
A PLanG programozási nyelv kiterjesztése
Önálló laboratóriumi beszámoló

2015.

Készítette:
Scipiades Ármin

Konzulens:
Dr. Feldhoffer Gergely





 
 

 

 

Önálló laboratórium beszámoló 

 

Név:           Scipiades Ármin Neptun kód:    A5OGRN Képzés:  MI-Bsc 

Dolgozat címe:        A PLanG programozási nyelv kiterjesztése 

Konzulens(ek) neve:       Dr. Feldhoffer Gergely 

 

 
A hallgató a kitűzött feladatot megfelelő színvonalon és a kiírásnak megfelelően teljesítette. 
 
Az írásbeli beszámoló javasolt érdemjegye (számmal és betűvel): 
 
 
 
 
 

Konzulens aláírása 
Budapest, 2014. május 18. 

Pázmány Péter Katolikus Egyetem 
Információs Technológiai és Bionikai Kar 





Tartalomjegyzék

1. Bevezetés 1

2. Programozási nyelvek 2
2.1. Történeti áttekintés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. Fogalmak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. Programozási nyelvek minőségi mutatói . . . . . . . . . . . . . . . . . . 5

2.3.1. Kifejezőerő . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2. Belső kiterjeszthetőség és makrókifejezhetőség . . . . . . . . . . . 6
2.3.3. Hasznosság és használhatóság . . . . . . . . . . . . . . . . . . . . 6

2.4. Oktatási célú programozási nyelvek . . . . . . . . . . . . . . . . . . . . . 8

3. Fordítóprogramok 10
3.1. A compiler általános felépítése . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. A környezetfüggetlen analízis eszközei . . . . . . . . . . . . . . . . . . . 10

4. A PLanG programozási nyelv kiterjesztése 12
4.1. Követelményfeltárás . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1. A PLanG programozási nyelv értékelése . . . . . . . . . . . . . . 12
4.1.2. A futtatókörnyezet értékelése . . . . . . . . . . . . . . . . . . . . 13
4.1.3. Összegzés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.4. Ajánlások . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2. Tervezési döntések . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3. A prototípus implementációja . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.1. A nyelvtan megadása . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2. Lexikális elemzés . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.3. Szintaktikus elemzés . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.4. Szimbólumtábla . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.5. Szemantikus elemzés . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.6. Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4. A tervezési döntések utólagos értékelése . . . . . . . . . . . . . . . . . . 17

Hivatkozások jegyzéke 18





1. Bevezetés

A PLanG1 programozási nyelvet 2005 óta használják karunkon a programozás alapjainak
oktatására: a nyelvet és a hozzá tartozó fejlesztői környezetet direkt erre a célra tervezte
és implementálta Lövei László.

A PLanG oktatási célú nyelv, tervezése során az elsődleges szempont a procedurális
programok működésének demonstrálása volt[1], ezért eszköztára meglehetősen szegé-
nyes: hiányoznak az alprogramok, a módszertan oktatását segítő eszközök, de még az
alapvetőnek tekinthető elsif konstrukció is hiányzik a nyelvből. A nyelv Turing-teljes
ugyan (elvégre rendelkezik elágazással és ciklussal), így elvben minden fejlettebb progra-
mozói eszköz szimulálható rajta, de ez – alprogramok híján – csak nagyon nehézkesen
lehetséges, a programozással épp csak ismerkedő diákoktól semmiképp nem várható el.
Oktatási célú programozási nyelvként a PLanGnak egyszerűen használható, kiterjedt
programozói eszköztárat nyújtva inspirálnia kellene a diákokat, megnyitni előttük a
programozás világát. Ehhez képest azt tapasztaljuk, hogy a PLanG gyakran gátolja a
tanulót a programozás alapelveinek elsajátításában.

Önálló laboratóriumi feladatom az volt, hogy ezt az intuitív meglátást racionális
elvekkel támasszam alá: formális rendszert keresve értékeljem a PLanG minőségét, illetve
vázoljak fel egy lehetséges kiterjesztést, ami javítaná a nyelv minőségét.

A 2. részben minőségi mutatókat keresünk a programozási nyelvekhez, különös
tekintettel az oktatási célú programozási nyelvekre.

A 3. részben futólag áttekintjük a fordítóprogramok általános működését.
A 4. részben a 2. részben ismertetett metrikák szerint vizsgálom a PLanGot és

javítási lehetőségeit, és beszámolok a PLanG kiterjesztett változatát fordító program
prototípusáról.

1A betűszó feloldása Lövei László szíves közlése szerint egyszerűen Programming Language, de
érdemes megemlíteni az egyetemen elterjedt legendát, hogy a PLanG a Pázmány Language rövidítése.

1



2. Programozási nyelvek

A programozási nyelv algoritmusok leírására szolgáló formális jelölésrendszer, amelyet
emberek és számítógépek is értelmezni tudnak. A programozási nyelv szolgálhat ember
és gép közötti kommunikáció eszközeként, lehetővé téve a programozónak, hogy a
feladatot megoldó algoritmust a számítógép számára érthető módon megfogalmazza.
De a programozási nyelv kommunikációs eszköz lehet ember és ember között is, hiszen
a megírt programot a programozón kívül mások is olvasni fogják majd, akár mert
javítaniuk kell a programon, akár mert tovább akarják fejleszteni, akár mert tanulni
akarnak belőle.

2.1. Történeti áttekintés

Az embernek és a gépnek a közös nyelvvel szemben támasztott igényei jelentősen
eltérnek. Kezdetben, a számítógépek megjelenésekor egyértelműen a gépek igényei
voltak előtérben: a programozónak ténylegesen a gép nyelvén kellett beszélnie, gépi
kódban kellett közölnie a gondolatait, vagyis ténylegesen bináris számok sorozataként
kellett megírnia a programját, ahol minden szám egy-egy gépi utasítást, illetve az
utasítás operandusaiként szolgáló memóriacímeket jelölte. Ez nagyon távol áll az emberi
gondolkodástól, a természetes nyelven kifejezett algoritmustól: a program lefordítása a
gép nyelvére a programozó igen nehéz és munkaigényes feladata volt, a program olvasása
pedig hasonlóan nehéz.

Az ember-orientált nyelvek kialakulásának első lépése a csak embereknek szánt
programleíró jelölésrendszerek megjelenése volt: Konrad Zuse Plankalkülje, Neumann
János és Herman Goldstine programleíró folyamatábrái, Currie lambda-kalkulusa voltak
az első olyan rendszerek, amelyek lehetővé tették algoritmusok formális leírását. Érdemes
megjegyezni, hogy bár a matematika nagyon fejlett eszköztárat épített ki statikus
struktúrák leírására, az algoritmusokat egészen addig természetes nyelven adták meg[2].

A negyvenes évek végén jelentek meg az első assembly-szintű nyelvek, ahol bináris
számok helyett a programozó már rövid nevekkel, mnemonikokkal hivatkozhatott egy
gépi utasításra, és konkrét memóriacímek helyett már azonosítókkal hivatkozhatott
változókra. Az így leírt programot táblázatok segítségével könnyű átírni gépi kódra, és
ez a fordítási folyamat könnyen automatizálható is: így jelentek meg az assemblerek, az
első fordítóprogramok. Ez volt at első lépés az ember-orientált nyelvek kifejlődése felé: a
programozóknak nem kellett többé numerikus utasításkódokat észben tartaniuk vagy
memóriacímeket számolniuk, sőt, a fordítóprogram már képes volt bizonyos hibákat
felderíteni a kapott programban. És bár az assembly-szintű nyelvekben eleinte a gépi
utasítások és az assembly mnemonikok között egy-egy kapcsolat volt, de hamarosan
megjelentek az első „makrók”, azaz makróutasítások (vagyis szó szeint „óriásutasítások”)
is, amelyek több gépi utasításból álló sorozatokat helyettesítettek. Megjelentek az első
szubrutinkönyvtárak is, amelyek lehetővé tették a programozó számára a magasabb
absztrakciós szinten való gondolkodást.

