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Matematikai analizis II. — PPKE ITK

Fontos tudnivalok

Tisztelt Vizsgazo!

Jelen fiizet a 2013/14/2. tanulmanyi idészak, vizsgaidészakanak Matematikai analizis II. Sz6-
beli vizsgajahoz lett kiadva. A fiizet tartalmazza az intézmény altal nyilvanossagra hozott té-
teljegyzéket, valamint azok kidolgozott formajat is.

Az analizis vizsga részét képezi egy egyszerii komplex fliggvénytani feladat megoldasa is.
Mintafeladatok a fiizet végében talalhatok.

A kiadvanyban barhol, de kiilondsen a kidolgozott tételek korében eléfordulhatnak hidnyos-
sagok, bovebb magyarazatra szorul6 részek. Az ezek kiegészitése illetve jegyzetelés, feladat-
megoldas céljabodl a kidolgozott tételeket a fiizetben jegyzetoldalak kovetik.

Eredményes felkésziilést kivanunk!

A kiadvanyt osszeallitotta:
Naszlady Mérton Bese — 2014

Ez a kiadvany a Creative Commons Nevezd meg! — Ne add el! 4.0 Nemzetkozi licenc ala tartozik.
A licenc megtekintéséhez latogasson el a http://creativecommons.org/licenses/by-nc/4.0/ oldalra.

A kiadvanyban szerepl? tartalmi elemek
harmadik személytdl szarmazo véleményt, értestilést tiikkroznek.
Az esetlegesen el6forduld targyi tévedésekbdl fakadd visszas helyzetek
kialakulasaért, illetve azok kdvetkezményeiért a kiadoé nem vallal felelGsséget!
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1. tétel:

2. tétel:

3. tétel:

4. tétel:

5. tétel:

6. tétel:

7. tétel:

8. tétel:

9. tétel:

10. tétel:

11. tétel:

12. tétel:

Szobeli vizsga tételjegyzék

Hatvanysorok. Konvergencia tartomany (B). Konvergencia sugar meghatarozasa
(B). Taylor sor. Elemi fiiggvények Taylor sora: e*, sin(x), cos(x).

Fliggvénysorozatok, fliggvénysorok. Konvergencia tipusok: pontonkénti és egyen-
letes. Osszegfiiggvény folytonossaga (B), derivaltja és integralja.

Fourier sor. Fourier egyiitthatok, valés alak. Derivalt fiiggvény Fourier sora (B).
Fourier sor konvergenciaja. Fourier egyiitthatok nagysagrendje (B), Parseval
egyenloség.

Kétvaltozos fiiggvények értelmezése, abrazolasa. Folytonossag, sorozatfolytonos-
sag. Bolzano tétel magasabb dimenzioban (B). Egyenletes- és Lipschitz-folytonos-
sag.

Fiiggvény hatarértéke. Parcialis derivaltak. Geometriai jelentés. Parcialis deri-
valtak és folytonossag (B). Parcialis derivalasok sorrendje, felcserélhetésége.

Teljes differencialhatésag. Kapcsolat a parcidlis derivéaltakkal. Folytonossag és
differencialhatosag (B) Erintdsik. Normalvektor. [ranymenti derivalt (B).

Masodik derivalt, Hesse matrix. Lancszabaly, specialis esetek. Méasodrendti Tay-
lor formula kétvaltozos fliggvényre (B).

Lagrange féle kozépérték tétel (B). Implicit fiiggvény tétel. Implicit fiiggvény
derivalasa. Lokalis és globalis szélsdérték. Sziikséges feltétel lokalis szélséértékre

(B).

Stacionarius pont. Nyeregpont. Elégséges feltétel lokalis szélsoértékre. Feltételes
sz€éls6érték, feladat megfogalmazasa. Szemléletes jelentés.

Lagrange-féle multiplikator szabaly. Fiiggvény rendszerek, Koordinata-transzfor-
macio. Jacobi matrix. Jacobi determinans. Invertalhatosag. Inverz rendszer deri-
valtja (B).

Riemann integral két dimenzidban. Kettds integral kiszadmitasa. Integralas téglalap
alakua tartomanyon (B). Integralas normaltartomanyon, a sikon.

Polarkoordinatik. Attérés polirkoordinatikra kettés integralban. Harmas in-
tegral: intervallumon €s normal tartomanyon. Altaldnos helyettesités kettds és har-
mas integralban.
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13. tétel:

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24,

tétel:

tétel:

tétel:

tétel:

tétel:

tétel:

tétel:

. tétel:

tétel:

tétel:

tétel:

Hengerkoordinatak. Gombi polarkoordinatak. Attérés Jacobi determinansa (B).
Tomegkozéppont meghatarozasa. Kétvaltozos fiiggvény felszinének Kiszamita-
Sa.

Improprius integral, nem korlatos fiiggvény. Hatvanyfiiggvény integralja az egy-
ségkorben (B). Integralhatosag feltétele nem korlatos fliggvényre.

Improprius integral nem korlatos tartomanyon. Példa: harang-gorbe integralja. (B).
Vonal(gorbe) definicioja R?-ben és R3-ban. Kétvaltozos valés fiiggvény integ-
ralja vonal mentén.

Vektormez6 integralja gorbe mentén. Szemléletes jelentés. Potencialkeresés.
Potencial 1étezésének sziikséges (B) és elégséges feltétele (vonalintegrallal).

Fourier sor komplex alakja. Fourier transzformacié. Alaptulajdonsagok (B).
Inverz Fourier transzformacio. Parseval egyenlet (B). Konvolacié. Konvolucio
FT-ja.

Magasabb rendi linearis differencialegyenlet. Fiiggvények fliggetlensége.
Wronski determinans (B). Homogén LDE. Megoldasok strukturaja (B). Kezdeti
érték- és peremérték feladat.

Allandé egyiitthatés: homogén LDE megoldasai. Kapcsolat a karakterisztikus
polinommal (B). Inhomogén LDE. Megoldasok strukturaja. Inhomogén LDE
megoldasa. Allandok varialésa.

Inhomogén LDE megoldasa: Probafiiggvények. Differencidlegyenlet rendszerek.
Allandé egyiitthatés linearis DER megoldasa (B). e értelmezése, specidlis ese-
tek.

Komplex fiiggvény, abrazolas. Kanonikus alak. Komplex fiiggvény differencial-
hatosaga. Cauchy-Riemann egyenletek (B).

Elemi fliiggvények: e?, alaptulajdonsagok. (B). Elemi fiiggvények: Ln(z) alaptu-
lajdonsagok. (B), sin(z), cos(z), hatvanyfiiggvény.

Harmonikus fiiggvények (B). Harmonikus tars. Komplex vonalintegral, alaptulaj-
donsagok. Integral kiszamitasa. Cauchy-féle alaptétel. Altalanositas.

Cauchy-féle integralformula. Taylor sorfejtés analitikus fiiggvényre (B). Laurent
sorfejtés. Zérus és polus.
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Kidolgozott tételek, tételvazlatok

1. tétel:  Hatvanysorok. Konvergencia tartomany (B). Konver-
gencia sugar meghatarozasa (B). Taylor sor. Elemi fiigg-
vények Taylor sora: e*, sin(x), cos(x).

Hatvanysorok

Definici6 A hatvanysor:

oo

ch(x—xo)”, ¢, €ER

n=0

Ahol x, € R rogzitett.

Konvergencia tartomany (B)

Definicio

Allitas

Bizonyitas

Adott egy hatvanysor:

oo

n=0

Ennek konvergencia halmaza (konvergencia tartomanya, ,,ahol konvergens”):

(o]
xER:chx”<oo}

n=0

H =

A konvergencia halmaz tulajdonsagai:

1) 0eXH

2.) Haé& € H, akkor minden x-re, melyre |x| < |¢], igaz, hogy x € .
3.) Han ¢ 7, akkor minden x-re, melyre |x| > |n|, igaz, hogy x ¢ 7.

1) Trivialis.

2.) Az |x| < |&] feltétel miatt teljesiil az is, hogy |x| < q|¢], ahol 0 < q < 1.
Mivelhogy ¢ eleme a konvergencia halmaznak, ezért a &-vel felirt hatvanysor

(0]

ZCnE” <

n=0

sora korlatos, azaz AM, hogy |c,€é™| < M minden n-re. Ekkor folhasznalva a
bizonyitas elején megallapitott Osszefliggést:

x|

lenx™| = leaé™ - 75 < Mq™

I
3.) Ha x-ben konvergens volna, akkor az el6z6 megallapitis miatt az |n| < |x|
miatt n-ban is konvergens volna, ami viszont ellentmondas. m
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Konvergencia sugar meghatarozasa (B)

Definicio  Tegyiik fel, hogy 1étezik & # 0, melyre £ € H és An & H'. A hatvanysor kon-
vergencia sugara p := sup{|x| : x € H}
Ha 7€ = {0}, akkor p := 0.
Ha H = R, akkor p := oo

Az x, = 0 esetben a konvergencia sugar meghatarozasa a gyokkritériummal lehetséges, a
,,SZEeTeposztas” a, = c,x".

Allitas Tegyiik fel, hogy a lim,,_,« m = y hatarérték létezik (esetleg +0). Ekkor:
1)y = 0 esetén p = . A hatvanysor mindeniitt konvergens.
2.)y = o esetén p = 0.
3.)0<y<ooeseténp=$.
Bizonyitas 1.) lim,,_, ’W =0-|x|, Vx
2.) lim,_, W =00, Vx # 0

3) im0 A/ lcnl - x| = ylx|, Vx. Ezért |x| < )l/ esetén y|x| < 1. A sor kon-
vergens. m

A konvergencia sugar meghatarozhatdé még a hanyados kritérium modszerével is, hasonlod
szereposztassal.

lcntal

lcal
1)y = 0 esetén p = . A hatvanysor mindeniitt konvergens.

Allitas Tegyiik fel, hogy a lim,,_, = y hatarérték létezik (esetleg +00). EKkor:
2.)y = w esetén p = 0.
3.)0<)/<OOeseténp=%.

Bizonyitas

1
n+i (A <1l elxl< ;,konvergens

Cn+1X

Cpx™

A = lim

n—-oo

c

= |x| - lim =ylx| = 1
n—oo

A>1 o x| > ;,divergens

Altalanos eset
Altalaban a hatvanysort egy x, pont koriili tekintjiik, alakja:

[00]

Z cn(x — x0)"

n=0
A konvergencia halmaznak itt is harom tipusa lehet:
o M ={xo}
e H=R

o H=[(xo—=pxo+p)]
A konvergencia sugarat ugyan gy hatarozzuk meg, mint a specialis (x, = 0) esetben.
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Taylor sor

A hatvanysorok a konvergencia halmaz belsejében:
- folytonosak

- differencialhatok

- 0sszeadhatok, skalarszorozhatok

- 0sszeszorzas NEM lehetséges

Legyen f(x) = Yoo Cn(x — x0)™ és x € H x koriili hatvanysor.
y = lim Y/|c,| = lim
n—-oo n—-oco

Ekkor f akarhanyszor differencialhato, éspedig
FUO () = Zn-(n—l) =k +1) - (x = xg)" K

n=k

Cn+1 n _ n

|x — xo| < p esetén.

Forditva:

Adott f fliggvény eléallithato-e hatvanysor alakban? Ha x, koriil el6all, akkor
filxo—p;xo+p)>R=(c,) R

Definicio Az f fiiggvény analitikus x,-ban, ha 3(c,) szdmsorozat, hogy

FO = al—x)",  r-xl<p
n=0
Allitas Ha létezik hatvanysor-eléallitas, akkor az egyértelmii.

Bizonyitas Legyen x = x,. Ekkor f(x,) hatvanysora:

[o9)

f(xo)=zcn(x_xo)n=Co+C1'0+"'=Co

n=0

Ennek derivaltja:

oo

f(")(xo)=Zn-(n—1)-...-(n—k+1)-cn-(x—x0)”"k=k!-ck

n=k

B (x,)
T
[gy tehat a hatvanysor-eldallitas egyértelmii. m

Kovetkezmény

Az analitikus fiiggvények egyértelmiien eléallithatok hatvanysorral = Taylor sor. A
f (")( )
T(x) = z a — xp)"

alaku sor az f fliggvény x, kdzéppontl Taylor sora. A nem analitikus fiiggvények hatvanyso-
ra csak kozelités.

szobeli vizsga 1405 8/72 2014. janius 5.



Matematikai analizis II. — PPKE ITK

Elemi fiiggvények Taylor sora: e*, sin(x), cos(x)
Allitas Az f(x) = e* fiiggvény Taylor sora

® n
X
eX = —, x€ER
n!
n=0

Allitas Az f(x) = sin(x) fiiggvény x, = 0 koriili Taylor sora

x3 x5 it (_1)n
i =y —— 3t — — . = —— 7 . 42ntl
sin(x) = x T + T = 2nt D! x , x €R
n=0
Pératlan fliggvény, igy Taylor sordban csak paratlan szdmok szerepelnek.
Allitas Az f(x) = cos(x) fiiggvény x, = 0 koriili Taylor sora
Jo R— 2 (="
=1 —-—4+—— .. = . x2n
cos(x) =1 2!+4! _Z)(Zn)! xm", x€ER
n=

Paros fliggvény, igy Taylor soraban csak paros szamok szerepelnek.
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2. tétel:  Flggvenysorozatok, fliggvénysorok. Konvergencia tipu-
sok: pontonkénti és egyenletes. Osszegfiiggvény folyto-
nossaga (B), derivaltja €s integralja.

Fiiggvénysorozatok, fliggvénysorok

Definicié  Adottak az fi, f5, ..., fu, ... : D = R fliggvények, melyek értelmezési tartomanya
k6z0s. Ezek sorozatat fiiggvénysorozatnak nevezzik. Jele: (f;,)

Definicio Az (f,,) fuggvénysorozat hatdarértéke az f: D — R fiiggvény, ha

lim £,00) = f(x),  vxeD

Definicié  Adottak az f,:D — R fiiggvények, melyek értelmezési tartomanya kozos. A
(X f) fiiggvénysor osszege f: D — R, haVx € D-re

> ) = F@)
n=1

Konvergencia tipusok: pontonkénti és egyenletes

Fiiggvénysorozatra

Tétel (Cauchy-kritérium) Az (fy,) fiiggvénysorozat pontosan akkor konvergens, ha
Ve > 0-hoz és Vx € D-hez AN = N (¢, x) kiiszébindex, amelyre Vm,n > N ese-
tén | fn(x) — frn(x)| < e.

Definicio Az (f,,) fiiggvénysorozat pontonként konvergens f-hez, ha Vx € D és Ve > 0-
hoz 3N = N(g, x), melyre Vn > N esetén |f,,(x) — f(x)]| < &.

Definici6 Az (f,) fliggvénysorozat egyenletesen konvergens f-hez, ha Ve > 0-hoz
dN = N(¢&), melyre Vn > N esetén |f,,(x) — f(x)| < &, Vx € D-re.

Kovetkezmény
Ha a konvergencia egyenletes, akkor pontonkénti is.

Tétel (Elégséges feltétel egyenletes konvergenciara) Adottak f,, f: D — R fiiggvények.
Tegyiik fel, hogy lim,_,. fn(x) = f(x) pontonkénti hatarérték. Tegyiik fel to-
vabba, hogy a fiiggvények korlatosak, és |f,(x) — f(x)| < a,, Vx € D. Ekkor
lim,_,, a, = 0 esetén a fenti konvergencia egyenletes.

Fiiggvénysorra

Tétel (Cauchy-kritérium fiiggvénysorokra) A (3.fy) fiiggvénysor pontosan akkor kon-
vergens, ha Vx € D esetén Ve > 0-hoz 3N = N(¢, x), melyre

Zn: fie(x)
k=m

Definicio A fliggvénysor konvergenciaja egyenletes, ha a részletosszegek sorozata egyen-
letesen konvergens, azaz

<e§g, vn>m>N

HOEWAES
k=1

jeloléssel F, egyenletesen konvergal f-hez.
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Tétel (Weierstrass-féle elégséges feltétel) Adottak az f,: D — R fiiggvények, melyek
értelmezési tartomadnya kozos. Tegyiik fel, hogy a (3.f,) fiiggvénysor tagjai kor-
latosak, éspediq f, korlatja |f,(x)| < a,, Vx € D. Tegyiik fel tovibbd, hogy
Y=y 4, < oo. EKkor a konvergencia egyenletes.

