenti egyenletrendszert kompakt 

formában úgy írhatjuk fel, hogy a baloldalon az alapmegoldások Wronski mátrixa szerepel 
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megszorozva a   deriváltak oszlopvektorával, a jobboldalon pedig a           ( )   oszlop-

vektor áll: 

[

       

  
   

    
 

    

  
(   )

  
(   )

   
(   )

] [

  
 

  
 

 
  

 

]  [

 
 
 

 ( )

] 

Mivel ezek az alapmegoldások lineárisan függetlenek, ezért ez a mátrix nem szinguláris, tehát 

a fenti egyenletrendszer mindig megoldható. 

Állítás Ha a fenti feltételek teljesülnek, akkor       ( ). 

Megjegyzendő, hogy az állandók variálásának módszere akkor is használható, ha a lineáris 

differenciálegyenlet együtthatói nem konstansok, hanem adott, folytonos függvények. 
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20. tétel: Inhomogén LDE megoldása: Próbafüggvények. Differenci-

álegyenlet rendszerek. Állandó együtthatós lineáris DER 

megoldása (B).    értelmezése, speciális esetek. 

Inhomogén LDE megoldása: Próbafüggvények 

Az állandók variálása módszer ugyan minden esetben alkalmazható, de speciális jobboldal 

esetén, ha állandó együtthatós lineáris differenciálegyenletet tekintünk, érdemes az inhomo-

gén egyenlet megoldását speciális alakban keresni. A megoldandó egyenlet: 

      ( )( )    ( ) (   )( )      ( ) ( )   ( ) 

 Ha  ( )      , ahol    , akkor a megoldást  ( )       alakban keressük.   

ismeretlen. 

 Ha  ( )               , akkor a megoldást  ( )            

alakban keressük, ahol   -k az ismeretlen paraméterek. 

 Ha  ( )      (  ) vagy  ( )      (  ), akkor a megoldást mindkét esetben 

 ( )      (  )      (  ) alakban keressük, ahol   és   az ismeretlen paramé-

terek. 

Ha  ( ) ezen speciális függvények összege, akkor a próbafüggvényt is összegként keressük. 

Definíció Ha a homogén differenciálegyenlet alapmegoldásai között létezik olyan függ-

vény, mint ami a differenciálegyenlet jobboldalán szerepel, akkor rezonanciáról 

beszélünk. 

Differenciálegyenlet rendszerek 

Elsőként csak kétdimenziós rendszerekkel foglakozunk. Keresünk olyan  ( ) és  ( ) függ-
vényeket, melyek kielégítenek egy ilyen típusú differenciálegyenlet-rendszert: 

  ( )   (   ( )  ( )) 

  ( )   (   ( )  ( )) 

ahol   és   adott háromváltozós függvények. 

Állandó együtthatós lineáris DER megoldása (B) 

A könnyebb áttekinthetőség kedvéért három dimenzióban dolgozunk, de minden ugyanígy 

elmondható   dimenziós lineáris rendszerekre is. Tekintsük az alábbi háromdimenziós rend-

szert: 

  
                    

  
                    

  
                    

a hozzá tartozó kezdeti feltételekkel 

  ( )        ( )        ( )      

A keresett függvényt rendezzük el egy vektorba. Ezt deriváljuk, az együtthatókat pedig mát-

rixba gyűjtjük: 

 ( )  [

  ( )

  ( )

  ( )
]    ( )  [

  
 ( )

  
 ( )

  
 ( )

]    [

         

         

         

] 
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A differenciálegyenlet-rendszer tehát kompakt alakban így írható: 

  ( )    ( )  ( )     

Tétel A fenti (kompakt alakban írt) lineáris egyenletrendszer megoldása 

 ( )         

Tétel Tegyük fel, hogy   sajátértékei mind különbözőek, legyenek ezek         . Ek-

kor a különböző sajátértékekhez tartozó sajátvektorok egymásra merőlegesek, 

ezeket jelölje         . 