Az ilyen korai autocoding technikák fejlődésével alakultak ki a magasszintű nyel-

2



vek, melyeket architektúrafüggetlenség, a magas absztrakciós szint biztosítása, az
assemblyhez képest rövidebb, áttekinthetőbb szerkezetű programok írásának lehetősége
jellemez, és az, hogy a nyelv közelebb áll az emberi nyelvhez. Fejlődésükben katalizá-
torként hatott Noam Chomsky generatív nyelvelmélete, melynek alapján viszonylag
komplex nyelvtani struktúrákat hatékonyan felismerő és gépi nyelvre fordító algoritmu-
sokat lehetett kidolgozni.

A magasszintű nyelvek kifejlesztésének motivációja a programozói termelékenység
növelése volt[3], a programozók körében mégis sokáig érezhető volt egyfajta ellenérzés
a magasszintű nyelvekkel szemben, mondván, hogy a magasszintű nyelvek emberorien-
táltsága a hatékonyság és a kreativitás rovására megy[4, 12. fejezet]. A számítógépek
teljesítményének fejlődésével és az egyre szofisztikáltabb fordítóprogramok megjelenésé-
vel ezek a kritikák háttérbe szorultak ugyan, de ezzel párhuzamosan egyre magasabb
szintű, egyre emberorientáltabb programozási nyelvek jelentek meg, melyekkel szemben
a korábbi magasszintű nyelvek kedvelői fogalmaztak meg hasonló kritikákat. A magas-
szintű nyelv kifejezés így egyre magasabb szintű nyelvekre utal: az első magasszintű
nyelveket egy mai programozó már jórészt alacsonyszintűnek tekinti. A ma programozója
számára „túl magas” szintű programozási nyelvek például a programkódot automatiku-
san generáló szoftvertervezési eszközök; ezekkel szemben a mai programozók hasonlóan a
hatékonyságot és a kreativitást féltik, mint a hatvanas évek programozói a magasszintű
nyelvektől[5].

2.2. Fogalmak

A nyelv szintaxisa azon szabályok halmaza, amelyek megadják a nyelven írható összes
formailag helyes programot. A szintaxis megadható formális környezetfüggetlen2 nyelv-
tannal[6, p. 25], ekkor a nyelv szintaktikailag helyes programjainak halmaza a nyelvtan
által generált mondatok halmaza, ML. Egy ilyen mondat levezetési fáját szintaxisfának
nevezzük. Megkülönböztethetjük a felszíni és absztrakt szintaxist: míg a felszíni szintaxis
szabályai tényleges szövegekkel, karakterláncokkal operálnak, és ezekről döntik el, hogy
alkothatnak-e formailag helyes programot; addig az absztrakt szintaxis szabályai a
program „mélystruktúrájával” foglalkoznak, és nem törődnek azzal, hogy egy absztrakt
nyelvi elemnek milyenek a felszíni megnyilvánulásai, lexikális tulajdonságai. Az absztrakt
szintaxishoz lexikális szabályokat rendelve felszíni szintaxist kapunk.

A nyelv szemantikája a formálisan helyes mondatok jelentését megadó szabályok
összessége. Megkülönböztetjük a statikus szemantikát és a dinamikus szemantikát: a
statikus szemantika a programok futtatás előtti viselkedésével, míg a dinamikus szeman-
tika a program futásidejű viselkedésével foglalkozik. A statikus szemantika szabályai a
formailag helyes programok halmazát tovább szűkitik egy PL ⊆ML halmazra, amelyet
az érvényes programok halmazának nevezünk: a gyakorlatban ezek azok a programok,

2 Bizonyos programozási nyelvek szintaxisát környezetfüggőnek mondják, híres példa erre a C++,
azonban a környezetfüggőség gyakran a lexikális sajátosságok eredménye. Definícióink mindenképp
határozottabbak és egyértelműbbek lesznek, ha a szintaxist mindig környezetfüggetlennek tekintjük, és
a környezetfüggő elemeket a statikus szemantika hatáskörébe soroljuk; ráadásul ez a megközelítés jól
tükrözi a fordítóprogramok működését.

3



amelyeket a fordítóprogram hiba nélkül elfogad. A dinamikus szemantika szabályai
minden érvényes programhoz megadják a program pontos futásidejű viselkedését.

Az absztrakt szintaxis elemeit programkonstruktoroknak, a programkonstruk-
torokat és a hozzájuk kapcsolódó szemantikai szabályokat együttesen pedig nyelvi
elemeknek nevezzük. Ezek azok az alapvető építőelemek amelyeket használva a progra-
mozó felépítheti programját.

Bizonyos elemhalmazokról igazolható, hogy ha ezeket tartalmazza egy nyelv, akkor
a nyelv univerzális, más néven Turing-teljes, vagyis a nyelvvel szimulálható egy
Turing-gép, ami azt jelenti, hogy minden lehetséges algoritmus kifejezhető csak az adott
elemeket használva. Procedurális nyelvek esetében történelmi és kényelmi okokból a
szekvencia, az elágazás és a ciklus halmazának meglétét szokás a nyelv univerzalitását
biztosítónak tekinteni: ha egy nyelvben ez a három nyelvi elem létezik, akkor az a nyelv
biztosan univerzális[7].

A fentiek alapján formális definíciót is adhatunk a programozási nyelv fogalmára:

Definíció (Programozási nyelv[8, 3.1 definíció]). Egy L programozási nyelv megadható
az L = (ML,PL, evalL) rendezett hármassal, ahol

• ML a nyelv mondatainak, a nyelv KL = {K1 . . . Kn} programkonstruktoraiból
szabadon generált absztrakt szintaxisfák halmaza.
• PL ⊆ML,PL 6= ∅, az L-beli programok halmaza.
• evalL a PL felett értelmezett predikátum, a nyelv dinamikus szemantikája, amely

akkor igaz, ha a program elvégzi a feladatát3.

Az így meghatározott absztrakt nyelv lexikális sajátosságait egy R : K → Σ∗,
a nyelv programkonstruktoraihoz karaktersorozatokat rendelő függvény megadásával
definiálhatjuk. Ha ez a leképezés nem injektív, a nyelv felszíni szintaxisa környezetfüggővé
válhat.

Definíció (Konzervatív kiterjesztés[8, 3.2 definíció]). Egy L nyelv {K1 . . . Kn} elemekkel
való konzervatív kiterjesztése egy L′ nyelvnek, ha {K1 . . . Kn} ∩KL′ = ∅, KL = KL′ ∪
{K1 . . . Kn}, ML′ ⊂ML, PL′ ⊂ PL, és ∀P ∈ PL′ : evalL′(P )⇒ evalL(P ). Ekkor L′-t L
leszűkítésének mondjuk.

Vagyis L-t úgy kapjuk, hogy L′-höz hozzáadunk pár új nyelvi elemet, de minden, a
régi nyelven írt program a kiterjesztett nyelvben is program, és ezek futásidejű viselkedése
sem változik.

A konzervatív kiterjesztésre a L = L′ + {K1 . . . Kn} jelölést, míg a leszűkítésre a
L′ = L \ {K1 . . . Kn} jelölést használjuk.

