Elsérend linearis differencidlegyenlet-rendszerek

A kovetkez§ alaku (alakra hozhato) differencialegyenlet-rendszereket hivjuk el-
s6rend allando6 egyiitthatos homogén lineéris differencidlegyenlet-rendszereknek:

Yy = anyr + apys + ...+ a1,Yn
yé = a21Y1 + a22Y2 + ... + A2aYn

(1)

y; = ApY1 + An2Y2 + ... + Qunln

Matrixos jeloléssel:

y = Ay, (2)
ahol
app a2 ... Qip n yi
A1 Q22 ... Q2pYn Y2 yé
A — P g — 9 g/ = (3)

ap1 Qp2 ... Apn Yn Yn

Egy megoldasi modszer: Ha a v vektor a A sajatértékhez tartozos sajatvektor
(azaz Av = Av és v # o), akkor a

y(t) = X (4)

megoldésa az (1) differencialegyenlet-rendszernek.

Mivel (1) linearis ezért elég talalni n darab (linearisan) fiiggetlen megoldéast.
Legyenek az y,,y,,...,y,  figgvények n darab fiiggetlen megoldasa (1)-nek, ez
esetben az altaldnos megoldas

y=cy, tey, + ...ty (5)

alaki, ahol ¢y, s, ..., c, valos konstansok.
Példaul, ha az A matrix sajatvektorai mind valosak és kiilonboz6ek, akkor az
y(t) = e*v alakban kapott megold4sok mind fiiggetlenek.

FELADATOK:

1. Oldja meg a kovetkez6 differencidlegyenlet-redszereket:
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Yo = Y1+ 2y Yy = 2y1 + 2y»
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MEGOLDASOK:
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