Osszegfiiggvény folytonossaga (B), derivaltja és integralja
Tétel (Osszegfiiggvény tulajdonsdgainak megdllapitasara) Tegyiik fel, hogy az

fn: D = R fiiggvények folytonosak. Tegyiik fel, hogy (3.f,) egyenletesen konver-
gens D-ben. Ekkor f =}, f;, is folytonos.

Bizonyitas Legyen x, € D tetsz6leges. Ahhoz, hogy megallapitsuk, hogy f folytonos-e x,-
ban, be kell latni, hogy Ve > 0 esetén |f (x) — f(xo)| < €, ha x és x, elég koze-
li.

Bontsuk fol a végtelen Gsszeget két részre:

FG) =D ful@) + Ra) = () + Ry(®)
k=1

ahol F,(x) az n-edik részletosszeg, R, (x) pedig a maradék.

Legyen & > 0 tetsz6leges. A Cauchy-kritérium miatt AN = N(e), melyre
Vn > N esetén

€
=|R,(x)| < 7 Vx €D

F0) =) fi@)
k=1

Ezért
&
IRn(x) - Rn(xo)l < E, Vx €D

Az E, véges sok folytonos fiiggvény Osszege, ezért folytonos. Tehat a fenti
€ > 0-hoz36 >0, ha|x — x| < 8, akkor

IF(0) = Falx)] < 5
fgy amennyiben |x — x,| < &, akkor
If () = £ (x0)| = |Fu(x) + Rp(x) — (Fy(x0) + Ry (x0))| <
< IR = Ro)] + Ry() = Ra(xo) <5 +5 =
tehat f folytonos x,-ban. m

Tétel (Integralhatosag) Adottak az f,: D — R integrdlhato fiiggvények és f:D — R
fiiggveny. Tegyiik fel, hogy

> ) = @)
n=1

és a konvergencia egyenletes. Legyen [a, B] € D. Ekkor az osszegfiiggvény is in-
tegralhato:
B = (B
[r@a=)" [ fwax
a no1’a
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Tétel (Derivalhatésag) Adottak az f,,: D — R differencidlhato fiiggvények, és f:D —
R fiiggveny. Tegyiik fel, hogy a

imm=ﬂm

pontonként konvergens D-ben. Tegyiik fel, hogy a derivaltakbol allo fiiggvénysor
is egyenletesen konvergens:

> i) = g
n=1

és g(x) folytonos. Ekkor f fiiggvény differencidlhaté, és f'(x) = g(x)
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3.tétel:  Fourier sor. Fourier egyiitthatok, valos alak. Derivalt
fliggvény Fourier sora (B). Fourier sor konvergenciaja.
Fourier egyiitthatok nagysagrendje (B), Parseval egyenlo-
ség.

Fourier egyiitthatok, valos alak

Definicié6 Az f:[—m; ] — R fiiggvény Fourier egyiitthatéit igy definialjuk:

1 T
a, = ;] f(x)cos(kx) dx, k=0,1,2,..
-1

1 T
b, = —f f(x)sin(kx) dx, k=1,2,..
n -1
feltéve, hogy a fenti integralok léteznek.

Fourier sor

Definicio  Adott f: R — R 2m szerint periodikus fiiggvény. Tegyiik fel, hogy f integralhatd
a [—m; ] intervallumon. Az f(x) fiiggvény Fourier sora (formalisan):

f~ %;(ak cos(kx) + by, sin(kx))

ahol ay és by, a most definialt Fourier egyiitthatok.

Derivalt fliggvény Fourier sora (B)

Tétel Legyen f:R = R valos fiiggvény 2m szerint periodikus és tegyiik fel, hogy a
[—m; | intervallumon a fiiggvény véges sok pont kivételével folytonos. Ezenkiviil
tegyiik fel, hogy a szakaddasi pontok elsofaju szakaddsok, és hogy véges sok pont
kivételével f differencialhaté. Ekkor az f' fiiggvény Fourier sora tagonkénti de-
rivalassal kiszamithato:

f’~2(—ak -k - sin(kx) + by, - k - cos(kx))
k=1
Bizonyitas Az f' fliggvény Fourier egyiitthatoit jeldlje ay, és B,. Ekkor f' Fourier sora:
Qo N .
f'~ > + Z((xk cos(kx) + By sin(kx))
k=1

ahol a definiciot felhasznalva:

A

ap = %f_nf’(x) cos(kx) dx = % [f(x) cos(kx)]

— fnf(x) - (=ksin(kx)) dx | =

=k -%fjtf(x)sin(kx) dx =k - by

A fenti egyenletben az els6 tag azért tiinik el, mert f 2m szerint periodikus. m
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Fourier sor konvergenciaja

Tétel (Fourier sorok alaptétele) Legyen f:R — R 2m szerint periodikus fiiggvény.
Feltessziik, hogy f szakaszosan folytonosan differencidalhaté a [—m; ] interval-
lumon, legfeljebb véges sok szakaddasi hellyel, amelyek elso faju szakadasok. Ha
Xo szakadasi pont, akkor itt a fiiggvényeérték legyen

flxo+0) + f(xo—0)
2

f(xo) =
Ekkor

flx) = 70 + Z(ak cos(kx) + by sin(kx))

Fourier egyiitthatok nagysagrendje (B)

Tegyiik fel, hogy f: [—m; m] = R folytonosan differencialhato véges sok pont kivételével.
Ekkor eldallithatd Fourier sora segitségével:

flx) = % + Z (ay cos(kx) + by sin(kx))

Megvizsgaljuk, hogy mit mondhatunk a fenti végtelen sor konvergencidjanak sebességérol.

Legyen n € N tetszdleges. Induljunk ki az alabbi egyenldtlenségbdl:
2

1(" Qo C .
0<— flx) — <— + ) (aycos(kx)+b sm(kx))) dx

Végezziik el a jobboldalon a négyzetre emelést és igy folytassuk a fenti egyenlOséget:

0 S%jj{fz(x) dx—Z%%f;f(x) dx —

_zkzzl (ak%f;f(x) cos(kx) dx + bk%J:Tf(x) sin(kx) dx) +

2 T

a 1 s n T
+—0—f 1dx+z<a,2(f cos?(kx) dx+b,§f
A7) g k=1 - T

1 (" az <
=;j fz(x)dx—%)—Z(a,zc+b,%)
-n k=1

sin?(kx) dx) =

Ezzel belattuk az un. Bessel egyenl6tlenséget:
a3 . 1 ("
—+ Z(ai +b2) < —f f2(x) dx
2 et TJ)_g

teljesiil minden n € N esetén.

Parseval egyenloség
Tétel (Parseval egyenloség) A Fourier egyiitthatokra teljesiil az alabbi egyenloség:

75+Z(ak+bk)— ff(x)dx
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4. tétel:  Ketvaltozos fiiggvenyek értelmezése, abrazolasa. Folyto-
nossag, sorozatfolytonossag. Bolzano tétel magasabb di-
menzioban (B). Egyenletes- €s Lipschitz-folytonossag.

Kétvaltozods fiiggvények értelmezése, abrazolasa

Adott S c R? tartomany. f: S — R kétvaltozos fiiggvény, amely S elemeihez egy valos sza-
mot rendel. Ertelmezési tartoméanyat Dy-fel jeloljiik, értekkészletét Ry-fel.

Fiiggvény megadasa azt jelenti, hogy megadjuk az értelmezési tartomanyt és a hozzarendelés
modjat. Ez mindig egyértelmil.

Elnevezések: (x,y): fliggetlen valtozo, u: fliggd valtozo
Legegyszerlibb példak:

1. Linedris fliiggvény
fl,y)=ax+by+c
ahol a, b, c € R rogzitettek. Ertelmezési tartomanya R2.

2. Masodfoku polinom
flx,y)=ax?+bxy+cy?+dx+ey+f
ahol a,b,c,d, e, f € R rogzitettek. Ertelmezési tartoméanya R2.

3. Polinomok
Polinomokat két dimenzioban gy definidlunk, mint monomidlok 6sszege. Egy
monomidl altalanos alakja:
Amn XY™
Egyiitthatoja a,,, € R, foka a benne 1év6 fokok 6sszege: m + n. Egy polinom fokat
ugy definialjuk, mint a legmagasabb fokii monomialjanak foka.

4. Tovabbi kétvaltozos fiiggvények konstrukcidja az ismert egyvaltozos fiiggvényekkel.
Abrazolas
Miként az egyvaltozos fliggvényeket gorbe segitségével tudjuk reprezentalni, ugy a kétvalto-
z60s fiiggvényt feliiletként fogjuk megadni. Ehhez tekintjiik a haromdimenzios koordinata-
rendszert, melyben a koordinatatengelyek x,y ¢és u. A fliggvény értelmezési tartomanyanak

tetsz6leges (x,y) pontja folott kijeloljiik azt a P pontot, melynek harmadik koordinataja
u = f(x,y). Ha (x, y) pontok bejarjak D-et, akkor P pontok egy feliiletet fognak megadni.

Tehat az f:S — R fiiggvényt a térben az (x,y,u) szamharmasok irjak le, ahol u = f(x,y).
Az {(x,y,u) : u= f(x,y), (x,y) € S} pontok feliiletet alkotnak a térben.

A haromdimenzids dbrazolds nem mindig megfeleld. A szintvonalakkal torténd abrazoldssal
egy sikban lehet abrazolni azokat az (x, y) pontokat, melyekre f(x,y) = k valamely rogiztett
k € R mellett.
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feliilete és szintvonalai feliilete és szintvonalai

Folytonossag, sorozatfolytonossag

Definicié6  Legyen Py, = (x,,y,) az f fliggvény értelmezési tartomanyanak egy pontja. Az
f fiiggvény folytonos az (x,, yo,) pontban, ha tetszéleges € > 0-hoz létezik egy
6 > 0 szam, melyre

VoY) €D;,  Jr—x)?2+ (- y0)2 < §

esetén teljesiil, hogy

|f (. y) = fx0,y0)| <€

Definicio Azt mondjuk, hogy az f fiiggvény sorozatfolytonos az értelmezési tartomany P,
pontjaban, ha minden (P,) © Dy sorozatra, melyre

llm Pn == PO
n—-oo
teljesiil, hogy
lim (B = f(Py)
Tétel Az f fiiggvény akkor és csak akkor folytonos Py-ban, ha ott sorozatfolytonos.

Definicié  Ha egy fliggvény értelmezési tartomanyanak egy pontjaban nem folytonos, ak-
kor ott szakaddsa van.
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Bolzano tétel magasabb dimenzidban (B)

Tétel

Bizonyitas

(Bolzano tétel) Legyen f:S — R folytonos fiiggvény, melynek értelmezési tarto-
manya S C R? §sszefiiggd. Legyen a tartomdny két tetszéleges pontjia P = (x,y)
és P' = (x',y"), melyekre

a=fl,y) <fx,y)=>b
Ekkor tetszdleges ¢ € (a, b) szamhoz létezik egy olyan Q = (x,,y,) € S pont,
melyre f(xy, vo) = c.

Az S tartomany Osszefiiggd, ezért 1étezik P-t és P'-t dsszekotd S-beli folytonos
gorbe. Ez azt jelenti, hogy 1étezik olyan

y:la, ] > R?
t e (x(0),y@®)
fliggvény, melyre
vy =y), v =K,y)

és az (x(t), y(t)) koordinata-fliggvények folytonosak. Vezessiik be az F(t) =
f(x(®),y(®) valos fiiggvényt. F:[a, ] —» R folytonos, melyre F(a) = a és
F(B) = b. igy az egydimenziés folytonos fiiggvényekre ismert Bolzano tétel
miatt 1étezik olyan & € (a,B), melyre F(&) = c. Ezért Q :=y(§) € S pontra
f@=cm

Egyenletes- és Lipschitz-folytonossag

Definicio

Definicio

Allitas

Legyen f:S — R adott fiiggvény, S € R? tartomany. Azt mondjuk, hogy f
egyenletesen folytonos S-ben, ha tetszdleges € >0 —hoz 36 > 0, hogy ha
P,P' € S pontokra ||P — P'|| < &, akkor |f(P) — f(P")] < e.

A § = §(¢&) szamot az e-hoz tartozo folytonossagi modulusnak hivjuk.

Az f:S - R kétvaltozoés fiiggvény Lipschitz-folytonos, ha létezik egy olyan
L > 0 szam, melyre |f(P) — f(P')| <L -||P — P’'|| teljesiil minden P,P' € S
pontra.

Az L szamot Lipschitz-konstansnak hivjuk.

Ha f egyenletesen folytonos S-en, akkor S minden pontjiban folytonos. Ha f
Lipschitz-folytonos egy tartomdanyban, akkor ott egyenletesen is folytonos.
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5.tétel:  Fiiggvény hatarértéke. Parcialis derivaltak. Geometriai
jelentés. Parcidlis derivaltak és folytonossag (B). Parcialis
derivalasok sorrendje, felcserélhetosége.

Fiiggvény hatarértéke

Definicié  Legyen f:S — R kétvaltozos valos fiiggvény, Py = (xo,y,) € R? az értelmezési
tartomany egy torlodasi pontja. Azt mondjuk, hogy az f fiiggvény hatdrértéke a
Py, = (xq, o) pontban L, azaz

floy) =L
ha minden € > 0-hoz lézetik § > 0 szam, hogy ha

(x,y) €S, 0<\/(x—x0)2+(y—y0)2<6
akkor |f(x,y) — L| < e.

lim
(x,y)=(x0,¥0)

Allitas
lim x,y) =1L
(x.y)*(xo,y())f( y)
pontosan akkor teljesiil, ha VB, = (x,, y,) € S, B, # P, sorozatra, melyre
lim B, = P,

n—-oo

teljesiil, hogy
lim f(B,) =1L
n—-oo

Parcialis derivaltak

Definicié  Legyen f:S — R kétvaltozos valds fiiggvény. Legyen (x,, y,) az S halmaz belsé
pontja. Ha létezik a

i £, y0) = f(x0,¥0)
im
X—>Xq X — xO
véges hatarérték, akkor ezt a mennyiséget a fliggvény x szerinti parcidlis deri-

vdltjanak nevezziik az (x,, y,) pontban. Ezt igy jeloljik:

0
fx (X0, ¥0), af(xo,YO)
Ha 1étezik a

li f(xOIy)_f(xOIYO)
m

Y=Yo Y—Yo
véges hatarérték, akkor ezt a mennyiséget a fiiggvény y szerinti parcidlis deri-
valtjanak nevezzik az (x,, y,) ponban. Ezt igy jeloljik:

0
fy’(xo'}’o), @f(xo:%)

Ha a parcialis derivaltfiiggvényeknek 1étezik parcialis derivaltja, akkor masodrendii parcialis
derivaltat kapunk:
9 (a ) 92 ooy +h) = fi(x,y)

ay\axl )| = gya5 ) = fiy(x,y) = lim h
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Geometriai jelentés

A parcialis derivalas értelmezhetd a kdvetkezképpen is. Rogzitett y, mellett definidljuk az
fi(x) = f(x,y,) egyvaltozds fiiggvényt. Ha (x,, v,) € int(D), akkor x, belsd pontja f; ér-
telmezési tartomanyanak. Ekkor £,/ (xq, vo) = f1 (xo). Ez hasonldan igaz rogzitett x,-ra is.

Az ilyen, rogzitett y, konstans menti parcialis derivalt geometriai jelentése a fliggvény feliile-
tébol az y,-ban atmend, az xy-sikra merdleges sikkal vett metszetének, — mely egy egyvalto-
z6s fliggvény — a derivaltja. A parcidlis derivaltak tehat a feliiletekhez x €s y iranybdl huzott
érintésikok meredekségét adja meg.