Definíció (Nyelvhasználat). Azt mondjuk, hogy egy K programkonstruktor nem része
egy programozó nyelvhasználatának, ha programjaiban soha nem jelenik meg K. Ekkor a
programozó által használt L′ nyelv az ideális L nyelv leszűkítése, L′ = L \ {K}.

3 Felleisen evalL-t olyan predikátumként definiálja, ami akkor igaz, ha a program terminál[8], ezzel
definíciója a lehető legáltalánosabb. Ezt túl megengedőnek érzem, ezért választottam ezt a homályos, ám
intuitív meghatározást. Ennek pontosabb definiálására egy lehetőség evalL 〈feladat, program〉 párok
feletti értelmezése.

4



Egy programozó nyelvhasználatából egy nyelvi elem hiányozhat technikai megfonto-
lásokból (mert „nem hatékony”), mert a használata nem illendő (jó példa erre a goto

utasítás, ami ugyan a legtöbb nyelvben máig létezik, még olyan modern nyelvekben is,
mint a Ruby, de használata a magasszintű programozásban teljesen eltűnt), vagy akár
mert nem tud az adott nyelvi elem létezéséről.

Naivnak tűnhet a feltételezés, hogy egy képzett programozó nem tud egy nyelvi
elemről, de gondoljunk bele, hogy egy nyelv standard könyvtárának függvényei is nyelvi
elemek; másrészt a modern programozási nyelvek gyakran nagyon komplexek, emberek
számára nehezen megismerhetőek a maguk teljességében.

2.3. Programozási nyelvek minőségi mutatói

Az univerzális programozási nyelvek számításelméleti szempontból teljesen azonosak:
tetszőleges rendelkezésre álló idő és memória mellett bármely számítás elvégezhető velük.
Intuitívan érezzük viszont, hogy a nyelvek között minőségi különbségek vannak, ez a
különbség viszont nehezen megfogható: magas és alacsony szintű nyelvek között könnyű
minőségi különbséget találni, de két magasszintű nyelv minőségét nehéz összehasonlítani.

2.3.1. Kifejezőerő

A programozók informálisan gyakran mondják, hogy ez vagy az a nyelv nagyobb ki-
fejezőerővel bír : hogy egy algoritmus könnyebben, elegánsabban implementálható egy
nyelvben, mint a másikban, hogy egy nyelvben könnyebben kifejezik magukat, mint
egy másikban. Az az intuitív meglátásunk is hamar kialakul, hogy némely nyelvi elem
fontosabb a kifejezőerő szempontjából, mint a többi: némelyik lényeges, némelyik meg
csak szintaktikus cukormáz, amely könnyen kifejezhető más nyelvi elemekkel, így a nyelv
kifejezőerejéhez nem ad hozzá, csak édesebbé teszi a nyelvet az emberek számára.[9]

A kifejezőerő szubjektív fogalom, de voltak kísérletek a definiálására: a hacker-
kultúrában[10] és a szoftvertechnológiában[4][11] is meghatározó nézet szerint egy nyelv
kifejezőereje a tömörségével (succintness) arányos – egy nyelv annál kifejezőbb, minél
kevesebb szóval tudok elmondani valamit. Ez jól illik a kifejezőerőről alkotott intuitív
képünkhöz: a tökéletes programozási nyelv az volna, amelyben bármely feladat egyetlen
utasítással megoldható.

Ha a kifejezőerő arányos a nyelv tömörségével, a kifejezőerő mérhető egy program
sorokban, karakterekben, utasításokban mért hosszával, esetleg a tömörített forrás-
kód méretével4: ezek statisztikák készítésére könnyen alkalmazható metrikák, de az
eredményeket jelentősen torzítják a nyelv lexikális sajátosságai, névadási és tördelés
konvenciói, melyekről érezzük, hogy bár fontosak, nem kellene igazán befolyásolniuk a
kifejezőerőt. Ezt a problémát kiküszöbölhetjük, ha a tömörséget egy program absztrakt

4Az elterjedt tömörítő eljárások optimálisak, közelítik a Shannon forráskódolási tételéből ismert
tömörítési határt, így a tömörített file mérete mond valamit a forrásszöveg entrópiájáról, informá-
ciótartalmáról. Ez a megközelítés vonzóan tudományosnak tűnhet, amíg fel nem ismerjük, hogy a
forrásszöveg entrópiája alapvetően a programot leíró szöveg karakterereinek eloszlásától függ, ami
tisztán lexikális kérdés, és nincs nagyobb összefüggésben a nyelv kifejezőerőerejével, mint a karakte-
rek száma. Ilyen megközelítésért lásd például a The Computer Language Benchmarks Game oldalt:
http://benchmarksgame.alioth.debian.org.

5

http://benchmarksgame.alioth.debian.org


szintaxisfájának elemszámával mérjük, de megfelelő elemzőt írni minden vizsgálandó
nyelvhez fáradságos feladat. Akármilyen metrikát választunk is, a program méretének
mérése, mint a statisztikai nyelvtechnológiai eszközök általában, csak akkor használható,
ha nagy korpusszal dolgozunk, a nyelv ismerete önmagában tehát nem elégséges a nyelv
kifejezőerejének vizsgálatához. Ráadásul a kifejezőerőt tisztán a tömörséggel magya-
rázó elmélet – formális definíció híján – nem ad lehetőséget, hogy bármit rigorózusan
bizonyítsunk egy nyelvről. Nem igazán teszi lehetővé azt sem, hogy nyelvi elemekről
érveljünk: szintaktikus cukormáz-e, vagy létfontosságú?

Mathias Felleisen a formális rendszerek elméletének eszköztárát felhasználva épített
rendszert a kifejezőerő leírására és elemzésére[8]. Informálisan úgy foglalhatjuk össze,
hogy L kifejezőbb L′ = L \ {K1 . . . Kn}-nél, ha egy L-beli, valamely Ki konstruktort
tartalmazó program lefordításához L′-re a program globális átszervezése szükséges.
Azokat a programkonstruktorokat pedig, amelyeknek fordításához csak lokális transz-
formációkra van szükség, kifejezhetőnek vagy eliminálhatónak mondjuk. A ϕ : L → L′

fordítási függvény tulajdonságainak megkötésével definiálhatjuk a kifejezőerő különböző
szintjeit.

Felleisen rendszerét használva a nyelvtervezés folyamán formálisan is bizonyítható,
hogy egy nyelvi elem hozzáadása ténylegesen változtat-e a nyelv kifejezőerején.

2.3.2. Belső kiterjeszthetőség és makrókifejezhetőség

Egy kiterjeszthető nyelvben a programozó új nyelvi elemeket hozhat létre. A legtöbb
nyelv kiterjeszthető valamilyen szinten, például lehetőséget biztosít alprogramok, új
adattípusok létrehozására. Néhány nyelv arra is eszközt biztosít, hogy a programozó
tetszőleges új nyelvi elemeket hozzon létre: a Lisp makró konstrukciói segítségével
például a nyelv tetszőleges programkonstruktorokkal bővíthető. Ezeket az eszközöket
a szintaktikai absztrakció eszközeinek nevezzük, és segítségükkel a kifejezőerő egy új
szintjét definiálhatjuk.

Azt mondjuk, hogy egy K nyelvi elem makrókifejezhető L′-ben, ha létezik egy meg-
felelő A szintaktikai absztrakció, amelyre ϕ(K(e1 . . . en)) = A(ϕ(e1) . . . ϕ(en)); vagyis
a nyelvi elem eliminálása nem csak a program globális struktúráját őrzi meg, hanem
az eliminált L-mondat alkotóelemeinek struktúráját is[8, 3.11 definíció]. Ez a definíció
nagyon közel áll a szintaktikus cukormázról alkotott intuitív képünkhöz.