Ekkor a lineáris differenciálegyenlet rendszer lineárisan független megoldás-

rendszere 

           

Ezen felül tetszőleges  ( )     kezdeti értékhez létezik egyértelműen   megol-
dás és ez felírható 

                 

alakban megfelelő          konstans együtthatókkal. 

Bizonyítás A megoldások lineárisan függetlenek, hiszen     -k is lineárisan függetlenek, és 

  -k is. A fenti függvény deriváltja 

  
 ( )     

               

A differenciálegyenlet jobboldala 

   ( )                           

Tehát valóban megoldás.   

   értelmezése, speciális esetek. 

A fenti tételben szereplő    mátrix értelmezése a sorfejtés alapján történik: 

   ∑
 

  
  

 

   

 

Ez általában nehezen számolható. Ha   szimmetrikus mátrix, akkor felírható        

alakban, ahol   ortogonális,   pedig diagonális mátrix. Ez azt jelenti, hogy         
 , ahol   az egységmátrix, és a diagonális mátrixban a sajátértékek állnak. 

Ha például  -nak 3 darab különböző valós sajátértéke van,         , akkor a megfelelő saját-

vektorok ortogonális rendszert alkotnak. Ebben az esetben 

  [
    
    
    

]    (        ) 

ahol    a normalizált sajátvektorokat jelenti. Folytassuk    kiszámítását ebben az esetben. 

                          

ezért 

         

Ahol    diagonális mátrix, főátlójának elemei              
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21. tétel: Komplex függvény, ábrázolás. Kanonikus alak. Komplex 

függvény differenciálhatósága. Cauchy-Riemann egyenle-

tek (B). 

Komplex függvény, ábrázolás 

Legyen     egy tartomány a komplex számsíkon.       függvényt tekintjük. A függet-

len változót       , a függő változót        jelöli. Tehát a hozzárendelés    ( ). 

A komplex függvények pontos ábrázolására négy dimenzióra lenne szükség – ez nem kivite-

lezhető. Így megelégszünk azzal, hogy két komplex számsíkot rajzolunk, az egyiken az értel-

mezési tartományt, a másikon az értékkészletet ábrázoljuk. Ennek segítségével azt tudjuk 

megadni, hogy egy-egy konkrét komplex számhoz mit rendel hozzá a leképezés, illetve bizo-

nyos speciális alakzatokat – például kört vagy egyenest – hogyan transzformál. 

 

Az  ( )     függvény értelmezési tartománynak egy függőleges egyenesét körré képezi le. 

Kanonikus alak 

Legyen     tartomány és adott ezen egy hozzárendelés      , ami a   komplex szám-

hoz a következőt rendeli hozzá: 

   ( )    ( ( ))      ( ( )) 

A függvény kanonikus alakja két valós értékű kétváltozós függvény megadását jelenti, 

 ( )   (   )     (   ), ahol 

 (   )    ( (    ))  (   )    ( (    )) 

Komplex függvény differenciálhatósága 

Adott egy     tartomány és ezen egy       komplex függvény. Legyen   kanonikus 

alakja  ( )   (   )     (   ). Tegyük fel, hogy   és   folytonosan differenciálható függ-

vények, azaz léteznek   
    

    
    

  parciális deriváltak és folytonosak. 

Definíció Legyen    az   értelmezési tartományának egy belső pontja.   differenciálható 

  -ban, ha létezik és véges a következő határérték: 

   
   

 (    )   (  )

 
 

-5 0 5
-5

0

5
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Im

D
f
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0
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Cauchy-Riemann egyenletek (B) 

Tétel (Alaptétel a komplex függvény differenciálhatóságáról) Legyen     tarto-

mány,      ,         . Tegyük fel, hogy   és   folytonosan differenciálható 

függvények. Ekkor   differenciálhatósága a           pontban azzal ekviva-

lens, hogy az   és   kétváltozós függvények kielégítik az alábbi összefüggéseket: 

  
 (     )    

 (     ) 

  
 (     )     

 (     ) 

Az utolsó két egyenletet Cauchy-Riemann egyenleteknek nevezzük. 