Parcidlis derivaltak és folytonossag (B)

Tétel (Lagrange-féle kozépértéktétel) Legyen f:la,b]l - R folytonos illetve belsd
pontjaiban differencidlhato fiiggvény. Ekkor van olyan & € [a, b], melyre
f(b) - f(a) _fr
Tétel Legyen f:S — R kétvdltozos valos fiiggvény, (xq, Vo) € int(S). Tegyiik fel, hogy

az fy és f, parcidlis derivaltak léteznek (xo,y,) valamely U € R* kérnyezeté-
ben. Tegyiik fel tovabba, hogy a parcidlis derivaltak itt korlatosak, azaz
I, ) < M és |fy’(x, y)| < M tetszéleges (x,y) € U-ra. Ekkor az f fiiggvény
folytonos az (x,, y,)-ban.

Bizonyitas Legyen (x,y) = (xq + h,yo +1). Nézziik meg a fliggvény megvaltozasat. A
haromszog-egyenldtlenséget alkalmazva azt kapjuk, hogy

|f Cxo + h,yo + 1D — fxo, yo)| <
S|fGo+hyo+D—flxo+ hyol+ |f(x0 + hyo) — f(xo, o)l
A Lagrange-féle kozépértéktételbol kovetkezik, hogy
flo+hyo+D—flxo+hyo) =f,(yo+D—foalyo) =
= f3(&)1 = f(x0 + h, &)1
ahol f, a masodik metszetfiiggvénye f-nek. A masodik tag hasonldan irhato:
f(xo + hyo) — f(x0,¥0) = fi(xg + h) — f1(x0) =
fi&)h = £ €z yo)h
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Igy a kezdeti egyenlStlenséget folytatva:
< ARG yoll - 1hl+ | (x0,8)] - 11l < M(IRI + 11D

Tehat |f(xq + h,yo + 1) — f(xo, Vo) < M(|h| + [I]) < 2M~Vh? + 12, ez pedig
maga a Lipschitz-féle feltétel, tehat a fiiggvény folytonos (xg, yo)-ban. m

Parcialis derivalasok sorrendje, felcserélhetosége

Tétel Legyen f:S — R kétvaltozos valos fiiggvény, (x,y) € int(S). Ha a pont egy
kornyezetében léteznek az fyy, és fyx mdsodrendii parcialis derivaltak, és az
adott pontban folytonosak is, akkor itt a derivaldasok sorrendje felcserélheto,

azaz £y (x,y) = f(x,).
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6. tétel:

Teljes differencialhatosag. Kapcsolat a parcialis derival-
takkal. Folytonossag ¢s differencialhatosag (B) Erint6sik.
Normalvektor. Irdnymenti derivalt (B).

Teljes differencialhatosag

Definicio

Definicio

Egy h(x) figgvény kisords 0-ban, ha
h
lim ﬁ =0
x>0 X

Ezt Ggy jeldljik, hogy h(x) = o(x).

Legyen f:S — R kétvaltozos fiiggvény, és (x,y) € int(S). Azt mondjuk, hogy
az f figgvény differencialhaté (x,y)-ban, ha léteznek olyan A, B,C szamok,
melyekre

f(x+Ax,y +Ay) = AAx + BAy + C +0(\/Ax2 +Ay2)

teljesiil elegendéen kicsi Ax és Ay mellett, ahol A, B, C fliggetlenek Ax-t6l és
Ay-tol.

Kapcsolat a parcialis derivaltakkal, folytonossag és differencialhatosag (B)

Definicio

Tétel

Bizonyitas

Ha az f fuggvény differencialhato az (x,y) pontban, akkor ebben a pontban a
derivalt egy kétdimenzids vektor lesz, melyet gradiensnek neveziink:

grad f(x,) = (£ (23, £/ (x,7))

Ha az f fiiggvény egy Sy halmaz minden pontjdban differencialhato, akkor a
derivaltfiiggvény grad f: s, — R? tipust lesz.

Ha f differencialhato az (x,y) pontban, akkor ott folytonos is és léteznek az
adott pontban vett parcialis derivaltak. Tovabba a fenti definicioban szereplo
konstansokra C = f(x,y), A = f{(x,y), B = f;(x,y).

Valasszunk Ax = Ay = 0-t. Ekkor a definicidban szerepl6 egyenlet szerint:
fx,y)=A-04+B-0+C+0=C

Tehat C megegyezik a helyettesitési értékkel. Ez alapjan konnyen belathatjuk a
folytonossagot:

Al)lcr;r}of(x + Ax,y + Ay) =

Ay—0
— T : : 2 2) —
= J;TOAAx + Al}ljr_r)l0 BAy + C + A131611)100 (\/Ax + Ay ) =C

Ay—0

Most igazoljuk, hogy az A-ra vonatkozé allitast. Legyen Ay = 0. Ekkor az
egyenlet igy alakul:

flx+ Ax,y) = AAx + f(x,y) + o(|Ax])

Ez alapjan szamoljuk ki a parcialis derivaltat:

fx + Ax,y) — f(x,y) i <A+O(|AA;|)> _ 2

lim
Ax—0 Ax Ax—0
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Tétel Legyen f:S = R kétvdltozos valés fiiggvény, (x,y) € int(S). Tegyiik fel, hogy
az fy (x,y) és fy(x,y) parcidlis deriviltak léteznek egy kirnyezetben és folyto-
nosak ebben a pontban. Ekkor f differencialhaté (x,y)-ban.

Bizonyitas A Lagrange-féle kozépértéktételt alkalmazva azt kapjuk, hogy

fx+ax,y +4y) - f(x,y) =
=fxc+Ax,y+4y) - flx +Ax,y) + fx + Ax,y) — f(x, ) =
fy(x + Ax,y + 04y)Ay + f/(x + 8'Ax,y)Ax
valamely 0 < 6, 8’ < 1 konstansokkal.
A parcialis derivalas folytonossadga miatt:
fy(x +4x,y + 04y) = f,(x,y) + &,(4x,4y)

fi = (x+0'Ax,y) = f(x,¥) + &,(4x)
ahol
Axl,zr;go & (dx, 4y) =0, Alirl‘o £2(4x) =0

fgy az el6z6 egyenléségbe visszahelyettesitve azt kapjuk, hogy

fx+Ax,y + Ay) — f(x,y) = £, (x, ) Ax + f,,(x, ) Ay + Axe, + Ay,
azaz differencialhatd. m

Erintésik, normalvektor
A derivalt geometriai jelentése is hasonlo az egydimenzios esethez. Ha a fliggvény differenci-
alhat6 egy pontban, akkor a pont kdzelében a fiiggvény értékét az érintdsik segitségével koze-
lithetjiik. A sik megadasahoz megadjuk egy pontjat — ez (xo, Yo, f (%0, yo)) — és megadjuk a
sik meredekségét, ami a két parcialis derivalt. Az érintésik egyenlete:
z = f(x0,¥0) + fx (X0, ¥0) (x — x0) + f (x0,¥0) (Y — o)
Ezt atirva a megszokott alakba:
fx (X0, ¥0) (x = x0) + £,/ (x0, Y0 ) (¥ —y0) + (=1)(z —2,) = 0
ahol z, = f(x, y,). Ebbol az egyenletbdl leolvashatd, hogy a sik egyik normalvektora
n= (fx’ (%0, Y0), fy’(xO' Vo), —1)

Iranymenti derivalt (B)

Definicio  Legyen a € [0; 2m). Az « irdnyu iranymenti derivaltat igy értelmezzik:

f(x+pcos(a),y + psin(a)) — f(x,y)
p

d .
Dof (x,y) = af(x, y) = f)l_r)r(l)
ha ez a hatarérték 1étezik.

Definicio ~ Adott egy v € R? irany, melyre ||v|| = \/vZ + vZ = 1. A v irdnymenti derival-
tat egy (x, y) pontban igy értelmezziik:
x+ pvy,y + pvy) — fx,
D,f(x,y) = lin%f( pULY pp 2) =~ fGoy)
p—

ha ez a hatarérték 1étezik.

Allitas Tegyiik fel, hogy az f fiiggvény differencidalhaté (x,y)-ban. Ekkor itt létezik az
iranymenti derivalt tetszéleges a € [0; 21) esetén, és

Dof (x,y) = fi(x,y) cos(a) + f, (x, y) sin(a)
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Bizonyitas A differencidlhatosag miatt
fx+pcos(a),y + psin(a)) =
= f(x,y) + fi(x,y)p cos(a) + f, (x,¥)p sin(a) + o(|p|)
ha |p| elegendéen kicsi. Ebbdl kovetkezik, hogy

fx+pcos(a),y + psin(a)) — fxy) _
p

= £ 0o y) cos(@) + £ (x,y) sin(a) + GTPD

melynek hatarértékeként az allitast kapjuk. m
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7. tétel:  Masodik derivalt, Hesse matrix. Lancszabaly, specialis
esetek. Masodrendil Taylor formula kétvaltozos fliiggvényre

(B).

Masodik derivalt, Hesse matrix

Definicio  Tekintsiik az f: S — R kétvaltozos fiiggvényt, és legyen (xg, y,) belsé pontja S-
nek. Azt mondjuk, hogy f kétszer differencidlhato ebben a pontban, ha a fiigg-
vény differencialhato a pont egy kdrnyezetében, és az fy(x,y) és az f,(x,y)
parcialis derivalt fliggvények is differencialhatoak az (x,, y,) pontban.

Definici6 Ha a fiiggvény kétszer differencialhatd, akkor értelmezhetbek az fiy (%o, yo),
fry (X0, ¥0), fyx (X0, ¥0) és az fy5,(xo,¥o) masodrendii parcidlis derivaltak. Ezek-
bél all a

ex (X0, Vo) fylylc(xo»yo)

x’;’z(XOJJ’o) fy’;’z(xo'YO)

matrix, mely a fiiggvény masodik derivaltja. A fenti matrixot az adott ponthoz
tartozd Hesse mdtrixnak hivjuk.

H(XOI yO) =

Lancszabaly, specialis esetek

1. specialis eset
A kiils6 fiiggvény egyvaltozos f:D - R,D c R
Az egy darab belsé fiiggvény kétvaltozos ¢:S - R,S c R?

Tétel (1. specidlis eset) Tegyiik fel, hogy ¢ differencidalhaté az (x,y) € int(S) pont-
ban, és f differencidalhaté az u = ¢(x,y) pontban. Ekkor az oOsszetett fiiggvény
is differencialhato és a parcialis derivaltak:

E (oY) = (0, 3)pr(x,¥)
E(x,y) = f'(¢Cx,y)py(x,y)

2. specialis eset
A kiilsé fiiggvény kétvaltozos f:S - R,S c R?
A két darab bels6 fiiggvény egyvaltozos ¢,p: D - R,D c R
Tétel (2. specidlis eset) Tegyiik fel, hogy ¢ és Y differencialhatéak a t € int(D) pont-
ban, és f differencialhaté az (x,y) = (¢(t),¥(t)) pontban. Ekkor az Gsszetett
fiiggveény is differencialhato, és derivaltja:
F'(0) = (o0, v(©)d' () + £, (¢, p ()Y’ (©)

3. specialis eset
A kiilsé fliggvény kétvaltozos f:S - R, S ¢ R?
A két darab belsé fliggvény kétvaltozos ¢, y: D - R,D ¢ R

Tétel (Lancszabaly) Tegyiik fel, hogy ¢, differencidalhatok (x,y)-ban, és f is diffe-
rencialhaté az (u,v) = (¢(x,¥),1(x,y)) pontban. EKkor F is differencidlhaté
(x,y)-ban, és parcidlis derivaltjai:

E0oy) = fil(9Go ), w(,3))dr (e, v) + £ (9 Ce, v), 9 (6, ) )i (3, v)
E(x,y) = fi(¢ G ), (%, 3)) by, y) + £, (¢ Ce, ), 9 (x, 3) )y, (x, ¥)
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Masodrendii Taylor formula kétvaltozos fliggvényre (B)

Legyen f:S — R kétvaltozos fiiggvény, amely elegendden sokszor differencialhatd valamely
(x0,¥0) pontban. Adjunk becslést az f(x,y) — f(xq,yo) kiilonbségre az (x,,y,) pontbéli
derivaltak felhasznaldsaval.

A fenti feladatra egy megoldast az érint6 sik alapjan tudunk adni, eszerint
f,y) = f(xo,¥0) + £ (X0, ¥0) (x — x) + fy’(xO'yO)(y — ¥o)
Ez megfelel az elséfoku Taylor polinomnak.

Magasabb foku Taylor polinomot tigy adjuk meg, hogy visszavezetjiik feladatot az egyvalto-
Z0s esetre.

Legyen

F(t) = f(xo + tAx, yo + tAy)
ahol

Ax = x — x,, Ay =y -1y,

Ekkor F:[0,1] = R elegend6en sokszor differencialhatd valds fliggvény, F(0) = f(xq, Yo),
F(1) = f(x,y). Az F fiiggvény t = 0 pont koriili Taylor formulajat fogjuk hasznalni. Ehhez
szlikségiink lesz a derivaltakra:

F(0) = f(x0,0)

F'(t) = fi{(xo + tAx, yo + tAy)Ax + f, (xo + tAx, yo + tAy)Ay

F"(t) = fix(xo + tAx, yo + tAY)(Ax)? + 25 (xo + tAx, yo + tAy) AxAy +
+fyy(xo + tAX, yo + tAy)(Ay)?

Ekkor a masodrendii Taylor formula igy irhato:

1
f(x,y) = f(xo,y0) + grad f(xo, o) - (2;) + > (Ax, Ay) - H(xo, o) - (2;) + L,

ahol H a Hesse-matrix.
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8. tétel:

Lagrange féle kozépérték tétel (B). Implicit fliggveny te-
tel. Implicit fliggvény derivalasa. Lokalis €s globalis sz¢l-
sOérték. Sziikséges feltétel lokalis szélsoértékre (B).