Látható, hogy a nyelv kifejezőerejét megsokszorozza egy szintaktikai absztrakci-
ós eszköz; és minél megengedőbbek az absztrakciós eszközök, annál nagyobb a nyelv
kifejezőereje. Így például egy alprogram-absztrakciót biztosító nyelv, amelynek alprog-
ramjai elfogadnak paraméterként szekvenciát, nagyobb kifejezőerejű, mint amelyiknek
alprogramjai nem tudnak szekvenciát kezelni paraméterként.

2.3.3. Hasznosság és használhatóság

A programozási nyelv az ember és gép közötti kommunikáció eszköze, ezért értelmezhe-
tőek rá a felhasználói felületek minőségi mutatói[12]. Egy programozási nyelv hasznos

6



(useful) ha lehetővé teszi, hogy a programozó gyorsan és hatékonyan írja meg a feladatát
megvalósító programot[6]. A hasznosság fő metrikái:

Kifejezőerő Két nyelv közül a nagyobb kifejezőerejű a hasznosabb. Ez ugyan reláció,
és nem metrika, de a nyelv szintaktikai absztrakciós eszközeinek száma és minősége
jó becslés egy abszolút kifejezőerőre.

Robosztusság A programozó hibája nem járhat katasztrofális következményekkel. A
nyelv robusztus, ha nyelvi elemei lehetővé teszik a hatékony hibadetektálást.

Emberorientáltság A nyelv emberorientált, ha amikor csak lehet, a programozó
igényeit a gép igényei elé helyezi.

Feladatorientáltság A nyelvnek csak azokat a nyelvi elemeket kell biztosítania, ame-
lyeket a programozók feladataik során használnak; és nem szabad olyan nyelvi
elemeket biztosítania, amelyeket nem használnak. Ugyanis minél több nyelvi ele-
met biztosít egy nyelv, annál komplexebb, nehezebben használható lesz, arányosan
kisebb lesz a programozók nyelvhasználata.

Ezek a metrikák gyakran nehezen mérhetőek, de objektívek. Ezzel szemben a hasz-
nálhatóság (usability) metrikái eredendően szubjektívek, egy nyelv – vagy bármely
rendszer – használhatósága a felhasználó demográfiai hátterétől és tapasztalatától függ[5].
A használhatóság analízisére Green adott 1989-ben objektív, racionális rendszert, ame-
lyet a jelölésrendszerek kognitív dimenzióinak (cognitive dimensions of notation, CD)
nevezett el[13]. A CD rendszere 14, páronként független dimenziót ad egy jelölésrendszer
használhatóságának meghatározására[14]. Ezekből a programozási nyelvek szempontjá-
ból legfontosabbak a következők:

Absztrakció Milyen szintaktikai absztrakciós eszközöket biztosít a nyelv? Hány ilyen
eszköz használatát kell elsajátítani a nyelv minimális használatához?

Hibák vonzása Mennyire növeli a nyelv a programozói hibák előfordulásának esélyét?
Konzisztensség Hasonló dolgok hasonló módon fejezhetőek ki a nyelvben? Hasonló

szemantikájú nyelvi elemek hasonló szintaktikával és lexikális tulajdonságokkal
rendelkeznek?

Leképezés közelisége Mennyire könnyen fejezhető ki a nyelven a programozó algorit-
musa, hány nyelvi elem felel meg a programozó elvi megoldásának egy lépésének,
milyen könnyen fejezhető ki a feladat állapotterének műveletei a nyelvben?

Szellemi erőfeszítés Mekkora erőfeszítést kíván a nyelv használata?
Szerepkifejezés Mennyire nyilvánvaló, hogy egy dolog mire jó? Milyen mértékben lehet

következtetni egy nyelvi elem szemantikájára a szintaxisa és lexikális tulajdonságai
alapján?

Terjengősség Milyen röviden lehet kifejezni egy algoritmust a nyelven? Milyen hosszú-
ak a nyelv lexémái?

Viszkozitás Mekkora a kis változtatások ára? Mennyire változtatható egy program
lokális struktúrája a globális struktúra változtatása nélkül?

Egyik dimenzió sem egyértelműen „jó” vagy „rossz”, a dimenziók megítélése a nyelv
feladatától függ.

7



2.4. Oktatási célú programozási nyelvek

A programozás oktatása más követelményeket támaszt egy nyelvvel szemben, mint az
ipari felhasználás[12]. A kognitív dimenziók optimális értékei a kifejezetten a programozás
alapjainak oktatására szánt nyelvre a következőképpen alakulnak:

Absztrakció – alacsony Az oktatási nyelv absztrakciós korlátjának, vagyis a nyelv
használatához minimálisan megtanulandó absztrakciós eszközök számának nagyon ala-
csonynak kell lennie, és egyszerű programok írásához nem is szükséges túl sok absztrakciós
eszköz. A Java nyelvben például már a legegyszerűbb program írásához találkozni kell
az objektumosztály fogalmával.

Hibák vonzása – nagyon alacsony A hiba frusztrálja és elbizonytalanítja a tanu-
lót, a nyelvtervezés során minden áron törekedni kell a programozói hibalehetőségek
minimalizálására. Az C++ utasításlezáró pontosvesszőjének elhagyása például gyakori
hiba, amit a kezdők nehezen is azonosítanak, hiszen a gcc fordítóprogram hibaüzenete
szót sem ejt pontosvesszőről.

Konzisztensség – közepes A konzisztensség segíthet a tanulónak, hiszen ha elsají-
totta egy nyelvi elem használatát, akkor automatikusan használni fogja tudni a hasonló
nyelvi elemeket. Ugyanakkor nem biztos, hogy a kezdő képes felismerni egy szemantikai
hasonlóságot két nyelvi elem között, illetve nem tudja kihasználni az elvi hasonlóságot.
Jó példa a túlzásba vitt konzisztensségre a Turing és az Ada nyelvek tömbelem-lekérdező
operátora, ami ugyanúgy sima zárójelként jelenik meg, mint a függvényhívás, mondván,
hogy mindkettő értéklekérés; a diák ugyanakkor egy A(1) konstrukciót látva nem tudja
eldönteni, hogy A változó-e vagy függvény.

Leképezés közelisége – nagyon magas A nyelvnek illeszkednie kell a tanulók
feladatához és megoldásához, tükröznie kell a tanulók létező ismereteihez, világképéhez;
de mutatnia kell az elsajátítandó világképet is. A Pascal oktatónyelv például jó leképezése
egy ideális virtuális gépnek, de a kezdők világképétől távol áll, ami különösen a tömbök
és a karakterláncok nehézkes kezelésénél szembetűnő.

Szellemi erőfeszítés – alacsony A programozás során elkerülhetetlen a szellemi
erőfeszítés, de nem szabad, hogy a nyelv használata szükségtelenül nehezítse a feladat
megoldását. A Scheme oktatónyelvben például a lambda-kalkulus igényeihez idomulás
nehéz feladat a kezdő programozónak.

Szerepkifejezés – magas Jól megválasztott felszíni szintaxis mellett a tanuló sokkal
könnyebben olvashat és érthet meg programokat. Egy jó szerepkifejezésű nyelvi elem
nem igényel különösebb magyarázatot, használata azonnal értetődő. Például a C++
cout « "Hello world"; utasítása sokkal kevésbé szerepkifejező, mint a Pascal-szerű
print "hello world": a cout szóval ellentétben a print felismerhető a laikus számára
is, a « operátor megértése pedig abszolút fejlettebb tudást kíván.