Bizonyítás 1. rész. Tegyük fel, hogy   differenciálható   -ban. Ekkor a derivált definíciójá-

ban szereplő határérték létezik speciális irányokból is. Legyen        és le-

gyen elsőként     és    . Ekkor 

  (  )     
   

 (       )    (       )   (     )    (     )

 
  

    
   

 (       )   (     )

 
     

   

 (       )   (     )

 
  

   
 (     )     (     ) 

Most tegyük fel, hogy     és    . Ekkor az előzőhöz hasonlóan: 

  (  )     
   

 (       )   (     )

  
     

   

 (       )   (     )

  
  

      
 (     )    

 (     ) 

Mivel a kétoldali határértékeknek egyenlőknek kell lenniük, ezért 

  
 (     )     

 (     )      
 (     )    

 (     ) 

Két komplex szám egyenlősége ekvivalens azzal, hogy valós és képzetes részeik 

egyenlők, ebből pedig következnek a Cauchy-Riemann egyenletek.   

Bizonyítás 2. rész. Tegyük fel, hogy a Cauchy-Riemann egyenletek teljesülnek. Számoljuk 

ki a differenciahányadost: 

 (    )   (  )

 
 

 (         )    (         )   (     )   (     )

    
 

Felhasználva   és   deriválhatóságát, ez így folytatható (a deriváltak argumen-

tumát az átláthatóság kedvéért elhagyva): 

 (    )   (  )

 
 

  
     

      
      

  

    
 

  (| |)

    
 

  (| |)

    
  

   
     

  
  (| |)

    
 

  (| |)

    
 

Ezért 

   
   

 (    )   (  )

 
   

 (     )     
 (     ) 

tehát a határérték létezik.   
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22. tétel: Elemi függvények:   , alaptulajdonságok. (B). Elemi 

függvények:   ( ) alaptulajdonságok. (B),    ( ), 

   ( ), hatványfüggvény. 

Elemi függvények:   , alaptulajdonságok (B) 

Az  ( )     függvényt a komplex számok esetén így értelmezhetjük: 

           (   ( )      ( )) 

Állítás Az  ( )     függvény néhány alaptulajdonsága 

1. Analitikus és (  )     

2. Tetszőleges két   és    komplex számra               

3. Az    függvény     szerint periodikus. 

Bizonyítás 1. Fölhasználva a Cauchy-Riemann egyenleteket: 

 ( )             (   ( )      ( )) 

ezért 

 (   )       ( )   (   )       ( ) 

A megfelelő parciális deriváltak 

  
 (   )       ( )    

 (   )        ( ) 

  
 (   )       ( )    

 (   )       ( ) 

Tehát a függvény differenciálható és 

  ( )    
 (   )     

 (   )    (   ( )      ( ))   ( ) 

2. Behelyettesítéssel közvetlenül látszik. 

3.    periodicitása a trigonometrikus függvények periodicitásából következik: 

     (   ( )      ( ))    (   (    )      (    ))            

  

Elemi függvények:   ( ) alaptulajdonságok (B) 

Az exponenciális függvény inverzét keressük. Mivel  ( )     értékkészletében a   nincsen 

benne, így ez nem lesz benne a logaritmusfüggvény értelmezési tartományában. Legyen 

     , és keressük azt a  -t, melyre     . Ha   trigonometrikus alakja        , 
akkor 

    ( )              

Mivel az exponenciális függvény    szerint periodikus, ezért a keresett   szám nem egyér-
telmű. Tehát: 