Lagrange féle kozépérték tétel (B)

Tétel

Bizonyitas

(Lagrange féle kozépérték tétel) Adott f:S —» R, S c R? fiiggvény, és az
(x0,y0) € int(D) pont. Tegyiik fel, hogy létezik konvex U kornyezete (xq, Vo)-
nak melyben f differencidlhato. Legyen tovabba egy (x1,y,) € U pont, és
Ax = x; — xo, Ay = y; — y,. Ekkor 36 € (0,1), amelyre

Ax
f G, y1) = f (%o, yo) = grad f(xg, yo) - ( Ay)
ahol xg = 8Ax + x, és yg = OAy + y,
Vezessiik be az alabbi egyvaltozos fiiggvényt:
F(t) = f(xg + tAx,yo + tAy)
Ekkor F:[0,1] —» R folytonos és differencialhatd, tovabba F(0) = f(xg, yo) €s
F(1) = f(x,y). Erre a fuggvényre alkalmazva az egyvaltozos Lagrange-féle
kozépértéktételt; 1étezik 6 € [0,1], melyre
F(1)-F(0)=F'(0) -1
Mivel a lancszabaly alkalmazéséaval rogzitett t-re
F'(t) = fy (xo + tAx,yo + tAy)Ax + f,, (xo + tAx, y + tAy)Ay
ezért
F'(8) = fi (xo + 6Ax,yo + OAy) Ax + f, (xo + OAx,y, + 6Ay)Ay
(xerJ’G)

amibdl a tétel allitasa kovetkezik. m

Implicit fliggvény tétel, implicit fliggvény derivalasa

Tétel

(Implicit fiiggvény tétel) Tegyiik fel, hogy az F kétvaltozos fiiggvény differencidl-
haté az (xy,Vo) pont egy kornyezetében, és ebben a pontban F(xg,y,) = 0.
Ezen feliil feltessziik, hogy Fy(xo,¥o) # 0 (azaz az érintSsik nem parhuzamos az

xy sikkal). Ekkor létezik egy kétdimenzios intervallum
I=1XI;=(x—axy+a)Xyo—F Y+ p)

hogy minden x € I, esetén az F(x,y) = 0 egyenletnek pontosan egy y = f(x)

megoldasa van, és y € I,. Tehat létezik egy f:1; = I, valos fiiggvény, mely a

kévetkezo tulajdonsagokkal rendelkezik:

- f(x0) = yo

fx)el, vxel,

F(x,f(x)) =0, Vx€

Fjﬁ(x,f(x)) #0, Vx €l

Tovabba f differencidlhato I;-ben, és derivaltja:
Fl(xf@)

B f()

fe) =
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Lokalis és globalis szélséérték
Definici6  Legyen f:S — R kétvaltozos fiiggvény, S € R%. Az (xq,y,) € S lokdlis maxi-
mum, ha létezik a pontnak olyan U kdrnyezete, hogy V(x,y) € U N Ds-re
flx,y) < f(x0,¥0)
Az (x9,V0) € S lokdlis minimum, ha 1étezik a pontnak olyan U kornyezete, hogy
V(x,y) € U N Dg-re
fG,y) = f(x0,y0)
Definici6  Legyen f:S — R kétvaltozos fiiggvény, S € R2. Az (x,,v,) € S globdlis ma-
ximum, ha V(x,y) € Dy esetén
fG,y) < f(x0, y0)
Az (x0,Y0) € S globdlis minimum, ha V(x,y) € Dy esetén

fGy) = f(xo,y0)
Sziikséges feltétel lokalis szélséértékre (B)
Tétel (Sziikseges feltétel lokalis szélsoerték létezésére) Tegyiik fel, hogy az f fiigg-

vénynek (xo, yo)-ban lokdlis szélséértéke van, és tegyiik fel, hogy a fiiggvény itt
differencialhaté. Ekkor grad f (xq,y,) = (0,0), azaz

fi(x0,¥0) =0,  fy(x0,¥0) =0

Bizonyitas Jeldlje f;(x) = f(x,y,) a kétvaltozos fiiggvény egyik metszetfiiggvényét. Ekkor
x, lokalis széls6értéke fi-nek, ezért fi (xy) = 0, masrészt fi (x) = f(x,y,). ®
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9. tétel:  Stacionarius pont. Nyeregpont. Elégséges feltétel lokalis

szélsoértékre. Feltételes szélsoérték, feladat megfogal-
mazasa. Szemléletes jelentes.

Staciondrius pont, nyeregpont
Definicio  Ha grad f(x,, vo) = (0,0), akkor (xq, y,) staciondrius pont.

Definici6 Azt a stacionarius pontot, melyben szélséérték nincs, nyeregpontnak nevezziik.

Elégséges feltétel lokalis széls6értékre

Tétel (Elégséges feltétel lokadlis szélséérték létezésére) Tegyiik fel, hogy az (xq,yo)
pont stacionarius pontja f-nek, és itt f kétszer differencialhato. Ha ebben a
pontban

1o Yo it (s y0) — (£4) (o, y0) > 0

akkor a pontban lokdlis szélséérték van. Ha emellett fry(xo, Vo) > 0, akkor lo-
kalis minimum, ha fy.(xq, yo) < 0, akkor lokdlis maximum van. Ha

£ Ceon Vo) it (o, y0) — (£25) (0, ¥0) < O

akkor nincs szélsoérték. Ha pedig

£ o Yo it (0, y0) — (£5)” (o, ¥0) = 0

akkor a szélsoértek létezésének eldontéséhez tovabbi vizsgalat sziikséges.

Feltételes szélsoérték, feladat megfogalmazasa

Minta feladat: Legyen adott R%-ben egy ¢(x,y) = 0 gorbe. Hatdrozzuk meg, hogy a gorbe
mely pontja van az origohoz legkozelebb. Ez azt jelenti, hogy meg kell hatarozni a

min(x? + y?)
értéket, ahol x és y valtozok nem fliggetlenek, hanem fennall a ¢p(x,y) = 0 dsszefiiggés.

Definicio A feltételes optimalizalas feladatat a kovetkezOképpen értelmezziik. Legyen
adott az f:S — R kétvaltozos differencialhatd fiiggvény. Ennek tekintjiik meg-
szoritdsat egy olyan halmazon, melyet egy implicit fliggvény ad meg, ahol
¢(x,y) = 0 Osszefiiggés teljesiil. Toémoren a feladat tehat

min X,
(B gy (6 Y)

Tétel (Sziikséges feltétel) Tegyiik fel, hogy az f(x,y) fiiggvény differencialhato, és
feltételes szélséértéke van az (xy, y,) pontban a ¢ (x,y) = 0 feltétel mellett. Te-
gyiik fel, hogy grad ¢ (x,y) # (0,0). Ekkor létezik olyan A, € R konstans, mely-
re

fx (X0, ¥0) — AoPx(x0,¥0) = 0
fy’(xOIyO) - lod)&(xo,yo) =0
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Szemléletes jelentés
Képzeljiink el egy olyan abrat, ahol egyszerre lathatd a ¢p(x,y) = 0 feltétel, és az f(x,y) = ¢
szintvonalak, kiilonb6z6 c¢ értékek mellett. Amely c-re van k6zds pont, ott van megoldésa a
ﬁ@w=0
fluy) =c
egyenletrendszernek. Mivel f folytonos (hisz differencialhato is), ezért a szintvonalak is mo-

noton médon valtoznak. Igy azt a szintvonalat keressiik, ami ,,utoljara” metszi a ¢(x,y) = 0
gorbét. Ebben az (x, y) pontban a gorbék érintik egymast, az érint6k megegyeznek, azaz

feCoy) _ dx(xy)
[xy) ¢y y)

Ez a képlet ismerds az implicit fiiggvény derivalasabol. Atrendezve a képletet azt kapjuk,
hogy létezik olyan A valos szam, melyre

feCoy) _ f(x,y) _
dr(x,y) ¢y (x,y)

Tehat szemléletesen azt varjuk, hogy ha (x,y) feltételes szélséérték, akkor 1étezik olyan A,
melyre

A

fx(,y) = Agx(x,y) =0
£ (6, y) — Al (x,y) =0

teljesiil.
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10. tétel: Lagrange-féle multiplikator szabaly. Fliggvény rendsze-
rek, Koordinata-transzformacié. Jacobi matrix. Jacobi de-
terminans. Invertalhatosag. Inverz rendszer derivaltja (B).

Lagrange-féle multiplikator szabaly

Definialjuk az F(x,y,4) = f(x,y) — A¢(x,y), F: D X R — R haromvaltozés fliggvényt. Ha
(x0, yo) megoldasa a feltételes széls6érték feladatnak, akkor van olyan Ay, melyre (xo, vo, 1)
staciondrius pontja F (x, y, 1)-nak.

Tekintsiik az alabbi feltételes optimalizalasi feladatot

plin, f (6 y) vagy I ACY

Ehelyett tekinthetjiik az

F(x:yul)zf(x;)’)_/lﬁb(x,}’); (X'Y)EDf;AE]R
fliggvény feltétel nélkiili sz&lséérték feladatat.

Fiiggvény rendszerek

Ha egyszerre tobb fliggvényt tekintiink, akkor fliggvényrendszerekrdl beszéliink. Tekintsiik
most azt a specialis esetet, hogy a fiiggvények szdma megegyezik a valtozok szamaval. Le-
gyen R c R? egy tartomany, ahol adott két fiiggvény, ¢, : R - R. A fiiggvényrendszer, amit
tekintiink:

§=¢(,y)

n=(xy)
Ezt Ggy értelmezhetjiik, mint R? térbeli leképezés, mely az (x,y) ponthoz a (¢,1) = F(x,y)
pontot rendeli hozza. Ezt a F: R — R? leképezést szokés vektormezdnek is hivni.

Koordinata-transzformacio

A fenti fliggvényrendszerek koordinata-transzformaciok. Az F fiiggvény valtozoi x és y, az F
fliggvény koordinatafiiggvényei pedig ¢ és 1. EKkor az F fliggvény az alabbi hozzarendelést
valositja meg:

(x,y) — (1)

Példa

A polarkoordinatékat Descartes koordindtakka képezo fliggvényt fiiggvényrendszerként igy
definialhatjuk:

(r,o) — (x,y)
ahol

x =rcos(gp) = ¢(r,¢)
y = rsin(@) = P(r, ¢)

Jacobi matrix, Jacobi determinans
Definicio A fenti rendszerhez tartozo6 Jacobi mdtrixot igy definidljuk:
_[$x0y) dy(xp)]| _ [Brad ¢(x,y)
IO =iy wyi, y)l - [grad PCy)
A fenti matrix determinansat Jacobi determinansnak hivjuk:

D(x,)’) = ¢J,C(xiy)lp3,/(xiy) - lp;c(x'y)d)jll(xry)
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Invertalhatosag

Az R2-beli leképezés invertalhatod, ha a leképezés injektiv, azaz kiilonbozé R-beli pontokhoz
a képtérben kiilonb6z6 (£, n) pontok tartoznak. Ekkor a fenti rendszer invertalhato:

x=g&mn)
y =h(,n)

Inverz rendszer derivaltja (B)

Tétel

Bizonyitas

Tegyiik fel, hogy a Jacobi determinins nem nulla, azaz a & = ¢(x,y) és
n =Y (x,y) dltal alkotott fiiggvényrendszer Jacobi mdtrixa nem szingularis az
értelmezési tartomany egy (xq,V,) belsd pontjaban. Ekkor az (xq,7y,) egy kor-
nyezetében a vektormezo invertalhato. Tovabba, ebben a kornyezetben az inverz
rendszer derivaltja igy irhato:

K& = (Jx) "

ahol (x,y) és (&,m) egymds képei. Specidlisan, az inverz fiiggvényrendszer Ja-
cobi determindnsa reciproka az eredeti fiiggvényrendszer Jacobi determinansa-
nak.

Helyettesitsilk be az inverz fliggvényrendszer koordinatafiiggvényeit leird
egyenleteket a fliggvényrendszert definiald egyenletekbe:

&=¢(g&m,hEn)

n=vy(g&n),h(Emn)

Mivel feltettiik, hogy g és h is differencidlhatoak, ezért derivalhatjuk a fenti
azonossagokat & és n szerint.

Derivaljuk mindkét egyenletet & szerint, majd pedig n szerint. A attekinthetobb
jelolés kedvéért az argumentumokat nem irjuk ki. Ezt kapjuk:

1= g5 + dyh;
0 =sgs + Pyhe
0 = ¢rgn + Pyhy
1= vygn + Pyhy

Az elsé egyenletet szorozzuk meg Y,-szel, a masodikat pedig ¢,-szel, majd pe-
dig vonjuk ki egymasbol az egyleteket.

Vi = Brgivi + SR
0 = Blgits + BLhiy

Ebbd6l
hl i lp?’f
E T Loy N,
d)ylpx - d)xl/)y
Teljesen hasonloan a tobbi derivaltat is megkapjuk
o & g%
STy - oy T oy — by T gy — bk
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Bevezetve a D = ¢y1p;, — Py 1y jeldlést, a fenti képletek igy irhatok:

’l/}; ! 3’/ ! -;C 12 ¢3’C
9=pr Im="pr he="p m=7p

Ez 6sszhangban van azzal, hogy 2 X 2-es matrix inverze a kovetkezOképp sza-
molhato:

[a b1 [ d —b]

c d ad bc

Ekkor a most kiszamolt parcialis derivaltakat a Jacobi matrixba beirva:
=l =5 %
hf h D _d)x ¢x

Ez a K matrix pedig éppen inverze J-nek. m
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11. tétel: Riemann integral két dimenzidban. KettOs integral kiszami-
tasa. Integralas téglalap alakd tartomanyon (B). Integ-
ralas normaltartomanyon, a sikon.

Riemann integral két dimenzidban

Definici0 Ha az R kétdimenzids teriilet mértékét kozelitd alséd és felsd mértékek hatarérté-
ke megegyezik, azaz

lim A7 (R) = lim A%(R) = A(R)
n—->00

n—-oo

akkor R Jordan-mérhetd.
Allitas Ha R egy f:[a, b] » R* fiiggvény alatti teriilet, akkor

b
A(R) =f f(x) dx

Legyen f:R — R* folytonos fiiggvény, ahol R c R? korlatos, zart és mérhetd tartomany.
Legyen egy mérhet6 és nem atfed6 felosztasa R-nek:

n
R= U R;
i=1
Ekkor
m; = inf f{f(x,y) : (x,y) € R;}
M; = sup f{f(x,y) : (x,y) € R;}
Definici6 Az also kozelito osszeg

n
Sn = Z m; - A(R;)
i=1
A felso kozelito osszeg
n
Sn = 2 M; - A(R;)
i=1
Definici6 Ha f: R —» R* folytonos, R c R? korlatos és zart, akkor a Riemann integral

lim snziggoSn:fo(x,y) dR = ffRf(x,y) d(x,y)

n—00

Kettds integral kiszdmitasa
Tétel Minden y € [c, d] esetén értelmezziik a

b
60 = | Foy) dx

fiiggvényt, ¢: [c,d] > R. Ekkor

fc "6 dy = | fR f(x,y) dR
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A tétel allitasa forditva is igaz, ha definialjuk a

d
W = [ feuy)dy

fiiggvényt, ¥ [a, b] — R, akkor v is integradlhatd, és
b
[ weax= [[ ey ar
a R

Integralas téglalap alaku tartomanyon (B)

A fenti tétel kdvetkezménye, hogy téglalap alaka tartoméanyon (intervallumon) az integralés a
kovetkezoképpen néz ki.

Tétel Tegyiik fel, hogy R = [a,b] X [c,d], f:R — R integralhato fiiggvény. Ekkor

JJ fee dszab<fcdf(x,y) dy) dxzj;d(f:f(x,y) dx)dy

Bizonyitas Mivel f integralhatd, ezért az egyenletes felosztasokat tekintve barmely € > 0-
hoz létezik N kiiszobindex, hogy ha n,m > N, akkor

n

Z if(xj'%)'b;la 'dT_lC—fff(x,y)dR <e
j=1 R

i=1

Ha a fenti egyenletben m — oo, akkor az els6 tagban
m
b—a b
> g2 000 = [ £y dx
j=1 ¢

Ha n — oo, akkor pedig az egész dsszeg hatarértékére

3 00025 = [0y
i=1 ¢

n

Integralas normaltartomanyon, a sikon

Definici6 Egy R c R? részhalmaz x Szerinti normdltartomdny a sikon, ha R a kovetkezd
tulajdonsagokkal rendelkezik:

— létezik egy [a, b] intervallum,
— léteznek ¢4, P,: [a, b] = R szakaszonként folytonos fliggvények, melyekre
- ¢1(x) < ¢,(x) minden x-re és
R={(x,y):a<x<b, $1(x) <y < ¢y (x)}
Hasonléan, R € R? részhalmaz y szerinti normaltartomdany a sikon, ha létezik

egy [c,d] intervallum és léteznek 1,1,: [c,d] = R szakaszonként folytonos
fiiggvények, melyekre 1, (y) < ¥, (y) minden y-ra és

R={xy):a<y<b  P:(y) <x=<¢,()}
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Tétel Legyen R x-szerinti (illetve y szerinti) normdltartomany a sikon. Tegyiik fel,

hogy az f fiiggvény integralhato R-en. Ekkor

| f £(oy) dR = f b f¢ i:)f(x. y) dy dx

illetve

| j f(x,y) dR = ] ' fiiz)f(x, y) dx dy
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12. tétel: Polarkoordinatak. Attérés polarkoordinatakra kettos
integralban. Harmas integral: intervallumon és normal tar-
tomanyon. Altalanos helyettesités kettds és harmas integ-
ralban.

Polarkoordinatak
Definicié  Egy adott (x,y) € R? pont poldrkoordinatdi (r, @), melyeket igy definialunk:

T a pont origotol vett tdvolsaga

0: az origdbodl az adott pontba mutatd vektornak az x tengely pozitiv részével
bezart szoge.

Igy tehat a polarkoordinatakra r € R* U {0} és 6 € [0,2m).