8



Terjengősség – közepes A nyelvnek strukturálisan elég tömörnek kell lennie ahhoz,
hogy egyszerű programokat nagyon röviden, redundancia nélkül ki lehessen fejezni, de
a túlzott tömörség az olvashatóság rovására megy. Bőbeszédű nyelv például az App-
leScript, amelynek a természetes nyelvhez való hasonlósága gyakran a programstruktúra
átláthatatlanságához vezet.

Viszkozitás – alacsony A programozás tanulása gyakran jár kísérletező próbálga-
tással[12]; ha ez a próbálgatás, a programok változtatgatása nehéz és kényelmetlen
feladat, a tanuló lelkesedése csökkenni fog, frusztrációhoz vezethet. Magas viszkozitású
nyelv például az Ada: deklarációs blokkjai, erős típusossága, import-szabályai, nehézkes
fordítási mechanizmusa mind nehezítik a gyors próbálgatást.

A kifejezetten a programozás alapjainak egyetemi szintű oktatására szánt nyelv ese-
tében a hasznosság metrikái közé soroljuk a módszertani helyesség támogatását: a
nyelvnek alakítania kell a diák gondolkodásmódját, jó programozói szokások, programo-
zástechnikai és számítástudományi alapvetések elsajátítására kell késztetnie. Ez gyakran
ellentétbe kerül a használhatóság metrikáival: módszertanilag helyes megkülönböztetést
tenni például függvények és eljárások között, bár a tanulók ilyen megkülönböztetést
nem tesznek[12].

9



3. Fordítóprogramok

Formálisan a fordítóprogram egy T : PL → PL′ transzformációs függvény, melyre
∀P ∈ PL : evalL(P )⇒ evalL′(T (P )). L-t forrásnyelvnek, L′-t pedig tárgynyelvnek
nevezzük. A forrásnyelv általában magasszintű, a tárgynyelv pedig alacsonyabb szintű,
például assembly-szintű, vagy gépi kódú nyelv: az ilyen átalakítást végző programot
compilernek nevezzük[6].

A compiler feladata a gyakorlatban az, hogy a forrásnyelvi programot az embereknek
szánt, szöveges formából a gép számára futtatható programmá alakítsa.

3.1. A compiler általános felépítése

A compiler feladatát két jól elkülöníthető részfeladatra bontjuk: az analízis fázisá-
ban a forrásnyelvi programot elemzi, és az arről nyert tudást a program egy belső
reprezenzációnak nevezett struktúrában tárolja; majd a szintézis fázisában a belső
reprezentáció alapján felépíti a tárgynyelvi programot[6][15].

Analízis Szintézis

Lexikális
elemző

Szintaktikus
elemző

Szemantikus
elemző

Kódgenerátor OptimalizálóBelső
reprezentáció

1. ábra. A compiler felépítése.

Az analízis első feladata, hogy a forrásnyelvi programot reprezentáló karaktersoroza-
tot a nyelv lexikális elemeit reprezentáló szimbólumok sorozatára bontsa. Ezt a feladatot
a lexikális elemző végzi. A kapott szimbólumsorozatot a szintaktikus elemző vizsgálja
tovább, a szekvenciális mondatból próbálja felállítani a program hierarchikus struktúrá-
ját: azt a kérdést próbálja megválaszolni, hogy egy formális nyelvtan milyen levezetése
adja ki a kapott mondatot. Ha a program szintaktikailag helyesnek bizonyul, akkor
tovább elemzi a szemantikus elemző, amelynek feladata, hogy ellenőrizze, megfelel-e a
program a statikus szemantika szabályainak.

Az analízis kimenete a belső reprezenztáció, amely a forrásnyelvi programmal szeman-
tikailag ekvivalens köztesnyelvi program. A belső reprezentáció a gyakorlatban sokféle
lehet: valamilyen fastruktúra, valamilyen absztrakt utasítások szekvenciális sorozata.[15]

A szintézis során a kódgenerátor a belső reprezentáció minden egységéhez szeman-
tikailag ekvivalens tárgynyelvi utasítást rendel. A kapott tárgynyelvi programon a
kódoptimalizáló további transzformációkat végez, hogy növelje a kapott program haté-
konyságát.

3.2. A környezetfüggetlen analízis eszközei

Miután a lexikális elemző a program szövegét a forrásnyelv felszíni szintaxisát leíró G

környezetfüggetlen nyelvtan terminális szimbólumainak s sorozatává, a nyelv mondatává,
alakította, a szintaktikus elemző feladata konstruktívan bizonyítani, hogy s valóban
levezethető G-ből. A bizonyítás konstruktív volta az jelenti, hogy az elemző algoritmus

10



ténylegesen megadja az s-t generáló levezetési fát. Egy nyelvtant nemegyértelműnek
mondunk, ha létezik hozzá olyan mondat, amely többféleképpen levezethető, ami av-
val jár, hogy különböző elemzésekhez különböző tárgyprogramok tartoznak – ez nem
kívánatos tulajdonság.

A környezetfüggetlen analízis jól kutatott, megoldottnak tekinthető probléma5. Ear-
ley 1968-ban adott algoritmust, amely tetszőleges környezetfüggetlen nyelvtant O(n3)
időben elemez, azonban sok algoritmus létezik, amely a környezetfüggetlen nyelvek
halmazának valamely részhalmazába tartozó nyelveket ennél hatékonyabban, vagy egy-
szerűbben implementálható módon elemzi. A legfontosabb ilyen nyelvosztályok az LR(1)
grammatikák, az LL(k) és az LL(1) grammatikák osztálya. Az ezen nyelvosztályokat
meghatározó algoritmusokkal könnyen automatizálható módon elemző táblázatokat épít-
hetünk a nyelvhez, amelyek lineáris időben képesek feldolgozni a bemeneti karaktersort6.
Az ilyen elemző táblázatokat építő automatizáló eszközöket az iparban széles körűen
használják. Ilyen például a híres YACC, illetve nyílt forráskódú változata, a GNU bison
(módosított LR(1) elemzők), és a modernebb, Java-alapú ANTLR (módosított LL(k)
elemző).

Az automatizált elemzőgenerátorok hasznos eszközök, de a fordítóprogramok tervezői
gyakran mégis kézzel írják meg az elemzőt. Régi, elterjedt, bevált módszer a rekurzív
leszállásos elemzés módszere, melynek lényege, hogy a nyelvtan minden nemterminális
szimbólumához a szimbúlum helyettesítési szabályát mgvalósító eljárást rendelve, egy
vagy több előreolvasott szimbólum alapján döntést hozva, az implementációs programo-
zási nyelv végrehajtási vermét használva szimulálunk veremautomatát.

A rekurzív leszállásos elemező előnye a táblázatos módszerekkel szemben, hogy
nagyon könnyű megvalósítani, lehetőséget ad informatív hibaüzenetek generálására,
és jól olvasható is, amennyiben az elemzőt végignézve megismerhetjük a nyelvtant.
További előny, hogy az eljárásokban megkötés nélkül ki tudjuk használni a Turing-
teljes implementációs nyelv teljes eszközkészletét, vagyis a szimulált veremautomatánk
kifejezőerejét tetszés szerint növelhetjük – igaz, az implementációs komplexitás kárára.
Rekurzív leszállásos elemzőt használ például a Lua programozási nyelv fordítóprogramja.

5 Ami nem jelenti, hogy ne lenne fejlődés, ne születnének máig újabb, hatékonyabb algoritmusok,
megközelítések: például Bryan Ford 2004-ben ismertette a Chomsky-nyelvosztályokból kilépő Parsing
Expression Grammar nevű nyelvosztályt és az ezen alapuló szintaktikai elemzőt[16].

6Ezen és egyéb elemző algoritmusok leírásáért lásd [6, 4-6. fejezetek].