  ( )    (| |)   (   ( )     )     

sokértékű függvény. A    -hoz tartozó értéket főértéknek nevezzük, és jelölése 

  ( )    (| |)      ( ) 
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Állítás Az  ( )    ( ) alaptulajdonságai 

1.    ( )    

2. Tetszőleges         esetén   (     )    (  )    (  ) 

3. A logaritmus főértéke a  -t kivéve mindenütt analitikus és 

 

  
  ( )  

 

 
 

   ( ),    ( ), hatványfüggvény 

A trigonometrikus függvények kiterjesztését komplex argumentumra a következőképp defini-

áljuk: 

   ( )  
        

  
 

   ( )  
        

 
 

Értelmezzük az  ( )     ,     hatványfüggvényt az exponenciális és logaritmus függ-
vény segítségével az alábbi módon: 

        ( ) 
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23. tétel: Harmonikus függvények (B). Harmonikus társ. Komplex 

vonalintegrál, alaptulajdonságok. Integrál kiszámítása. Ca-

uchy-féle alaptétel. Általánosítás.  

Harmonikus függvények (B) 

Definíció Legyen  (   ) kétváltozós függvény, amely valamely      tartományon van 

értelmezve. Tegyük fel, hogy itt folytonos és kétszer differenciálható. Azt mond-

juk, hogy  (   ) harmonikus, ha 

   
  (   )     

  (   )    

teljesül az egész tartományon. 

Definíció A Laplace-operátor egy       kétszer differenciálható függvényhez rendel 
hozzá egy másik kétváltozós függvényt: 

      
      

   

Állítás Tegyük fel, hogy       komplex függvény differenciálható. Ekkor kanonikus 

alakjában szereplő  (   ) és  (   ) függvények harmonikusak. 

Bizonyítás A bizonyításban feltesszük, hogy   és   kétszer folytonosan differenciálhatóak. 

A differenciálhatóság miatt   
    

  és   
     

 . Az első azonosságot   sze-

rint, a másodikat pedig   szerint deriválva a következőt kapjuk: 

{
   

      
  

   
       

   

      
      

      
      

     

  

Harmonikus társ 

Állítás Ha   harmonikus függvény a   egyszeresen összefüggő tartományon, akkor léte-

zik olyan       harmonikus függvény, hogy az  ( )   (   )    (   ) 

komplex függvény differenciálható. Azt mondjuk, hogy ez a   az   függvény 
harmonikus társa. 

Komplex vonalintegrál, alaptulajdonságok 

Állítás (Ívhossz kiszámítása) Legyen   egy komplex Jordan görbe, melyről feltesszük, 
hogy sima. Ennek ívhossza: 

 ( )  ∫ √   ( )     ( )
 

 

    

Tekintsünk egy     Jordan görbét, és egy ezen értelmezett   komplex függvényt. Értel-

mezni szeretnénk az 

∫ ( )   
 

 

vonalintegrált. Ehhez tekintsük a görbe egy felosztását. Az alappontokat jelölje 

               

A görbe megfelelő pontjait így jelöljük:            (  )         
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Legyen a  -adik ívdarab egy tetszőleges pontja   . A felosztáshoz tartozó közelítő összeg: 

∑(       )   (  )

 

   

 

Definíció A vonalintegrált az alábbi határérték definiálja, amennyiben létezik és véges: 

   
   
    

∑(       )   (  )

 

   

 ∫ ( )    
 

 

ahol       ( (       ̂ )        ). Ha   zárt görbe, akkor a vonalinteg-
rálra az alábbi jelölést használjuk: 

∮ ( )   
 

 

Állítás A vonalintegrál alaptulajdonságai: 

1. Lineáris művelet, azaz 

∫(  ( )    ( ))  
 

  ∫ ( )   
 

  ∫ ( )   
 

 

2. Ha megfordítjuk a görbe irányítását, akkor a vonalintegrál (  )-szeresére 
változik: 

∫ ( )   
 

  ∫  ( )   
  

 

3. Ha az   görbe két részből áll,        , akkor 

∫ ( )   
 

 ∫  ( )   
  

 ∫  ( )   
  

 

4. Ha  folytonos függvény, akkor létezik az alábbi vonalintegrál: 

∫ ( )   
 

 

5. Ha   korlátos függvény, vagyis | ( )|        , akkor 

|∫ ( )   
 

|     ( ) 

ahol  ( ) a görbe ívhossza. 