Attérés polarkoordinatakra kettés integralban
Kettds integralban a polarkoordinatakra valo attérés az altalanos helyettesités egy specialis
esete. Az attéréshez sziikség van a koordinata-transzformaciora, mely polarkoordinatakra valod
attérés esetén

x =71 cos(8)

y = rsin(0)
A Jacobi determinans:
cos(@) —rsin(8)
sin(8) rcos(8)

Igy a megfelelé integral-transzformacio

fo(x,y) d(x,y) = fL’f(r cos(8),rsin(8)) - r d(r,6)

D(r,0) = = rcos?(0) +rsin?(0) =r

Hérmas integral: intervallumon és normal tartomanyon

Tekintsiink egy haromdimenziés S ¢ R3 tartomanyt és egy ezen értelmezett f: S - R,
f(x,y, z) fiiggvényt. A kettds integralhoz hasonléan definialhato

ffsf(x,y,z) ds

Tétel Tegyiik fel, hogy R = [a,b] X [c,d] X [e,g]| hdromdimenzids téglalap, azaz
R={(x,y,z) : x €la,bl,y €lc,d],z €le gl}, ahol a,b,c,d, e, g végesek és
valosak. A tartomany zart és korlatos. Legyen f:R — R korldtos fiiggvény. EK-

kor
ffo(x,y.Z) dR = f:fcdj;gf(x,y,z) dz dy dx

Definicié6 Az R tartomany (x, y) sik szerinti normdltartomany, ha a kovetkezd alaki:

R={(x,y,2): (x,y) €S, Fi(x,y) <z < F,(x,y)}

ahol F;,F,:S — R adott folytonos fliggvények, melyekre F;(x,y) < F,(x,y)
minden (x,y) € S esetén.

harmas integral.
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Allitas Legyen R a feni definicioban szereplé normaltartomany, és f:R — R ezen ér-
telmezett integralhato fiiggvény. Ekkor

ff f(x,y,z) dR = ff szj:)f(x, y,z) dzdS

b] x [c, d], akkor
ﬂ f(x,y,z) dR = f j jFZ(xy)f(x,y,z) dzdy dx

Fi(xy)

Ha S = [a,

Altalanos helyettesités kettds és harmas integralban

Kettos integralra

Tétel Adott egy f: R — R integralhaté fiiggvény, ahol R korlatos, zdrt, mérhetd tarto-
many. Tekintstink egy

x = ¢(u,v)
y=vy,v)
transzformaciot, melyrol feltessziik, hogy Jacobi matrixa sehol sem szingularis,

azaZz

Jwv) = [P V) b v)]

Yu(w,v)  Yy(u,v)
jeloléssel det J(u,v) # 0 R-ben. Legyen tovabbd

R' = {(u, V) : (qb(u, v),Y(u, v)) € R}
Ekkor

ﬂRf(x,y)d(x,y) = fL,f((l’(u'U)ﬂl’(u,v))-D(u,v)d(u,u)

Harmas integralra

Tétel Legyen R korldtos és zdrt taromdny R3-ban, és f: R — R integrdlhaté fiiggvény.
Tekintsiink egy
x=¢wv,w)
y=yuv,w)

z=xuv,w)

transzformaciot, melyrol feltessziik, hogy Jacobi matrixa sehol sem szingularis,

azaz
bu Dy Dy
Jwv,w) =Y, ¥, Yy,
Xu Xv Xw
jeloléssel det J(u, v,w) # 0. EKkor
ff fx,y,z)d(x,y,2) =
R

B W £ (9 e, v,w), Y, v, W), x(w, v, W) - 1D (w, v, w)| d(w, v, )
RV
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13. tétel: Hengerkoordinatdk. Gombi polarkoordinatak. Attérés
Jacobi determinansa (B). Tomegkozéppont meghataroza-
sa. Kétvaltozos fiiggvény felszinének kiszamitasa.

Hengerkoordinatak

Definicié  Egy adott (x,y,z) € R3 pont hengerkoordinatdi (r, 0, z), melyeket igy definia-
lunk: (r,8) a pont xy sikra vett vetiiletének polarkoordinatai, z pedig a harma-
dik Descartes koordinata:

x =1 cos(0)
y = rsin(6)

zZ =27

Gombi polarkoordinatak

Definicio  Egy adott (x,y,z) € R3 pont gombi koordindtdi (r, @, 0), melyeket a kovetke-
z0képp definidlunk:

r: a pont origotdl vett tavolsaga; r = /x? + y? + z?2
@:a pontba mutatd helyvektor és a z tengely pozitiv része altal bezart szog
¢ €[0,m]

0: a pontba mutatd helyvektor xy sikra vett vetiiletének az x tengely pozitiv ré-
szével bezart szoge. 6 € [0,2m)

A gombi koordinatakkal tehat az (x, y, z) pont igy irhato le:
x = rsin(¢) cos(0)
y = rsin(¢) sin(0)

z = rcos(p)
Attérés Jacobi determinansa (B)

Hengerkoordinatakra valo attéréskor
A hengerkoordinata-leképezés Jacobi determindnsa

cos(0) -rsin(@) 0
D(r,0,z) = [sin(6) rcos(8) 0|=
0 0 1
.|—rsin(9) 0 _o. cos(8) O _|cos(9) —rsin(6)] _
rcos(8) 0 sin() 0 sin(8) rcos(0) |

=rcos?(0) +rsin?(0) =r

Gombi koordinatakra valé attéréskor
A gdmbi koordinata-leképezés Jacobi determindnsa
sin(p) cos(8) rcos(p)cos(8) —rsin(p)sin(6)
D(r,¢,0) = |sin(¢) sin(@) rcos(p)sin(@) rsin(p)cos(@) [ =
cos(p) —r sin(¢) 0
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rcos(g) cos(@) —rsin(¢p)sin(H)

= cos(¢) - |r cos(p) sin(8) rsin(g) cos(8)
_ sin(¢p) cos(8) —r sin(¢)sin(9)
+ rsin(¢p) - sin(@) sin(@)  rsin(¢g) cos(8)

sin(g) cos(8) 1 cos(¢) cos(8)| _

sin(¢p) sin(8) rcos(p)sin(8)|

= cos(@) - (r? cos(¢) sin(p) cos?(0) + r? sin(g) cos(¢) sin?(9)) +
+7sin(¢) - (r sin?(¢) cos?(0) + r sin?(¢p) sin?(9)) =

1

= cos() - % cos(¢) sin(¢p) (cos2(8) + sin2(0)) +

+7sin(e) - r sin?(¢) (cos?(0) + sin*(0)) =
1

= r25sin(¢@) (cos?(¢) + sin?(¢p)) = r? sin(¢p)

Tomegkozéppont meghatarozasa

Egy kétdimenzids inhomogén tomegeloszlasu lemez, melynek alakja R € R?, tdmegkdzép-
pontjanak helye a p: R > R*, p(x,y) stiriségfiiggvény ismeretében kiszamolhaté a kovetke-
z6képp:

A lemez tOmegét egy kettds integral adja meg,

m=ﬂRp(x,y) dR

A tomegkodzéppont x €s y koordinatadinak meghatarozasdhoz sziikség van még a nyomatékok
meghatarozasara. Az x szerinti nyomaték m,, az y szerinti nyomatek m,, igy szamolhato:

my = ﬂRx-p(x,y) dR

my=ffRy-p(x,y)dR

Ezutan a tdmegkozéppont koordinatai

m
mo =

Kétvaltozos fiiggvény felszinének kiszamitasa
Legyen adott egy F: R — R? fiiggvény, R € R2. Ennek feliilete egy 3 dimenzios feliilet:

S={(xy.fx¥): (x,y) €R} c R

Ennek nagysaga a kovetkezOképp szdmolhato:

As) = | f (1R + £ 00y )
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14. tétel: Improprius integral, nem korlatos fiiggvény. Hatvany-
fiiggvény integralja az egységkorben (B). Integralhatosag
feltétele nem korlatos fiiggvényre.

Improprius integral, nem korlatos fliggvény

Tegyiik fel, hogy f nem korlatos fiiggvény, azaz pontosabban, hogy f: R — R folytonos, ki-
véve néhany pontot, ahol nincs véges hatarértéke. Tekintsiik a kovetkezd tartomanysorozatot:

R,cR,c--cR,c--CR
ahol az f fiiggvény folytonos az R,, tartomanyon, €s

lim A(Ry) = A(R)

Definicio A fliggvény improprius értelemben integralhato, ha 1étezik az alabbi hatarérték
r=lim || ey ey
n—>oo Rn

és fliggetlen az (R,,) halmaz-sorozat megvalasztasatol.

Tétel Tegyiik fel, hogy létezik olyan — a definicioban szereplé — (R,,) sorozat, amelyre
|| remtaey <m
Rp

valamely n-#6l fiiggetlen M valos szamra. Ekkor f improprius értelemben integ-
ralhato.

Hatvanyfiiggvény integralja az egységkorben (B)
Legyen
1

(Vx2 + yz)a
valamely a > 0 mellett, és az integral tartomany
R={(x,y):0<x?+y?<1}

fl,y) =

A fliggvény a (0,0) pontban nincs értelmezve, kornyezetében nem korlatos.

A hatvanyfiiggveény feliilete az origo kozéppontu egységkorlapon.
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Az R tartomanyt kozelitsiik az alabbi modon:

1
R, = {(x,y) P <Jx?2+4+y2< 1}
Ekkor

1 2T 1 1 1 1
— bt 24 —
fR f(x,y)d(x,y)—flj; r -1"dBdr—27Tfl o dT<2TL’f0 a1 dr
n n n

Ez az utébbi integral pontosan akkor konvergens, ha ¢ — 1 < 1, azaz a < 2. Ebbdl az kovet-
kezik, hogy a hatvanyfiiggvény a < 2 esetén improprius értelemben integralhat6 a lyukas
egységkoron. Ez alapjan megfogalmazhatjuk az elégséges feltételt improprius integral 1étezé-
sére.

Integralhatosag feltétele nem korlatos fiiggvényre

Tétel Tegyiik fel, hogy f:R — R folytonos fiiggvény nem korlatos az R mérheto tarto-
many valamely pontjanak kornyezetében, legyen ez példaul az origo. Tegyiik fel,

hogy

M
IfeN € ——=
f&y) D)

teljesiil valamely 0 < a < 2 és M > 0 szdmra, minden (x,y) € R esetén. Ekkor
f improprius értelemben integralhato.
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15. tétel: Improprius integral nem korlatos tartomanyon. P¢lda: ha-
rang-gorbe integralja. (B). Vonal(gorbe) definicioja R?-
ben és R3-ban. Kétvaltozos valos fiiggvény integralja
vonal mentén.

Improprius integral nem korlatos tartomanyon

Definicio  Tegyiik fel, hogy létezik R-nek olyan kozelitése, melyre Ry € R, € .- C R, R,
mérhetd tartomany, és
U R, =R
n=1

Ekkor tudjuk, hogy minden n-re létezik az

f f FGy) d(xy)
Rp
integral. Ha

tim [] ey acey)

1étezik és fiiggetlen az (R,,) halmaz-sorozat megvalasztasatol, akkor azt mond-
JUK, hogy f improprius értelemben integralhato, és

J| reeyyar=tim || reoy)ar,

Tétel Tegyiik fel, hogy létezik egy olyan — a definicioban szerepld — (R,) sorozat,
melyre

[ reman<m
Rn

azaz az integralok egyenletesen korlatosak minden n-re. EKKor f improprius ér-
telemben integrdlhato, és tetszbleges mdsik (Sy,) tartomdny-sorozat esetén, mely
kielégiti a fenti feltételeket

im | £Gey)ds, = [] £y an

Példa: harang-gorbe integralja (B)

Legyen f(x,y) = e **~Y", az integralasi tartomany az egész tér, R = R2. Ez a fiiggvény koz-
ismert néven a harag gorbe. Feliiletét a kdvetkezd dbra szemlélteti:

AR
Ay
: i '0 % \\‘\_ :
3 ’i”':"’:“\“ﬁ\\
Y AN
£
0
m‘""&"’”‘:‘:“%@{‘#
AN
I
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Valasszuk az alabbi tartomany-sorozatot:
R, ={(x,y) : x* + y?> < n?}
Nyilvan R,, korlatos €s zart tartoméany. A megfeleld tartomany polarkoordinatakkal:

R, ={(r0):0<60<2m0<r<n}

n o
ff e~ X'V = ff re"’ d(r,8) = Zﬂf re " dr < Zﬂf re"" dr
Rp R}, 0 0

Igy az improprius integral értéke:

0 _e—rz i
ff e~ x"-v? d(x,y) = 271] re "’ dr = an l =7
R2 0 2 0

Vonal(gorbe) definiciéja R%-ben és R3-ban

Definicié  (Sikbeli Jordan gorbe) Adott [a, b] € R egy véges intervallum, és adott két va-
16s fliggvény ezen az intervallumon: x, y: [a, b] = R, melyekrdl feltessziik, hogy
folytonosan differencialhatdak az (a, b) intervallumban.

Ekkor

Legyen y:[a,b] = R? az a vektorértékii fiiggvény, melynek ezek a koordinata
fliggvényei:
x(t)

y(®)1’
Ay fiiggvény értékkészlete a I' € R? (kétdimenzios) Jordan gorbe:

F={@®:telabl}

Definicio  (Térbeli Jordan gorbe) Adott [a, b] c R egy véges intervallum, és adott harom
valds fliggvény ezen az intervallumon: x,y, z: [a, b] = R, melyekrol feltessziik,
hogy foltonosan differencialhatéak az (a, b) intervallumban.

a<t<b

y®=|

Legyen y:[a,b] » R3 az a vektorértékii fiiggvény, melynek ezek a koordinata
fliggvényei:
x(t)
y@® =|y®)|, a<t<b
z(t)

Ay fiiggvény értékkészlete a I' € R3 (hdromdimenzios) Jordan gérbe:

F={@®:telabl}

Kétvaltozos valos fiiggvény integralja vonal mentén

Legyen adott a sikban egy I' Jordan gorbe, melyet y fliggvénnyel paramétereziink:
I'={y():t€[abl}

ahol y(t) = (x(t), y(t)), t € [a,b]. Feltessziik, hogy I' sima gorbe. Legyen R c R? egy

olyan tartomany, mely tartalmazza a I" gorbét.

Adott egy f: R - R* fiiggvény. A feladat az, hogy meghatarozzuk az alabbi feliilet nagysa-
gat:

S = {(x(t),y(t)) :0<z< f(x(t),y(t)) ést € [a,b]}
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Ehhez tekintsiik a gérbe egy felosztasat:
a=ty<t;<--<t,=b

a gorbén a megfelel osztopontok P; = (x;,y;),i = 0,1,2, ...,n, ahol x; = x(t;) és y; = y(t;).
Ekkor a feliilet felszine kozelitve:

=) fGuy) 6w 70 = Gy, vicl

Ez alapjan a vonalintegral hataratmenettel megkaphato:

b
1= [f@yas = [ FO.y0) VFO T o
r a

Definicio Az f figgvény vonalintegraljat a I' gérbe mentén igy értelmezziik:

b
fr FOuy)ds = [ F(x,y©) VFEO 720 de

szobeli vizsga 1405 44172 2014. janius 5.



Matematikai analizis II. — PPKE ITK

16. tétel: Vektormezo integralja gorbe mentén. Szemléletes jelen-
tés. Potencialkeresés. Potencial 1étezésének sziikseéges (B)
¢s elégséges feltétele (vonalintegrallal).