11



4. A PLanG programozási nyelv kiterjesztése

4.1. Követelményfeltárás

Mint minden szoftverfolyamatnak, a nyelvtervezés első fázisa is a követelmények feltárása:
a nyelv feladatterének elemzése, a felhasználói igények felmérése. Célszerű lett volna
kérdőíves felmérést végezni elsőéves diákok részvételével, komolyabban kutatni a nyelvek
pedagógiai aspektusait, illetve elemezni lehetett volna az egyetem rendelkezésére álló
nagyméretű korpuszt; erre erőforrások hiányában nem került sor.

Mivel létező nyelv kiterjesztéséről van szó, elemezni kellett a létező nyelvet is a 2.4.
részben ismertetett metrikák szerint.

4.1.1. A PLanG programozási nyelv értékelése

A PLanG első pillantásra szembetűnő jellegzetessége, hogy kulcsszavai magyar nyelvűek,
ami magyar diákok számára növelheti a szerepkifejező erőt. Mégis sok kulcsszó esetlen,
furcsa megfogalmazású (MEGNYIT, KI, KEREK, RND), bár rövid (ami csökkenti a terjen-
gősséget). Míg az angol programozási nyelvek kulcsszavai, függvénynevei rendszerint
felszólító módú igék, addig a PLanG módszeresen főneveket és mellékneveket használ,
még a függvénynevekre is. Az ilyen függvények, utasítások szerepkifejező ereje alacsony
(vajon KEREK 10.5 kerekíti az értéket, vagy azt mondja meg, kerek szám-e az érték? a
NAGY ’z’ azt mondja, nagybetű-e a paraméter vagy nagybetűvé alakít?). A kulcsszavak
közül a CIKLUS nem feltétlen érthető egy olyan diáknak, aki még soha nem programozott;
szerepkifejezőbb lehetett volna például az *ISMÉTELD kulcsszó.

Az operátorok között is vannak alacsony szerepkifejezésű elemek: az @ infix operátor
jelentése még gyakorlott programozóknak sem nyilvánvaló, de nem magától értetődő az
sem, hogy a /= az áthúzott egyenlőségjel helyett áll, és a DIV és a / osztások közül sem
evidens, melyik melyik. Hasonlóképp, bár kis programozói előképzettséggel „nyilvánvaló”
a := értékadó utasítás szemantikája, kezdőknek nem feltétlen az: anekdotikus bizonyíték
szerint viszonylag gyakori hiba, hogy a diák nem tudja, melyik oldal adja, és melyik
kapja az értéket. Valóban, a := jó példája a memetikus kompatibilitásnak, vagyis hogy
csak azért csinálunk valamit úgy, mert mások is úgy csinálták, és nem vesszük figyelembe
az eltérő igényeket[12, 6.1.5.2. rész]. Szintén alacsony a tömbdeklarációk szerepkifejező
ereje (EGÉSZ[5]), ez is a memetikus kompatibilitásra törekvésből fakad.

Az I/O utasítások szerepkifejező ereje viszonylag magas, használatuk kevés szellemi
erőkifejtést kíván. A szöveg típusú változók I/O-kezelése nem idempotens7, de mivel
a beolvasás a sor végéig tart, a leképezés közeliségének szempontjából zavaró esetek
száma kisebb, mint olyan nyelvekben, ahol a beolvasás az első szóközig tart.

A leképezés közelisége közepes-alacsony. Jól teljesítenek az operátorok, amelyek
viselkedésükben és megjelenésükben is megfelelnek a diákok matematikai tudásának.
Különösen szép, hogy az unáris függvényeket nem kell zárójelezni (sin x), és egyedi,
ám nagyszerű az elemszám-lekérdezés cirkumfix operátora (|tomb|). Zavaró lehet a ma-

7vagyis létezik olyan x szöveg típusú érték, amelyet kiírva, majd a kiírt értéket beolvasva y-ba x 6= y

12



tematikai jelölésben megszokott *a < b < c jellegű asszociatív összehasonlítás hiánya.
Nehézséget jelenthet az EGÉSZ és VALÓS típusok megkülönböztetése, közelebb állna a
diákok gondolkodásához egy egyszerű *SZÁM típus.

A fix méretű tömbök valamelyest távol vannak a hallgatók gondolkodásától: ismerő-
sebb lenne a tanulóknak egy, a matematikai halmazokra jobban emlékeztető típus. A
tömböknek ráadásul nagyok kevés művelete van: lehet persze úgy érvelni, hogy műveletek
megvalósítása a hallgató feladata, ebből tanulnak – azonban az absztrakciós eszközök
teljes hiánya a hallgatót arra kényszeríti, hogy minden esetben külön, manuálisan,
ciklussal végezze el a műveleteket, ami csökkenti a robosztusságot és növeli a szellemi
erőfeszítést.

A nyelvtan szép, letisztult, előreolvasást nem igénylő LL(1)-es nyelvtan. Nagy erénye,
hogy nincs szükség utasításlezáró jelre, ez jelentősen csökkenti a „becsúszó” hibák[ld. 12,
4.2.2 rész] valószínűségét. A legtöbb hibalehetőséget a változódeklarációs rész teremti,
mert a PLanG nem deklarációs blokkot, hanem címkézett felsorolást használ, és a
felsorolásból nagyon könnyű elhagyni a vesszőt. Az így keletkezett hibát viszonylag
nehéz feladat detektálni, a referenciaimplementáció nem is teszi meg. A deklarációs
rész a nyelv viszkozitását is növeli: új változó bevezetéséhez a használat helyétől távosli
deklarációs részt kell szerkeszteni, amit nehezít a hibavonzó szintaxis. Általában, a
deklarációs rész jó példája a gép- és nem emberorientált tervezésnek: az emberek
számára csak csekély haszna van, elsősorban a gépek számára hasznos, megkönnyíti a
feldolgozást és a kódgenerálást.

A PLanG egyáltalán nem nyújt absztrakciós eszközöket, a programozó semmilyen
formában nem változtathat a nyelven. Az alprogramok hiánya nagyban növeli a ter-
jengősséget és nagyobb szellemi erőfeszítést kíván, a felhasználó által definiált típusok
hiánya csökkenti a robosztusságot és a módszertani helyességet.

Módszertani helyességet támogató eszközök nincsenek: dedikált hibakezelési eszköz
hiányában a tanuló nem sajátíthatja el a megfelelő hibakezelést; a nyelv a megjegyzéseken
kívül nem kínál strukturált, formális eszközt az előfeltételek és utófeltételek rögzítésére
(holott a tárgy ezek használatára hangsúlyt helyez)

Ezen kívül hiányzik a nyelvből egy elsif konstrukció és a deklarációval egybekötött
változóincializálás lehetősége. Bár mindkettő kifejezhető a PLanG programkonstrukto-
raival, az így kapott szerkezetek olvasása nehezebb, írása kevésbé hibatűrő.

4.1.2. A futtatókörnyezet értékelése

A PLanG használata a tanulók számára elválaszthatatlan a grafikus futtatókörnyezet
használatától, így a nyelv elemzéséhez hozzátartozik a futtatókörnyezet hasznosságának
és használhatóságának vizsgálata is.