Integrál kiszámítása 

Tétel Legyen az   görbe paraméteres megadása: 

 ( )   ( )    ( )   ( )     ( )         

Tegyük fel, hogy     illetve     folytonosan differenciálhatók. Ekkor 

∫ ( )   
 

 ∫  ( ( ))  ( )   
 

 

 

 ∫  ( ( )    ( ))(  ( )     ( ))   
 

 

 

 ∫  ( ( )     ( )) (  ( )     ( )    ( )     ( )  ( ))    
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Tétel (Newton-Leibniz formula komplex vonalintegrálra) Legyen adott az       

függvény. Tegyük fel, hogy létezik olyan       függvény, melyre minden   

esetén   ( )   ( ). Legyen   és   a tartomány két pontja. Ekkor 

∫ ( )   
 

  ( )   ( ) 

minden olyan     Jordan görbe mentén, melynek végpontjai A és B. 

Cauchy-féle alaptétel 

Tétel (Cauchy-féle alaptétel vonalintegrálra) Legyen     egyszeresen összefüggő 

tartomány és ebben     egy sima, zárt görbe. Tegyük fel hogy az       
függvény analitikus. Ekkor 

∮ ( )   
 

   

Általánosítás 

Tétel (Cauchy-féle alaptétel általánosítása) Legyen adott egy     összefüggő tar-

tomány, melynek határa a     görbe. Feltesszük, hogy   nem egyszeresen 

összefüggő, jelölje         a lyukakat körbevevő görbéket, melyekről feltesz-

szük, hogy ugyanolyan irányításúak, mint  . Legyen       analitikus függ-

vény. Ekkor 

∮ ( )   
 

 ∑ ∮  ( )   
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24. tétel: Cauchy-féle integrálformula. Taylor sorfejtés analitikus 

függvényre (B). Laurent sorfejtés. Zérus és pólus. 

Cauchy-féle integrálformula 

Tétel (Cauchy-féle integrálformula) Legyen     egszeresen összefüggő tartomány, 

és       analitikus függvény.   legyen tetszőleges belső pont  -ben. Legyen 

    olyan zárt görbe, amelynek belseje is  -ben van, és a görbe körbeveszi  -
t. Ekkor 

 ( )  
 

   
∮

 ( )

   
  

 

 

Taylor sorfejtés analitikus függvényre (B) 

Tétel Legyen       differenciálható    egy környezetében. Ekkor ott Taylor sorba 
fejthető, és 

 ( )   (  )  ∑
 ( )(  )

  
(    )

  ∑   (    )
 

 

   

 

   

 

ahol 

   
 

   
∮

 ( )

(    )
   

   
 

 

Tegyük fel, hogy   analitikus és  (  )   . Ekkor egy (    ) tényező kiemelhető, és 

 ( )  (    )  ̃( ) 

alakban írható, ahol   ̃ analitikus. 

Laurent sorfejtés 

Tétel Tegyük fel, hogy   analitikus egy körgyűrűben, azaz egy 

  {    |    |   } 

halmazon. Ekkor   ebben a körgyűrűben felírható a következő hatványsorként: 

 ( )  ∑   (    )
 

 

    

 

ahol 

   
 

   
∮

 ( )

(    )   
   

 

 

és   egy olyan   -t körbevevő zárt görbe, amely a fenti   tartomány része. Ez az 
ún. Laurent-sor. 