Vektormezo integralja gorbe mentén

Legyen T' = {y(t):t € [a, b]} hdromdimenziés Jordan gorbe. Legyen tovabba F egy harom-
dimenziés vektormezé F:D — R3, ahol D c R3. F koordinatafiiggvényeit jeldlie fj, f2,
f3:D = R.
fl (X, Y Z)
F(x'y’z) = fZ(x’y'Z)
f3 (x' Y Z)

Feltessziik, hogy F differencialhaté D-ben. Feltessziik azt is, hogy I' € D. Az egyszerliség
kedvéért jeldljiik R® pontjait roviden: r = (x,y, )

A gorbe mentén vett vonalintegral jeldlése

fF(r) dr
r

Tétel (Vonalintegral kiszamitasa) A fenti jelolésekkel és feltételekkel

b
fr F(r) dr = f (F(y(©), (D) dt =
b b
= f filx@®),y(®),z(@®) - x(t)dt + f fo(x@®),y(®),z(®)) - y(£)dt +

b
+[ A E0.y0,50) 20
a
ahol y jeloli a y fiiggvény koordindtdk szerinti derivaltjat.

Szemléletes jelentés
A vonalintegral matematikai modelljének fizikai hattere a kovetkezoképpen képzelheto el:

Adott egy vektortér, ami a tér pontjaiban megadja az ott hatd eré nagysagat és iranyat. Fel-
tessziik, hogy egy egységnyi tomegii részecske a I' gérbe mentén mozog. A gbrbe menti in-
tegral ebben a vektormezOben a részecske mozgatdsanak munkajat adja meg.

Potencialkeresés

Adott egy haromvaltozos, valos értékii fiiggvény f: R —» R, R c R3. Ha a fiiggvény differen-
cidlhaté a tartoményban, akkor gradiense vektormezd: grad f: R — R3. Ennek ,,forditottja”,
hogy ha adott egy F: R - R3 vektormezd, akkor vajon létezik-e olyan f: R — R differencial-
hato fiiggvény, melyre F = grad f.

Definicio Az F vektormezd potencidlos (konzervativ), ha l1étezik f differencidlhaté skalar-
fiiggvény, melyre F = grad f.
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Potencidl 1étezésének sziikséges (B) és elégséges feltétele (vonalintegrallal)

Tétel Adott az F vektormezd egy R € R3 egyszeresen dsszefiiggd tartomdanyon. F-nek
pontosan akkor létezik potencidlja, ha minden R-beli zdrt gérbe mentén az F
vektormezo vonalintegralja 0.

Bizonyitas A bizonyitds soran csak azt igazoljuk, hogy ha van potencial, akkor tetszdleges
zart gorbe mentén integralva az integral értéke nulla.

b b
fr F(r) dr = f (F(y(©),7(0) dt = f (grad f(y(D), 7(®)) dt =

b g
_ f —f(r(®) dt = () -/ (1(@))

Ha a gorbe zart, akkor ez azt jelenti, hogy a = b és igy y(a) = y(b), vagyis az
integral valoban nulla. m
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17. tétel: Fourier sor komplex alakja. Fourier transzformacio.
Alaptulajdonsagok (B). Inverz Fourier transzformacio.
Parseval egyenlet (B). Konvolucié. Konvolucié FT-ja.

Fourier sor komplex alakja
Az Euler-formula szerint

e = cos(x) + i sin(x)
Ebbdl kovetkezik, hogy
e~ = oil=%) = cos(—x) + i sin(—x) = cos(x) — i sin(x)

ezért a trigonometrikus fliggvények kifejezhetok komplex alakban:

eix + e—ix

CoOS\xX) =——
) =—

eix _ e—ix
sin(x) = -
20

Az n-edik Fourier polinom:

a <
sp(x) = —+ ) (ay cos(kx) + by cos(kx))
> kZl K k

Helyettesitsiik be a trigonometrikus fliggvények komplex alakjait:

. . n
X X

n . .
a e +e” e —e X .
sp(x) = 70 + z ay 5 + by — = z aetkx
k=1

2i

k=—n

ahol az a;, egyiitthato:

a, — ib
Qg = -k k>0
2
ay +ib
Qg = e k<0
2
Tétel Tegyiik fel, hogy f eloall

n

F@) = ) e

k=—n

alakban. Ekkor:
1 (" -
= — —lRX
a om f_nf(x)e dx

Fourier transzformacio
Tegyiik fel, hogy az f: R — R valos értékii fliggvény kielégiti az alabbi feltételeket:

1. Tetszbleges I c R véges intervallum esetén f lesziikitése az I intervallumra véges sok
pontot kivéve folytonosan differencialhato.

2. Ha x, szakadasi pont, akkor ez a szakadas elsdfaju, és itt a fliggvényérték

) =f(x0 +0) ;‘f(xo —-0)
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3. A fliggvény abszolut integralhatd, azaz

f £ GO)] dx < o0

Definicio Ha f teljesiti a fenti feltételeket, akkor az f Fourier transzformaltia az az
f:R - C komplex értékii fiiggvény, melyet igy definialunk:

fs) = \/%f:f(x)e‘i” dx

A Fourier transzformalt jeldlése F(f,s) = f(s)

Alaptulajdonsagok (B)
Tétel A Fourier transzformalt alaptulajdonsagai:
1. 4 hozzarendelés linearis, azaz
Flcf,s) =cF(f,s),  F(f+g,5) =F(,s) +F(g,s)
2. F(f) folytonos fiiggvény
3. (Atskadlazas)
F(f@0,9) ==F (f(0.2),  haa>0
fax,s—a fx'a' aa
4. (Id6 megforditasa)
F(f(=x),s) = F(f(x),—s)
5. (1d¢ eltolas)
F(f(x = x0),5) = e 0°F(f (x), )
6. (Frekvencia eltolds)

Bizonyitas 1.

F(e™f(x),s) = F(f(x),s — k)

Ez kénnyen lathatd, mivel az integral lineéris operator

. Ez abbdl kovetkezik, hogy a Fourier transzformaltat folytonos fiiggvények

egyenletes hatarértékeként tudtuk meghatarozni

F(f(ax),s) = \/%fmf(ax)e—isx dx = 1/@[00 f(t)e_%t%dt

Az integralasban a t = ax helyettesitést hajtottuk végre.

1 *® , 1 * .
F(F(=x),5) = 7= f_wﬂ—x)e-lsx dr == f_wﬂy)elsy(—dy)

1 o .
- —i(-s)
mf_wf e™7> dy

Az integralban az y = —x helyettesitést hajtottuk végre.

F(f(x —xo),5) = % [ - xppemtrax =

1 *© )
= E] f(y)e_ls(y+x0) dy

Az integralasban az y = x — x, helyettesitést hajtottuk végre
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6.

T(e”‘xf(x),s) — ikxf(x)e—isx dx = \/%foof(x)e_i(s—k)x dx
T J—-co

1 [oe]
L f e
V27T —0o0

m
Inverz Fourier transzformacio

Tétel Tegyiik fel, hogy f teljesiti az 1., 2., 3. feltételeket. Ekkor f eldallithato Fourier
transzformaltja segitségével.:

1 (*. .
(x) = —f (s)eS* ds
f V21 —oof
Ez az inverz Fourier transzformdcio.

Parseval egyenlet (B)

Tétel (Parseval egyenlet) Ha az 1., 2., 3. feltételek teljesiilnek és a Fourier sor egyen-
letesen konvergens, akkor

f_ Zlf(x)lz dx = f_ilf(s)l2 ds

Bizonyitias A bizonyitasban fel fogjuk hasznalni mind a Fourier transzformécio, mind pedig
az inverz Fourier transzformaciot. Kiindulunk a fenti egyenléség baloldalabol, és
az szorzat két f(x) tényezdjének egyikébe az inverz Fourier transzformaltat ir-
juk.

[ee] [ee] 1 [ee] R .
2(x) dx = f (x) —f (s)e"* ds dx
| s rw=] f

Az egyenletes konvergencia miatt az integralas sorrendje folcserélhetd:

f_o:ofz(x) dx = f_o;f(x)\/%_nf:f(s)eisx ds dx = f_o:of(s)\/%_ﬂf_o:of(x)eisxdx ds =
= ’[_o:of(s)\/%]:)f(ﬂe‘mdxds = j_o:of(S)%ds = f_o:o|f(s)|2ds

mivel ]@ =f(-s). m

Konvolucid, konvolacio FT-ja

Definici6  Adott két valos fiiggvény, f,g:R — R. Feltessziik, hogy mindketté abszolt
integralhatd. A két fiiggvény konvolucioja az f » g: R - R fliggvény, melyet
igy értelmeziink:

(f * @) = f FOgG —y) dy

—00

Allitas Konvolucio az idotartomanyban és a frekvenciatartomanyban:

F(f *g,5) =V2n F(f,s) - F(g,s)

1
F(f,s) * F(g,s) N F(f-9.5)
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18. tétel: Magasabb rendii linearis differencialegyenlet. Fiiggv¢-
nyek fliggetlensége. Wronski determinans (B). Homogén
LDE. Megoldasok struktiuraja (B). Kezdeti érték- €s pe-
remertek feladat.

Magasabb rendii linearis differencialegyenlet

Jel6lje C™(D) azon D-n értelmezett folytonos fiiggvények halmazat, melyek n-szer folytono-
san differencidlhatok. Legyen L egy olyan operator, amely egy n-szer differencidlhato fiigg-
vényhez egy folytonos fiiggvényt rendel a kovetkezOképpen:

LIy](x) = y™ () + a; )y ™ () + -+ + an () y (x)
ahol a4, ..., a,, adott folytonos fiiggvények. Az L operator linearis, azaz
Llay, + By.] = aLly:] + BL[y]
tetszéleges y;,y, € C™(D) és a, B € R esetén.

Homogén differencialegyenlet esetén az L[y] = 0-nak keressiik megoldasat, inhomogén eset-
ben az L[y] = f(x) egyenlet megoldasat keressiik, ahol f(x) # 0.

Fliggvények fiiggetlensége

Definicié  Adott n darab fliggvény, yq, V2, ..., ¥n, k0z0s D € R értelmezési tartomannyal.
Ezek linedrisan fiiggetlenek, ha a fiiggvények valamely linearis kombinacioja

y(x) = c1y1(x) + c2¥2(x) + -+ + cpyn(x)
csak ugy lehet azonosan 0 a D halmazon, ha

cpL=C==c¢c,=0

Wronski determinans (B)

Definicié6  Legyenek az yy,...,y, valos figgvények (n — 1)-szer differencialhatoak. A
Wronski determinanst a kovetkezoképpen definialjuk:

1@ n® v
1(x "(x " (x
W[yll"')yn] = det ylg ) yzs( ) . yns( )
L™ Py V@ - YV
Allitas Tegyiik fel, hogy yi,...,Yn fliggvények linedrisan Osszefiiggoek, és legalabb

(n — 1)-szer differencidlhatéak. Ekkor Wy, ..., y»] = 0.

Bizonyitas Mivel a fliggvények linearisan Osszefiiggdk, ezért ¢y, + -+ ¢y, = 0 ugy,
hogy valamelyik ¢, # 0. Legyen ez c;. Ekkor y; kifejezhet6 a tobbi fiiggvény
segitségével:

A t6bbi derivalt hasonloan kifejezhetd. Ekkor a matrix elsé oszlopa eldall a tobbi
linearis kombinacidjaként, igy a matrix szingularis, vagyis determinansa 0. m
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Allitas Ha yi, ..., yn n-szer differencidlhatok az egész D-n, akkor W{y;, ..., y,] ponto-
san akkor nulla, ha y;, ..., y, fiiggvények linedrisan ésszefiiggok.

Homogén LDE

A homogén linearis differencialegyenletek esetében a mar definialt L[y] = 0 egyenlet megol-
dasat keressiik.

Megoldasok struktaraja (B)

Tétel Az L[yl =0 egyenletnek létezik n darab linedrisan fiiggetlen megolddsa:
V1, -, Yn. Tovabba tetszoleges y megoldas felirhato ezek linearis kombindcioja-
ként:

y=c1y1+ -+ Chyn
Bizonyitas Az elsé részt specialisan fogjuk belatni (Iasd a 19. tételben, P(1) polinomra)

A masodik rész bizonyitasdhoz irjuk fel az y, y;, ..., y,, fliggvények Wronski de-

terminansat:
y Yi  Yn
A Z R
W[y, NATRLY yn] = det -, n
(GO CO R ()
y V1 Vn
Mivel L{y,] = L[y,] = - = L[y] = 0, ezért a matrix utolsé sora el6all a tobbi

linedris kombinaciojakét, sorai linedrisan Osszefliggdek, tehat a determinans O.
Az utolsé n oszlop azonban linedrisan fiiggetlen, igy az els6 oszlop felirhato a
tobbi lineédris kombinacidjaként. m

Kezdeti érték- és peremérték feladat

Tekintsiink egy n-ed rendii linearis differencialegyenletet, L[y] = 0. Legyen x, € D tetszdle-
ges belso pont.

Kezdeti érték feladat
Olyan megoldast keresiink, melyre

y(x0) =&
y'(x0) =&
yn—l(xo) =$n
Peremfeltétel feladat
Olyan megoldast keresiink, melyre
y(x) =&
y(xz) =&,
y(xn) =&y
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19. tétel: Allandé egyiitthatés: homogén LDE megoldasai. Kap-
csolat a karakterisztikus polinommal (B). Inhomogén
LDE. Megoldasok strukturaja. Inhomogén LDE megol-
dasa. Allandok varialasa.

Allandé egyiitthatos: homogén LDE megoldasai, kapcsolat a karakterisztikus
polinommal (B)

Tekintsiik az L[y] = y™ + a;y® D + .- + a,;y = 0 egyenletet, ahol a, ..., a,, € R adott
valos szamok. Specialis megoldéasokat keresiink, melyek
y(x) = e™
alakuak. Ekkor y'(x) = 1-e?* ...y (x) = A7 - e,
Ezeket visszahelyettesitve azt kapjuk, hogy
Llyl]=e*(A"+ A"+ +a, 4A+a,) =0
A jobboldalon all6 fiiggvény csak ugy lehet 0, hogyha a zardjelben szerepld polinom nulla.
Definialjuk a differencialegyenlethez tartozo karakterisztikus polinomot a kdvetkezképpen:
PO =" +a A"+ +a,

Ez egy valos egyiitthatos polinom, melynek a komplex szamsikon n darab gyoke van, multip-
licitdsokkal egyiitt.

Elsé eset
Tegyiik fel, hogy P(4) gyokei valosak, és mind egyszeresek. Legyenek ezek 4, ..., 4,,. EKkor
fel tudjuk irni a homogén egyenlet n megoldasat

y1(x) = ehr*

y2(x) = e*2*

Y (x) — e)lnx
¢s ezek linearisan fiiggetlen rendszert alkotnak. Ekkor az altalanos megoldas:
n

y(x) = Z c-eM*,  c €R
k=1
Masodik eset

Tegyiik fel, hogy P(A) gyokei valosak, viszont az m darab k,,-szeres (k,, = 1,2 ...) gyok.
Legyen minden A,, k,,-szeres gyoke a karakterisztikus polinomnak. Ekkor igy tudjuk felirni a
homogén egyenlet megoldasait:

yii(x) = et y12(x) = x - ex o o Vik, = xki—1. gh1x
Ymi () = e*m¥, () =x-etmX, Ly, = xkmol ghm
¢s ezek linearisan fliggetlen rendszert alkotnak. Ekkor az 4ltalanos megoldas:
m kn
y(x) = z 2 Cnl * xki—1. elnx' c € R
n=11=1
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Harmadik eset
Tekintsiik azt az esetet, amikor a polinomnak komplex gyokei vannak. Ekkor ha A = a + if§

egy gyoOke a karakterisztikus polinomnak, akkor konjugéltja, A = a — if is gyok. Két alap-
megoldast kapunk tehat:

w () = e, uy(x) = e

Mivel A komplex szam, ezért ezek komplex fiiggvények lesznek. Tudjuk, hogy ezek tetszble-
ges linedris kombindcidja ismét megoldas lesz. Keresiink olya linedris kombinaciot, amely
valos értékii. Definialjuk a kovetkezd alapmegoldasokat:

Uy (x) + uy (x) _
5 =

uy (x) Z—iuz (x) — e sin(Bx)

Ezek a megoldasok is — nyilvanvaldan — linearisan fiiggetlenek. Az altaldnos megoldas ezek
0sszege.

y1(x) = e™ cos(Bx)

y2(x) =

Negyedik eset

A negyedik eshetdség az, hogy tobbszords komplex gyokok allnak eld. Ekkor a komplex
gyokoknél megismert modszert és a tobbszords gyokoknél megismert felirast 6tvozve kell
alkalmazni.