Kétségkívül hasznos a kifejezésfát és a memóriamodellt kirajzoló modul, bár haszán-
alatuk nem intuitív. A programszerkesztő modul nagyon primitív, hiányzik a szintaxis-
kiemelés, zárójelpárosság-ellenőrző (ez növeli a hibák vonzását), undo funckionalitás,
gyorsbillentyűk nincsenek (ez növeli a viszkozitást). Az alapvető editorfunkciók közül
hiányzik a tabulátor méretének megadásának lehetősége, a legutóbb szerkesztett file-ok

13



PLanG ideális
absztrakció nincs alacsony

hibák vonzása közepes nagyon alacsony
konzisztensség közepes közepes

leképezés közelisége közepes-alacsony nagyon magas
szellemi erőfeszítés közepes alacsony

szerepkifejezés közepes-magas magas
terjengősség alacsony-közepes közepes
viszkozitás közepes-magas alacsony

1. táblázat. A PLanG kognitív dimenziói az ideális értékekkel összehasonlítva

megnyitásának lehetősége. A gombsorban a nagy zöld „Futtatás” gomb jó használha-
tóságú, de például a „Szerkesztés” és az „Értelmezett program szerkesztése” gombok
közötti különbség egyáltalán nem világos.

A futtatókörnyezet nem interaktív, a programok előre bekészített bemenetekkel
dolgoznak, ez ellentétes a tanulók előzetes várakozásával. A fordítás folyamata két
lépésből áll, ez is meglepetést okozhat, és növeli a nyelv viszkozitását. A futtatókörnyezet
által biztosított filekezelés nagyon zavaró, nem intuitív: nem valódi, hanem virtuális
file-okkal dolgozik. Ez rendszerint megzavarja a tanulókat, magyarázatot igényel, és
csökkenti a tanuló PLanGba vetett hitét, csökkenti motivációját.

4.1.3. Összegzés

A PLanG kifejlesztésének célja az volt, hogy az addig papíron írt pszeudokódot fut-
tathatóvá tegye, illetve hogy eszközt adjon a procedurális programok működésének
demonstrálására, elemzésére[1]. Bár ennek a célnak jól megfelelt, aktívan használt, a
kurzus alapjaként szolgáló oktatási célú programozási nyelvként használhatósági mutatói
meglehetősen rosszak (lásd az 1. táblázatot).

4.1.4. Ajánlások

Alapvető fontosságú alprogramok és összetett típusok definiálásának lehetősége, ez
növelné a nyelv hasznosságát, és javítana több használhatósági dimenzión is.

A használhatóság tekintetében sokat nyernénk a deklarációs lista blokká alakításával,
vagy akár a változók szabad, programtörzsön belüli deklarációjának engedésével. Engedni
kellene a változó deklarációval egybekötött inicializálását.

A nyelv szerepkifejező ereje növelhető lenne a függvénynevek felszólító módú igévé
átalakításával, még ha ezzel a programszöveg „gyerekesebbnek” is tűnik.

Kevés költséggel járna egy assertion konstrukció implementálása, amely eszközt
biztosítana az előfeltételek, utófeltételek kezelésére. Szintén olcsó, de a hasznosságot
növelő elem egy hiba konstrukció, amely lehetővé tenné a programozónak a hiba precíz
jelzését.

Ajánlott lenne a tömbök kezelésének egyszerűsítése, például egy foreach konstrukció
bevezetésével, de egy dinamikusabb tömb típus bevezetése is előnyös lehet.

14



4.2. Tervezési döntések

A tervezett nyelvet XPLanGnak (eXtended PLanG, azaz kiterjesztett PLanG) neveztem
el, és úgy döntöttem, a PLanG konzervatív kiterjesztése lesz, vagyis minden érvényes
PLanG program érvényes XPLanG program is lesz. Ennek az az előnye, hogy így az
XPLanG könnyen kiválthatja a PLanGot; másrészt izgalmasnak tűnt a lehetőség, hogy
az XPLanG a régi, elsősként írt PLanG programjaimat értelmezni tudja.

A megvalósításhoz használt nyelvnek a lefordított program korlátlan hordozhatósága
miatt a Javát választottam. Legalacsonyabb verziószámú támogatott virtuális gépnek
abszolút elterjedtsége miatt a hatos JVM-et választottam, bár felmerült az ötös JVM
támogatása is, mivel az egyetem turdus szerverén csak ötös verziójú Java fut. Már a
projekt ötletének felmerülésekor volt egy olyan hátsó szándékom, hogy népszerűsítsem a
fordítóprogramokat hallgatótársaim körében, ezért minél hozzáférhetőbb szoftvert sze-
rettem volna írni, amelynek megértése, fordítása, módosítása könnyű, ezért határoztam
el, hogy minél kevesebb függőség felhasználásával fogok dolgozni. Azt is eldöntöttem,
hogy automatizált parser generátor használata helyett kézzel fogok rekurzív leszállá-
sos elemzőt írni, egyrészt demonstratív jellege miatt, másrészt mert megkönnyíti az
informatív hibaüzenetek generálását.

Minél általánosabb fordítóprogramot akartam írni, egy keretrendszer-félét, amely
felszíni szintaxissal paraméterezhető. Az volt az álmom, hogy több leszármazott nyelvet
kezeljen a program: a PLanGot, a PLanG apró felhasználhatósági javításokkal ellátott
kiterjesztését, majd még több, egyre jobban kiterjesztett PLanG változatokat; ráadásul
azt is szerettem volna elérni, hogy a lexikális tulajdonságok minél könnyebben testre-
szabhatóak legyenek (erre [17] inspirált), például azért, hogy külföldi vendéghallgatók is
tudják használni a nyelvet.

A fenti döntések utólagos értékeléséért lásd a 4.4 részt.

4.3. A prototípus implementációja

A prototípus központi osztálya a rosszul elnevezett Parser, amely létrehozásakor egy,
valamely nyelv nyelvtanát enkapszuláló Grammar objektummal paraméterezhető. A
Parser rendelkezik még egy Lexer objektummal, ami a programot leíró szimbólumsoro-
zat forrása, és egy Context objektummal, ami a szimbólumtáblákat enkapszulálja.

4.3.1. A nyelvtan megadása

A fordítóprogram által használt nyelvtant egy Grammar objektumban adjuk meg: vi-
szonylag szép, deklaratív szintaxissal sorolhatjuk meg a nyelv által használt lexikális
elemeket a hozzájuk tartozó felszíni formákkal (ezek karaktersorozatok vagy reguláris
kifejezések), beépített függvényeket, operátorokat. A nyelvtan helyettesítési szabályait
egy rekurzív leszállásos elemző függvényeiként adjuk meg.

15



Parser

Grammar

Lexer

Context Typechecker

Forrásszöveg AST
Interpreter

karakterek

új állapot

állapot

szabály

tokenek

AST-node

helyes AST-node

állapot

AST

2. ábra. A prototípus idealizált adatfolyam diagramja.

4.3.2. Lexikális elemzés

A Lexer a forrásszöveget bontja fel szimbólumokra a Contextben tárolt szimbólumlista
alapján. Implementációja nagyon egyszerű: a forrásszöveg bemeneti karakterfolyamá-
ra megpróbáljuk ráilleszteni a szimbólumokat leíró reguláris kifejezéseket, majd a
leghosszabb egyezést tekintjük találatnak, és ezt adjuk fel a Parsernek. Ezt az imp-
lementációt eleinte ideiglenesnek szántam, de a feladathoz mérten hatékonynak és
megbízhatónak bizonyult.

Fontos megjegyezni, hogy a Lexer valójában nem szimbólumokat ad vissza, hanem
Tokeneket. A Token rekord tartalmazza a szimbólumot, a tulajdonképpeni karakterso-
rozatot, illetve a karaktersorozat előfordulásának helyét a szövegben.

4.3.3. Szintaktikus elemzés

A Parser a szintaktikus elemzést a Grammar S metódusának hívásával kezdi meg, ahon-
nan a nyelvtan szabályfüggvényeinek rekurzív hívásaival megy tovább. Ezen szabály-
függvények visszatérési értéke egy Node, azaz az absztrakt szintaxisfa egy csomópontja.