Zérus és pólus 

Definíció Ha  ( )  (    )
   ̃( ),   ̃(  )    valamely     egész számra, akkor azt 

mondjuk, hogy     -szeres (vagy  -ed rendű) zérusa  -nek. 
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Tétel Ha    az   analitikus függvény zérusa, akkor két eset lehetséges. 

1. Van   -nak olyan környezete, ahol  ( )    minden  -re. 

2. Van   -nak olyan környezete, ahol  ( )    minden     -ra. 

Definíció Tegyük fel, hogy 

 ( )  
 

(    )
 
 ( ) 

alakban írható, ahol  ( ) a    egy környezetében olyan analitikus függvény, 

melyre  (  )   . Azt mondjuk, hogy     -szeres pólusa  -nek. 
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Feladatok a komplex függvénytan témaköréből 

Az alábbi feladatok minták. A vizsga során egy hasonló típusú feladatot kell megoldani. 

Komplex számok, ismétlés 

Végezze el az alábbi számításokat: 

5.1.    ⁄  5.2.       ⁄  

5.3. (   )  5.4. (   )  ⁄  

5.5. ∑(   ) 

 

   

 5.6. ∑   
 

   

 

5.7. 
    

   
 5.8. ∑ (

 

 
)
  

   

 

Komplex függvények értelmezése 

Határozzuk meg, hogy az alábbi   függvények a megadott   tartománynak mit feleltetnek 

meg. Rajzoljuk le az eredeti   tartományt és ennek  ( ) képét is. (Használjuk fel, hogy ana-

litikus függvény esetén tartomány határának képe a képtartomány határa lesz.) 

5.9.  ( )       {  | |   } 

5.10.  ( )  
 

 
   {          } 

5.11.  ( )  (   )    {    ( )   } 

5.12.  ( )         {    ( )           ( )   } 

5.13.  ( )          {  | |   } 

5.14.  ( )  (    )    {  | |   } 

Határozzuk meg, hogy az  ( )  
 

 
 leképezés a komplex sík bizonyos tartományainak mit 

feleltet meg: 

5.15.    {      ( )} 

5.16.*    {    ( )      ( )   } 

5.17.*    {    ( )    }     
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Komplex függvények differenciálhatósága 

Vizsgáljuk meg, vajon differenciálhatók-e az alábbi komplex változós függvények. Ahol csak 

a kanonikus alak van megadva, próbáljuk meg  ( )-t közvetlenül   függvényében megadni. 

5.18.  ( )           (       ) 

5.19.  ( )  
 

 
 5.20.  ( )  

 

  
 

5.21.  ( )    ( ) 5.22.  ( )     

5.23.  ( )   
 
 5.24.  ( )          

5.25.  ( )    (   ( )      ( )) 5.26.  ( )     

5.27.  ( )     (   )   5.28.  ( )       

5.29.  ( )  | |   

Harmonikus függvények 

Vizsgáljuk meg, harmonikusak-e a következő függvények. Ha igen, keressük meg harmoni-

kus társukat. 

5.30.  (   )    (   ) 5.31.  (   )             

5.32.  (   )    ( )    ( ) 5.33.  (   )       ( ) 

5.34.  (   )      ( )   ( )   

5.35. Milyen   paraméter esetén lesz  (   ) egy analitikus függvény képzetes része? 

 (   )            

 A kapott   paraméter mellett határozza meg harmonikus társát. 

5.36. Milyen   paraméter esetén lesz az alábbi függvény egy analitikus függvény valós része: 

 (   )          

 Számítsa ki a megfelelő analitikus függvény deriváltját a        pontban,  (   ) 

harmonikus társának meghatározása nélkül. 

5.37. Igazolja, hogy alábbi függvény egy analitikus függvény képzetes része: 

 (   )    ( )    ( ) 

 Számítsa ki a megfelelő analitikus függvény deriváltját a      pontban,  (   ) har-
monikus társának meghatározása nélkül. 