Inhomogén LDE. Megoldasok struktiraja

Az inhomogén linearis differencidlegyenletek esetében a mar definialt L[y] = f(x) egyenlet
megoldasat keressiik, f(x) # 0.

Tétel Ha y, és y, megoldasai az
y W) +a; )y V() + -+ an()y(x) = f(x)

inhomogen egyenletnek, akkor y = y, — y, a homogeén egyenlet megoldasa. Ha
Yy, a homogén, az y, pedig az inhomogén egyenlet megoldasai, akkor y = y, +
Y, szintén megoldasa az inhomogén egyenletnek.

Inhomogén LDE megoldasa: Allandok varialasa

Legyen az L[y] = 0 homogén egyenlet n darab lineérisan fliggetlen megoldasa yy, ..., y,,. Az
inhomogén egyenlet egyetlen megoldasat keressiik a kovetkezd alakban:

y(x) =10y () + -+ + ¥u () yn (%)
A fenti megoldasban szerepld fiiggvényekre az alabbi feltételeket tessziik:
ViVi+ =+ YaYn =0
Viyi+ ot Yo =0

iyl e P = 0

Yy iy = fx)

Igy az egyiitthatok derivaltjaira adott n darab egyenlet. A fenti egyenletrendszert kompakt
formaban ugy irhatjuk fel, hogy a baloldalon az alapmegoldasok Wronski matrixa szerepel
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megszorozva a y derivaltak oszlopvektoraval, a jobboldalon pedig a [0,0,0, ..., f(x)]” oszlop-

vektor all:
41 Y2 0
yi yé H l 0 ‘
yl(n 1) yz(n v (n 1) f(x)

Mivel ezek az alapmegoldédsok linearisan fiiggetlenek, ezért ez a matrix nem szingularis, tehat
a fenti egyenletrendszer mindig megoldhato.

Allitas Ha a fenti feltételek teljesiilnek, akkor L{y] = f(x).

Megjegyzendd, hogy az allanddok varidlasanak modszere akkor is hasznélhato, ha a linearis
differencidlegyenlet egyiitthatoi nem konstansok, hanem adott, folytonos fiiggvények.
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20. tetel: Inhomogén LDE megoldasa: Probafliggvények. Differenci-
alegyenlet rendszerek. Allandé egyiitthatos linearis DER
megoldasa (B). e értelmezése, specialis esetek.

Inhomogén LDE megoldasa: Probafiiggvények

Az éllandok varidlasa modszer ugyan minden esetben alkalmazhato, de specialis jobboldal
esetén, ha allando egyiitthatds linedris differencidlegyenletet tekintiink, érdemes az inhomo-
gén egyenlet megoldasat specialis alakban keresni. A megoldando egyenlet:

LIyl =y (x) + a; )y P () + -+ + an ()y(x) = f(x)

— Ha f(x) = Ke**, ahol a € R, akkor a megoldast y(x) = Ae® alakban keressiik. A
ismeretlen.

- Ha f(x)=aux™+-+a;x+ay akkor a megoldast y(x) =A,x™ + -+ A,
alakban keressiik, ahol Aj-k az ismeretlen paraméterek.

— Ha f(x) = Ksin(ax) vagy f(x) = K cos(ax), akkor a megoldast mindkét esetben
y(x) = Asin(ax) + B cos(Bx) alakban keressiik, ahol A és B az ismeretlen paramé-
terek.

Ha f (x) ezen specidlis fiiggvények Osszege, akkor a probafiiggvényt is 6sszegként keressiik.

Definici6 Ha a homogén differencidlegyenlet alapmegoldasai kozott 1étezik olyan fiigg-
vény, mint ami a differencialegyenlet jobboldalan szerepel, akkor rezonanciarol
beszéliink.

Differencialegyenlet rendszerek

Elséként csak kétdimenzids rendszerekkel foglakozunk. Keresiink olyan y(x) és z(x) fiigg-
vényeket, melyek kielégitenek egy ilyen tipusa differencialegyenlet-rendszert:

y'(x) = f(x,y(x), z(x))
z'(x) = g(x,y(x), z(x))

ahol f és g adott haromvaltozos fliggvények.

Allandé egyiitthatos linearis DER megoldasa (B)

A konnyebb attekinthetdség kedvéért harom dimenzidban dolgozunk, de minden ugyanigy
elmondhato n dimenzids linearis rendszerekre is. Tekintsiik az alabbi haromdimenzi6s rend-
szert:

V1= a11Y1 + Q12> + a13Y3
Y2 = A21Y1 + A2Y2 + Az3Y3
Y3 = G311 + a32Y2 + A33)3

a hozza tartozo kezdeti feltételekkel

y1(0) =y01,  ¥2(0) = yoa, y3(0) = yo3

A keresett fliggvényt rendezziik el egy vektorba. Ezt derivaljuk, az egylitthatokat pedig mat-
rixba gytjtjiik:

y1(x) y1(x) ai1 Q12 Q43
Y(x) = [y.(x)], Y'(x) = |y,(0)], A=|0z1 Ay a3
y3(x) y3(x) a31 A3z a3z
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A differencidlegyenlet-rendszer tehat kompakt alakban igy irhato:
Y'(x) = AY (x), Y(0) =Y,

Tétel A fenti (kompakt alakban irt) linedris egyenletrendszer megolddsa
Y(X) = eAx : YO
Tétel Tegyiik fel, hogy A sajatértékei mind kiilonbozdek, legyenek ezek A4, A5, A3. Ek-

kor a kiilonbozo sajatértékekhez tartozo sajatvektorok egymdsra merdlegesek,
ezeket jeldlje s1,S3,S3.

Ekkor a linearis differencialegyenlet rendszer linedrisan fiiggetlen megoldas-
rendszere

Yk = elkx Sk

Ezen feliil tetszéleges Y(0) = Y kezdeti értékhez létezik egyértelmiien Y megol-
das és ez felirhato
Y=cY;+cY, +c3Y3

alakban megfelelo cq, c,, c3 konstans egyiitthatokkal.

Bizonyitas A megoldasok linedrisan fiiggetlenek, hiszen e**-k is linearisan fiiggetlenek, és
si-k is. A fenti fliggvény derivaltja

Yi(x) = LeM¥ sy, k=123
A differencidlegyenlet jobboldala
AYk(X) = Aelkxsk = e’lkxAsk = e’lk’%ksk

Tehat valoban megoldas. m

e’ értelmezése, specialis esetek.

A fenti tételben szereplé e matrix értelmezése a sorfejtés alapjan torténik:

(o9) 1
A._ E k
e’ = k!A
k=0

Ez &ltalaban nehezen szamolhatd. Ha A szimmetrikus matrix, akkor felirhato 4 = UDUT
alakban, ahol U ortogonilis, D pedig diagondlis matrix. Ez azt jelenti, hogy UTU = UUT =
E, ahol E az egységmatrix, és a diagonalis matrixban a sajatértékek allnak.

Ha példaul A-nak 3 darab kiilonb6zd valos sajatértéke van, A4, 45, A3, akkor a megfeleld sajat-
vektorok ortogonalis rendszert alkotnak. Ebben az esetben

A, 0 0
D=]0 AZ 0“' U= (51,52,33)
0 0 A

ahol s}, a normalizalt sajatvektorokat jelenti. Folytassuk e4 kiszamitasat ebben az esetben.
Ak =upuT -upuT . .- uDpUT = UD*UT
ezért
ed = UueluT

Ahol e? diagonalis matrix, f6atlojanak elemei et ez ohs
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21. tetel: Komplex fliggvény, abrazolas. Kanonikus alak. Komplex
fliggvény differencialhatosdga. Cauchy-Riemann egyenle-
tek (B).

Komplex fiiggvény, abrazolas

Legyen D c C egy tartomany a komplex szamsikon. f: D — C fiiggvényt tekintjiik. A fligget-
len valtozét z = x + iy, a fuggd valtozét w = u + iv jel6li. Tehat a hozzarendelés w = f(z).

A komplex fiiggvények pontos abrazolasara négy dimenziodra lenne sziikség — ez nem Kivite-
lezhetd. Igy megelégsziink azzal, hogy két komplex szamsikot rajzolunk, az egyiken az értel-
mezeési tartomdnyt, a masikon az értékkészletet abrazoljuk. Ennek segitségével azt tudjuk
megadni, hogy egy-egy konkrét komplex szamhoz mit rendel hozza a leképezés, illetve bizo-
nyos specialis alakzatokat — példaul kort vagy egyenest — hogyan transzformal.

Df Rf
5 F 50
E o0 E o
-5 : -50
-5 0 5 -50 0 50
Re Re

Az f(z) = e? fiiggvény értelmezési tartomdanynak egy fiiggdleges egyenesét korré képezi le.

Kanonikus alak

Legyen D c C tartomany és adott ezen egy hozzarendelés f: D — C, ami a z komplex szam-
hoz a kdvetkezdt rendeli hozza:

zw— f(z) = Re(f(z)) +1i Im(f(z))
A fliggvény kanonikus alakja két valos értékli kétvaltozos fiiggvény megadasat jelenti,

f(2) =u(x,y) +iv(x,y),ahol
u(x,y) =Re(f(x +iy)),  v(xy) =Im(f(x + iy))

Komplex fiiggvény differencialhatosaga

Adott egy T c C tartomany és ezen egy f:T — C komplex fliggvény. Legyen f kanonikus
alakja f(z) = u(x,y) + i v(x,y). Tegylk fel, hogy u és v folytonosan differencialhaté fiigg-
vények, azaz léteznek uy, uy, vy, x;, parcialis derivaltak és folytonosak.

Definicio  Legyen z, az f értelmezési tartomanyanak egy belsd pontja. f differencialhato
Zy-ban, ha létezik és véges a kdvetkezd hatarérték:

I f(zo+h) — f(z)
im

h—-0 h
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Cauchy-Riemann egyenletek (B)

Tétel (Alaptétel a komplex fiiggvény differencialhatosagardl) Legyen T < C tarto-
many, f:T = C, zy € int T. Tegyiik fel, hogy u és v folytonosan differencialhato
fiiggvények. Ekkor f differencialhatosaga a zy = xy + iy, pontban azzal ekviva-
lens, hogy az u és v kétvaltozos fiiggvények kielégitik az alabbi dsszefiiggéseket:

uy (x0,y0) = U;'; (%0, ¥0)
u_’;/(xO' )’0) = _v)IC(xOJ }’0)
Az utolso két egyenletet Cauchy-Riemann egyenleteknek nevezziik.

crer

Bizonyitas 1. rész. Tegyiik fel, hogy f differencialhat6 zy-ban. Ekkor a derivalt definici6ja-
ban szerepld hatarérték létezik specialis iranyokbol is. Legyen h = r + is és le-
gyen elséként s = 0 és r — 0. Ekkor

u(xo +1,50) + iwlxo +1,¥0) — ulxo, yo) — iv(xg, yo) _

r

f'(z0) = lim
r—0

o ulxg+1,y0) —ulxe,yo) ... vlxg+1,50) — v(x0,¥0)
= lim +ilim =

r—0 T r—0 r

= uy (X0, yo) + iv'(x0, ¥0)

Most tegyiik fel, hogy r = 0 és s — 0. Ekkor az el6z6hoz hasonldan:

u(xo,yo +5) —ulxg,¥0) ... v(xg,yo+5s)—v(xo,¥0)
- +ilim - =
is 50 is

f'(zo) = lim
s-0
= —iuy(x9, o) + vy (X0, Yo)

Mivel a kétoldali hatarértékeknek egyenldknek kell lenniiik, ezért
w (X, Vo) + ivx (X0, ¥o) = —iuy (x9, yo) + vy (X0, Yo)

Két komplex szam egyenldsége ekvivalens azzal, hogy valds és képzetes részeik
egyenldk, ebbdl pedig kovetkeznek a Cauchy-Riemann egyenletek. m

Bizonyitas 2. rész. Tegyiik fel, hogy a Cauchy-Riemann egyenletek teljesiilnek. Szamoljuk
ki a differenciahdanyadost:

f(zo+h) = f(zo) ulxg+71,y0+s)+iv(xg+ 71,50 +5)—ulxe,yo) — v(xo,¥o)
h B r+is

Felhasznalva u és v derivalhatosagat, ez igy folytathato (a derivaltak argumen-
tumat az atlathatosag kedvéért elhagyva):

f(zo+ h) — f(2) _ U T + u'yS + ivyr + ivj’,s n g (|h]) n & (|h]) _
h r+is r+is r+is
g (IR N EAUJ))

=u, +ivy + , .
r+is r+is
Ezért
_ fzoth) —f(z0) .,
}Ilz)r(l) 0 A 0 = ux(xO' 3’0) + lvx(xO' yO)

tehat a hatarérték 1étezik. m
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22. tétel: Elemi fliggvények: e?, alaptulajdonsagok. (B). Elemi
fliggvények: Ln(z) alaptulajdonsagok. (B), sin(z),
cos(z), hatvanyfiiggvény.

Elemi fliggvények: e?, alaptulajdonsagok (B)
Az f(z) = e” fliggvényt a komplex szamok esetén igy értelmezhetjik:
e? = e** = e*(cos(y) + i sin(y))
Allitas Az f(z) = e” fiiggvény néhany alaptulajdonsdga
1. Analitikus és (e?)' = e?
2. Tetszbleges két z,és z, komplex szamra e?11?2 = e%1e%2
3. Az e” fiiggvény 2mi szerint periodikus.
Bizonyitas 1. Folhasznalva a Cauchy-Riemann egyenleteket:

f(2) = e = e*™Y = e*(cos(y) + i sin(y))
ezert

u(x,y) = e*cos(y), v(x,y) = e*sin(y)
A megfeleld parcialis derivaltak
we(x,y) = e*cos(y),  uy(x,y) =—e*sin(y)
ve(x,y) = e*sin(y),  vy(x,y) = e*cos(y)
Tehat a fliggvény differencialhatd és
f'(2) = ux(x,y) + ive(x,y) = e*(cos(y) + isin(y)) = f(2)
2. Behelyettesitéssel kdzvetleniil 1atszik.
3. e? periodicitasa a trigonometrikus fliggvények periodicitasabol kovetkezik:
e? = e*(cos(y) + i sin(y)) = e*(cos(y + 2m) + i sin(y + 2m)) = e¥+ty+2m
|

Elemi fiiggvények: Ln(z) alaptulajdonsagok (B)
Az exponencialis fliggvény inverzét keressiik. Mivel f(z) = e? értékkészletében a 0 nincsen
benne, igy ez nem lesz benne a logaritmusfiiggvény értelmezési tartomanyaban. Legyen

0 # w € C, és keressiik azt a z-t, melyre w = eZ. Ha w trigonometrikus alakjaw = p - e?,
akkor

x =1In(p), y =0 + 2km, keZ

Mivel az exponencialis fliggvény 27 szerint periodikus, ezért a keresett w szdm nem egyér-
telmd. Tehat:

In(w) = In(|w|) + i(arg(w) + 2km), keZ
sokérteki fiiggvény. A k = 0-hoz tartozo értéket foértéknek nevezziik, €s jeldlése
Ln(w) = In(lw|) + i arg(w)
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Allitas Az f(z) = In(z) alaptulajdonsdgai

1. eln®@ = ¢

2. Tetszbleges z4,z, € C esetén Ln(z; - z,) = Ln(z,) + Ln(z,)

3. A logaritmus féertéke a 0-t kivéve mindeniitt analitikus és

d 1
E LH(Z) = E

sin(z), cos(z), hatvanyfiiggvény
A trigonometrikus fliggvények kiterjesztését komplex argumentumra a kovetkez6képp defini-

aljuk:

iz —iz

e —e
sin(z) =

(2) 20

elZ + e—lZ

cos(z) == —

Ertelmezziik az f (z) = z"A, A € C hatvanyfiiggvényt az exponencialis és logaritmus fiigg-
vény segitségével az alabbi mddon:

Z/'l — e)L-ln(z)
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23. tetel: Harmonikus fiiggvények (B). Harmonikus tars. Komplex
vonalintegral, alaptulajdonsagok. Integral kiszamitasa. Ca-
uchy-féle alaptétel. Altalanositas.