A megvalósított absztrakt szintaxisfa reguláris és heterogén: „heterogén” mert a
csomópontok különféle típusúak (külön leszármazott osztály valósítja meg például
a feltételes utasítást és a kifejezést), és „reguláris” mert a csomópontokat egységes,
homogén interface-en keresztül is lehet kezelni.

4.3.4. Szimbólumtábla

A szimbólumtáblát a Context osztály valósítja meg. Minden nevesített szemantikai egy-
séget (típusokat, változókat, függvényeket) egy közös LeBlanc-Cook szimbólumtáblában
tárol[lásd 18, p. 30], de heterogén interface-t biztosít.

16



4.3.5. Szemantikus elemzés

A Grammar egy szabályfüggvénye kérheti egy Node szemantikus ellenőrzését a rosszul
elnevezett ASTTypechecker osztálytól. Az ASTTypechecker ellenőrzi az adott Node és
leszármazottai típushelyességét, és megkísérli rezolválni a függvényhívásokat. A prototí-
pus kezeli a túlterhelt függvényeket: a PLanG operátorai mind túlterhelt függvényként
vannak megvalósítva.

4.3.6. Interpreter

Az elkészült, típushelyes absztrakt szintaxisfát az ASTInterpreter osztály segítségével
tudjuk futtatni. Az ASTInterpreter közvetlenül a szintaxisfát bejárva hajtja végre a
programot.

4.4. A tervezési döntések utólagos értékelése

Ebben a részben a 4.2 részben ismertetett tervezési döntéseket fogom értékelni.
Szép cél volt ugyan az, hogy minden PLanG program legyen érvényes XPLanG

program is, de emiatt az XPLanGban is megjelennek a PLanG legnagyobb felhasznál-
hatósági problémái, az alacsony szerepkifejező erejű kulcsszavak és a deklarációs lista. A
változtatható lexikális elemek a kulcsszavak problémájára megoldást nyújtanak, de a
deklarációs lista súlyos problémái megmaradtak.

Nem volt egészen szerencsés választás a Java sem: a korlátlan hordozhatóság szép cél
ugyan, de hasonló eredményt érünk el, ha a népszerű operációs rendszerekre fordított
bináris állományokat terjesztjük, az egzotikusabb rendszerekhez pedig biztosítjuk a
fordítás lehetőségét.

Ezzel szemben gondot okozott, hogy a Java virtuális gép indulása sok időt vesz
igénybe, így a Javában írt parancssoros fordítóprogram növeli a nyelv effektív viszkozitá-
sát. A Java határozott objektumorientáltsága is gyakran nehezítette a tisztán imperatív
XPLanG fejlesztését, többször objektumelvű gondolatok szivárogtak bele a tervezésbe;
ez különösen a típusrendszer alakításánál jelentett gondot. De ha már Javát használ-
tam, sok gondot megspórolhattam volna külső könyvtárak szabadabb használatával:
függőségkezelő eszközök használatával a külső könyvtárak kezelése kezdőknek sem nehéz
feladat. Szintén érdemes lett volna kihasználni a Java 8 nyújtotta lehetőségeket.

Nem volt rossz döntés viszont saját elemzőt készíteni: nem került sokkal időbe,
mint egy parsergenerátor használatát tisztességesen elsajátítani, és valóban nagyobb
kontrollom volt így a hibaüzenetek generálásában, az elemzés logikai folyamatát is
egyszerűsíteni tudtam, és rengeteget tanultam.

Az, hogy egyszerű fordítóprogram helyett egyfajta keretrendszert írtam komolyan
megnehezítette és lassította a fejlesztést. Egyértelműen a túlzott generalizáció csapdájába
estem, minden tekintetben célszerűbb lett volna egy csak az XPLanGot értelmező
fordítóprogramot írni.

17



Hivatkozások jegyzéke

[1] Lövei L., magánlevelezés, 2015. feb.

[2] D. Knuth és L. Trabb Prado, „The early development of programming languages”,
Stanford University, tudományos jelentés STAN-CS-76-562, 1976.

[3] J. Backus, „The history of FORTRAN I, II, and III”, ACM SIGPLAN Notices,
vol. 13, no. 8, pp. 165–180, 1978. aug.

[4] F. P. Brooks Jr., The Mythical Man-month. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995., isbn: 0-201-83595-9.

[5] Vető I., Szoftvertechnológia előadás, 2015.

[6] Csörnyei Z., Fordítóprogramok, 2. kiadás. Typotex, 2006., isbn: 9639548839.

[7] Fóthi Á., Bevezetés a programozáshoz, 3. kiadás. 2012. [Online]. URL: http:
//people.inf.elte.hu/fa/pdf/konyv.pdf (utolsó elérés 2015. 05. 04.).

[8] M. Felleisen, „On the expressive power of programming languages”, in Science of
Computer Programming, Springer-Verlag, 1990., pp. 134–151.

[9] P. J. Landin, „The mechanical evaluation of expressions”, The Computer Journal,
vol. 6, no. 4, pp. 308–320, 1964. jan.

[10] P. Graham, „Succintness is power”, 2002. máj. [Online]. URL: http://www.
paulgraham.com/power.html (utolsó elérés 2015. 05. 14.).

[11] S. McConnell, Code Complete, 2. kiadás. Redmond, WA, USA: Microsoft Press,
2004., isbn: 9780735619678.

[12] L. McIver, „Syntactic and semantic issues in introductory programming education”,
PhD disszertáció, Monash University, 2001. jan.

[13] T. R. G. Green, „Cognitive dimensions of notations”, in People and Computers V,
Cambridge University Press, 1989., pp. 443–460.

[14] T. R. G. Green és A. Blackwell, „Cognitive dimensions of notations and other
information artifacts: a tutorial”, 1998. okt. [Online]. URL: http://www.cl.
cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf (utolsó elérés
2015. 05. 14.).

[15] L. Torczon és K. Cooper, Engineering A Compiler, 2. kiadás. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2011., isbn: 012088478X.

[16] B. Ford, „Parsing expression grammars: a recognition-based syntactic foundation”,
ACM SIGPLAN Notices, vol. 39, no. 1, pp. 111–122, 2004. jan.

[17] Balogh Zs., Testreszabható programozási nyelv implementálása, önálló laboratóriu-
mi beszámoló, PPKE ITK, 2012.

[18] M. L. Scott, Programming Language Pragmatics, 3. kiadás. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2009., isbn: 978-0-12-374514-9.

18

http://people.inf.elte.hu/fa/pdf/konyv.pdf
http://people.inf.elte.hu/fa/pdf/konyv.pdf
http://www.paulgraham.com/power.html
http://www.paulgraham.com/power.html
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

	Bevezetés
	Programozási nyelvek
	Történeti áttekintés
	Fogalmak
	Programozási nyelvek minőségi mutatói
	Kifejezőerő
	Belső kiterjeszthetőség és makrókifejezhetőség
	Hasznosság és használhatóság

	Oktatási célú programozási nyelvek

	Fordítóprogramok
	A compiler általános felépítése
	A környezetfüggetlen analízis eszközei

	A PLanG programozási nyelv kiterjesztése
	Követelményfeltárás
	A PLanG programozási nyelv értékelése
	A futtatókörnyezet értékelése
	Összegzés
	Ajánlások

	Tervezési döntések
	A prototípus implementációja
	A nyelvtan megadása
	Lexikális elemzés
	Szintaktikus elemzés
	Szimbólumtábla
	Szemantikus elemzés
	Interpreter

	A tervezési döntések utólagos értékelése

	Hivatkozások jegyzéke