5.38. Igazoljuk, hogy az alábbi függvény egy analitikus függvény valós része: 

 (   )  (   )(   ) 

 Számítsa ki a megfelelő analitikus függvény deriváltját a          pontban,  (   ) 
harmonikus társának meghatározása nélkül. 
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5.39. Milyen   paraméter esetén lesz az alábbi függvény egy analitikus függvény valós része: 

 (   )    (      ) 

 Számítsa ki a megfelelő analitikus függvény deriváltját a      pontban,  (   ) har-
monikus társának meghatározása nélkül. 

Komplex vonalintegrál 

5.40. 

∫(    )    
 

 

 ha   a      és        pontokat összekötő szakasz,     -ból indítva. 

5.41. Integráljuk az  ( )  
   

 
 függvényt a 

 1.    {            } mentén, növekvő   irányban. 

 2.    {             } mentén, csökkenő   irányban befutva. 

 3.    {             } mentén, növekvő   irányban. 

5.42. Legyen   a      középpontú egységkörnek az a fele, ahol a képzetes rész nemnegatív. 

∫(   )    
 

 

5.43. Integráljuk az  ( )      függvényt,   legyen a valós tengely       szakasza 

növekvő   irányban! 

5.44. A   {  |   |   } zárt görbe mentén számoljuk ki az alábbi integrálokat: 

(a) ∮
  

   
    

 

 (b) ∮
  

(   ) 
    

 

 

 (Ötlet: Alkalmazzuk a Cauchy-féle integrálformulát.) 

5.45. Integráljuk az  ( )     függvényt a      ,      pontokat összekötő szakasz 

mentén,   -ből indulva. 

Elemi függvények kiterjesztése 

5.46.   (   )    5.47.   (   )    

5.48.   (  )    5.49. (   )    

5.50.        5.51.        

5.52.   (  )    5.53.        

5.54.        5.55.        

5.56.    ( )       (   )    5.57.    ( )       (   )    
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Jegyzetek 
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Évközi eredmény 

  maximális 

pontszám 

elért 

pontszám 

Házi feladat 

zárthelyi 

dolgozatok 

1. házi feladat zárthelyi dolgozat 10  

2. házi feladat zárthelyi dolgozat 10  

3. házi feladat zárthelyi dolgozat 10  

4. házi feladat zárthelyi dolgozat 10  

5. házi feladat zárthelyi dolgozat 10  

Összesen 50  

I. Elért pontszám  

Nagy zárthelyi 

dolgozatok 

1. nagy zárthelyi dolgozat 50  

2. nagy zárthelyi dolgozat 50  

Összesen 100  

II. Elért pontszám  

 I. + II. 

Az évközi dolgozatok pontszáma 
150 

 

Kis zárthelyi eredmények 

dátum 
febr. 

11. 

febr. 

18. 

febr. 

25. 

márc. 

4. 

márc. 

18. 

márc. 

25. 

ápr. 

1. 

ápr. 

8. 

ápr. 

29. 

máj. 

13. 

máj. 

20./1 

máj. 

20./2 
∑ 

pont 
             

Gyakorlati jegy 

Érdemjegy ponthatárok 

1 (elégtelen)  0 –  60 

2 (elégséges)  61 –  83 

3 (közepes)  84 –  106 

4 (jó)  107 –  128 

5 (jeles)  129 –  150 

Elért érdemjegy 

 

 

Jegytáblázat 

 

Ha a két jegy alapján kapott jegy szürke hátterű mezőbe esik, akkor amennyiben a kis zárthe-
lyik összpontszáma eléri a húszat, az eggyel jobb osztályzat is lehetséges. 

 
 1 2 3 4 5 másik jegy 

e 

g 

y 

i 

k 

 

j 

e 

g 

y 

1 1 1 1 1 1 
 

2 1 2 2 3 3 
 

3 1 2 3 3 4 

4 1 3 3 4 4 

5 1 3 4 4 5 
 