Harmonikus fiiggvények (B)

Definicié  Legyen u(x,y) kétvéltozos fiiggvény, amely valamely R c R? tartoményon van
értelmezve. Tegyiik fel, hogy itt folytonos és kétszer differencialhato. Azt mond-
juk, hogy u(x, y) harmonikus, ha

wex (6, y) +uy,(x,y) =0
teljesiil az egész tartomanyon.

Definicié A Laplace-operator egy u: R = R kétszer differencialhaté fliiggvényhez rendel
hozza egy masik kétvaltozos fliggvényt:

Au = uy, +uy,,

Allitas Tegyiik fel, hogy f:T — C komplex fiiggvény differencialhato. Ekkor kanonikus
alakjaban szereplé u(x,y) és v(x,y) fiiggvények harmonikusak.

Bizonyitas A bizonyitasban feltessziik, hogy u és v kétszer folytonosan differencialhatoak.
A differencidlhatésag miatt uy = v), és u;, = —v,. Az elsd azonossagot x sze-
rint, a masodikat pedig y szerint derivalva a kdvetkez6t kapjuk:

Wy = vj
wy =~

!

Au = uyy +uy, = vy —Uyy =0

Harmonikus tars

Allitas Ha u harmonikus fiiggvény a T egyszeresen Osszefiiggo tartomanyon, akkor léte-
zik olyan v:T —» R harmonikus fiiggvény, hogy az f(z) = u(x,y) + iv(x,y)
komplex fiiggvény differencidalhato. Azt mondjuk, hogy ez a v az u fiiggvény
harmonikus tarsa.

Komplex vonalintegral, alaptulajdonsagok

Allitas (Ivhossz kiszamitisa) Legyen L egy komplex Jordan gérbe, melyrdl feltessziik,
hogy sima. Ennek ivhossza:

B
s(L) = f \/x’z(t) + y'2(t) dt

Tekintsiink egy L  C Jordan gorbét, és egy ezen értelmezett f komplex fiiggvényt. Ertel-
mezni szeretnénk az

fo(z) dz

vonalintegralt. Ehhez tekintsiik a gorbe egy felosztasat. Az alappontokat jelolje
a=tyg<t;<-<t,=p
A gorbe megfeleld pontjait igy jeloljik: z;, = x, + iy, = y(tr), k=0, ...,n
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Legyen a k-adik ivdarab egy tetszOleges pontja &. A felosztashoz tartozo6 kozelitd osszeg:

z(zk — Zk-1) - [ (k)
=1

Definici6 A vonalintegralt az alabbi hatarérték definialja, amennyiben létezik és véges:

n

lim, Y G = ) 60 = | £@ dz
L

n

ahol &, = max(s(zx_1,2x), k = 1,...,n). Ha L zart gorbe, akkor a vonalinteg-
ralra az alabbi jelolést hasznaljuk:

ﬁf(z) dz

Allitas A vonalintegral alaptulajdonsagai:

1. Linearis miuivelet, azaz

[(@r@+pg@)az=a [ 1@y az+p [g@ as
L L L

2. Ha megforditjiuk a gorbe iranyitasat, akkor a vonalintegral (—1)-szeresére
valtozik:

ff(z) dz = —f f(z)dz

L -L

3. Haaz L gorbe két részbdl all, L = Ly + L,, akkor
jf(z) dz = j f(z)dz +f f(z)dz
L Lq L,

4. Ha ffolytonos fiiggvény, akkor létezik az alabbi vonalintegral:

f f(z)dz
5. Ha f korlatos fiiggvény, vagyis If(;)| <M, Vz € L, akkor
jf(z) dz| <M -s(L)
L
ahol s(L) a gorbe ivhossza.
Integral kiszamitasa
Tétel Legyen az L gorbe paraméteres megadasa:

z(t) = x(t) + iy(t) =r(t) - e¥®,  te[a,p]
Tegyiik fel, hogy x, y illetve r, 8 folytonosan differencialhatok. Ekkor

B
ff(z) dz = f f(z(t))z’(t) dt
L a
B
=f Flx@®) +iy®)(x' () +iy' () dt

B
= j f(r(@) - e®®) (r'(0) - €O + ir(e) - €96’ (1)) dt
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Tétel (Newton-Leibniz formula komplex vonalintegralra) Legyen adott az f:T — C
fiiggvény. Tegyiik fel, hogy létezik olyan F:T — C fiiggvény, melyre minden z
esetén F'(z) = f(z). Legyen A és B a tartomany két pontja. Ekkor

[r@dz=r@ -F)
L

minden olyan L c T Jordan gérbe mentén, melynek végpontjai A és B.

Cauchy-féle alaptétel

Tétel (Cauchy-féle alaptétel vonalintegrdlra) Legyen T < C egyszeresen dsszefiiggd
tartomany és ebben G C T egy sima, zart gorbe. Tegyiik fel hogy az f:T — C
fiiggvény analitikus. Ekkor

jgcf(z)dz=0

Altalanositas

Tétel (Cauchy-féle alapteétel altalanositisa) Legyen adott egy T C C dsszefiiggd tar-
tomany, melynek hatara a G c T goérbe. Feltessziik, hogy T nem egyszeresen
0Sszefiiggo, jelolje Gy, ..., Gy, a lyukakat kérbevevo gorbéket, melyekrol feltesz-
sziik, hogy ugyanolyan iranyitasuak, mint G. Legyen f:T — C analitikus fiigQ-
vény. Ekkor

if(z) dz = zn: ka(z) dz

k=1
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24. tetel: Cauchy-fele integralformula. Taylor sorfejtés analitikus
fiiggvényre (B). Laurent sorfejtés. Zérus és polus.

Cauchy-féle integralformula

Tétel (Cauchy-féle integralformula) Legyen T C C egszeresen dsszefiiggd tartomadny,
¢és f: T — C analitikus fiiggvény. & legyen tetszéleges belsé pont T-ben. Legyen
G c T olyan zdart gorbe, amelynek belseje is T-ben van, és a gorbe korbeveszi &-
t. Ekkor

f()

@)= %
Taylor sorfejtés analitikus fiiggvényre (B)

Tétel Legyen f:T — C differencialhato z, egy kérnyezetében. Ekkor ott Taylor sorba
fejtheto, és

(z=2)" = ) enz = 20"

n=0

)
F@) = fa + Y L)
n=1

ahol

f(2)
“n ijg (Z—ZO)"+1

Tegyiik fel, hogy f analitikus és f(z,) = 0. EKkor egy (z — z,) tényez6 kiemelhetd, és
f@) = (z—2)f (2)

alakban irhato, ahol f analitikus.

Laurent sorfejtés
Tétel Tegyiik fel, hogy f analitikus egy kéorgyiiriiben, azaz egy
T={z:r<|z—2y| <R}
halmazon. Ekkor f ebben a korgyiiriiben felirhato a kovetkezé hatvanysorként:

f@= ) oz =20k
k=-—0c0
ahol
L[ f@

d
2mi ), (z — zp)*H1 z

Cr =

és G egy olyan z,-t korbevevd zart gorbe, amely a fenti T tartomdny része. Ez az
un. Laurent-sor.

Zérus és polus
Definicio6 Ha f(z) = (z — zy)"f (2), f (z,) # 0 valamely n > 1 egész szamra, akkor azt
mondjuk, hogy z, n-szeres (vagy n-ed rendii) zérusa f-nek.
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Tétel Ha z, az f analitikus fiiggvény zérusa, akkor két eset lehetséges.
1. Van zy-nak olyan kérnyezete, ahol f(z) = 0 minden z-re.
2. Van zy-nak olyan kérnyezete, ahol f(z) # 0 minden z # z,-ra.

Definicio  Tegylik fel, hogy

f@) = — ()

(z—zp)"

alakban irhatd, ahol h(z) a z, egy kornyezetében olyan analitikus fliggvény,
melyre h(z,) # 0. Azt mondjuk, hogy z, n-szeres pdlusa f-nek.
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Feladatok a komplex fiiggvénytan témakorébdl

Az alabbi feladatok mintak. A vizsga soran egy hasonld tipusu feladatot kell megoldani.

Komplex szamok, ismétlés

Végezze el az alabbi szamitasokat:

5.1. 3/4 5.2. el-in/4
53. (1+1)3 5.4. (1-0)3
3 6

5.5. Z(1+i)" 5.6. Zi"
n=1 n=1
14 2i i\
5.7. ! 5.8. (-)
1—-i 2
n=0

Komplex fliggvények értelmezése

Hatarozzuk meg, hogy az aldbbi f fiiggvények a megadott D tartomanynak mit feleltetnek
meg. Rajzoljuk le az eredeti D tartomanyt és ennek f (D) képét is. (Hasznaljuk fel, hogy ana-
litikus fiiggvény esetén tartomany hataranak képe a képtartomany hatara lesz.)

59. f(z)=2z,D={z:|z| =1}

5.10. f(z)=§,D={z=x+iy:y>O}

511. f(z) =1 +1i)z,D ={z:Im(z) > 0}

512. f(z)=1+iz,D ={z:Re(z) > 0és0 <Im(z) < 2}

513. f(z)=—-iz—-1,D={z:z| <1}

514. f(z)=(-1+iz D ={z:|z| > 1}

Hatarozzuk meg, hogy az f(z) = i leképezés a komplex sik bizonyos tartomanyainak mit
feleltet meg:

515. D, ={z:0 <Re(z)}

516.* D, ={z:Re(z) > 1,Im(z) > 0}

517* D3y ={z:Im(z)>0},c>0
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Komplex fliggvények differencialhatosaga

Vizsgaljuk meg, vajon differenciadlhatok-e az alabbi komplex valtozos fiiggvények. Ahol csak
a kanonikus alak van megadva, probaljuk meg f(z)-t kozvetleniil z fiiggvényében megadni.

5.18. f(z) = y3® —3x% +i(x3 —3xy?)

519. f(z) = % 520. f(z) = Z—lz

521. f(z) = Re(2) 5.22. f(z) = 2>

523. f(2) =7 5.24. f(z) = 2x + xy?i
5.25. f(2) = e*(cos(y) — isin(y)) 5.26. f(z) =23

527. f(2) =x%— (y — 1)3 528. f(z)=1—iz
529. f(2) = |7|

Harmonikus fliggvények

Vizsgaljuk meg, harmonikusak-e a kovetkezo fliggvények. Ha igen, keressiik meg harmoni-
kus tarsukat.

5.30. u(x,y) =2x(1—y) 5.31. u(x,y) = 2x — x3 + 3xy?
5.32. u(x,y) = sh(x)sin(x) 5.33. v(x,y) = e*sin(y)
5.34. v(x,y) = —sin(x) ch(y)

5.35. Milyen C paraméter esetén lesz v(x, y) egy analitikus fliggvény képzetes része?
v(x,y) = Cx? —y? + 2y
A kapott C paraméter mellett hatarozza meg harmonikus tarsat.
5.36. Milyen C paraméter esetén lesz az alabbi fliggvény egy analitikus fliggvény valds része:
u(x,y) = Cx?y — y?

Szamitsa ki a megfelel analitikus fiiggvény derivaltjat a z, = 1 + i pontban, u(x, y)
harmonikus tarsdnak meghatarozasa nélkiil.

5.37. Igazolja, hogy alabbi fliggvény egy analitikus fliggvény képzetes része:
v(x,y) = ch(x) cos(y)

Szamitsa ki a megfeleld analitikus fliggvény derivaltjat a z, = i pontban, v(x,y) har-
monikus tarsanak meghatarozasa nélkiil.

5.38. Igazoljuk, hogy az aldbbi fiiggvény egy analitikus fliiggvény valos része:
utx,y) =x-2)y+1)

Szamitsa ki a megfelel analitikus fiiggvény derivaltjata zy = 1 — i pontban, u(x,y)
harmonikus tarsanak meghatarozasa nélkiil.
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5.39. Milyen C paraméter esetén lesz az alabbi fliggvény egy analitikus fliggvény valds része:
u(x,y) =1In(x? + Cy?)

Szamitsa ki a megfeleld analitikus fiiggvény derivaltjat a z, = i pontban, u(x, y) har-
monikus tarsdnak meghatarozasa nélkiil.

Komplex vonalintegral

5.40.
f (z% + 1)dz =2
r
haT az, = 0és z, = 1+ i pontokat 6sszekoto szakasz, z; = 0-bol inditva.
5.41. Integraljuk az f(z) = % fiiggvényt a
1.0 = {z =2e%:0<¢ < n} mentén, ndvekvo ¢ iranyban.
2. I, = {Z =2e%:0>¢> —Tr} mentén, csokkend ¢ irdnyban befutva.

30 = {Z =29 :—<¢@< n} mentén, névekvd ¢ iranyban.

5.42. LegyenT az, = 1 kozéppontu egységkornek az a fele, ahol a képzetes rész nemnegativ.
j (z—-1)dz =?
r

5.43. Integraljuk az f(z) = z — 1 fiiggvényt, T legyen a valds tengely 0 < x < 2 szakasza
novekvo x irdnyban!

544, AT ={z:|z— 1| = 2} zart gérbe mentén szamoljuk ki az alabbi integralokat:

e’ e?
(a) ﬁz_le =7? (b) ﬁde =7?

(Otlet: Alkalmazzuk a Cauchy-féle integralformulat.)

5.45. Integraljuk az f(z) = e” fiiggvényt a z; = im, z, = 1 pontokat 6sszekotd szakasz
mentén, z;-bdl indulva.

Elemi fliggveények kiterjesztése

5.46. In(1+i) =? 5.47. In(1—1i) =?

5.48. In(—i) =? 5.49. (i+ 1)t =2

5.50. 21+ =? 551, 2171 =?

5.52. In(-1) =? 5.53. 17t =?

5.54. elti =7 5.55. el7t =?

5.56. sin(i) =? sin(1 +i) =? 5.57. cos(i) =? cos(1 —1i) =?

szobeli vizsga 1405 68 /72 2014. janius 5.



Matematikai analizis II. — PPKE ITK

Jegyzetek
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Evkozi eredmény

maximalis| elért

pontszam | pontszam
1. hazi feladat zarthelyi dolgozat 10
2. hézi feladat zarthelyi dolgozat 10
Hazi feladat | 3. hazi feladat zarthelyi dolgozat 10
zarthelyi 4. hazi feladat zarthelyi dolgozat 10
dolgozatok | 5. hazi feladat zarthelyi dolgozat 10
Osszesen 50

|. Elért pontszam

1. nagy zarthelyi dolgozat 50
Nagy zarthelyi | 2. nagy zarthelyi dolgozat 50
dolgozatok Osszesen 100
11. Elért pontszam
I+ 11 150
Az évkozi dolgozatok pontszima
Kis zarthelyi eredmények
dat febr. | febr. | febr. | marc. | marc. | marc. | apr. | apr. | apr. | maj. | maj. | maj.
atum | 9y, 18 | 25 | 4. |18 | 25 | 1. | 8 | 29. | 13. |20./1|20./2
pont
Gyakorlati jegy Elért érdemjegy
Erdemjegy | ponthatarok
1 (elégtelen) 0- 60
2 (elégséges) 61— 83
3 (kozepes) 84 — 106
4 (jo) 107 — 128
5 (jeles) 129 — 150
Jegytablazat
1 2 3 4 5 masik jegy
11 1|1 1|1 |1
g
BI/ 2|12, 2 3|3
K 3 1 2 3 3 4
Ylal1]3[38 4|4
g
y 5 1 3 4 4 5

Ha a két jegy alapjan kapott jegy sziirke hatterli mezdbe esik, akkor amennyiben a kis zarthe-

lyik 6sszpontszama eléri a huszat, az eggyel jobb osztalyzat is lehetséges.
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