A PLanG programozasi nyelv kiterjesztése

Onall6 laboratériumi beszamold

2015.

Készitette:
Scipiades Armin

Konzulens:
Dr. Feldhoffer Gergely

Pazmany Péter Katolikus Egyetem
Informacios Technologiai és Bionikai Kar

Onallo laboratorium beszamolo

Név: Scipiades Armin Neptun kéd: ASOGRN Képzés: MI-Bsc

Dolgozat cime: A PLanG programozasi nyelv kiterjesztése

Konzulens(ek) neve: Dr. Feldhoffer Gergely

A hallgaté a kitlizott feladatot megfeleld szinvonalon és a kiirdsnak megfelelden teljesitette.

Az irasbeli beszamol6 javasolt érdemjegye (szammal és betiivel):

Konzulens alairasa
Budapest, 2014. majus 18.

Tartalomjegyzék

1. Bevezetés

2. Programozasi nyelvek

2.1. Torténeti attekintés
2.2. Fogalmak
2.3. Programozasi nyelvek minOségi mutatéi
2.3.1. Kifejezer6
2.3.2. Bels6 kiterjeszthet6ség és makrokifejezhetéség

2.3.3. Hasznossag és hasznalhatosag .

2.4. Oktatasi céla programozasi nyelvek . .

3. Forditoprogramok
3.1. A compiler altalanos felépitése

3.2. A kornyezetfiiggetlen analizis eszkozei

4. A PLanG programozasi nyelv kiterjesztése

4.1. Kovetelményfeltards o o
4.1.1. A PLanG programozasi nyelv értékelése
4.1.2. A futtatokdrnyezet értékelése
4.1.3. OSSZEZES
4.1.4. Ajanldsok

4.2. Tervezési dontések L Lo

4.3. A prototipus implementacidja
4.3.1. A nyelvtan megaddsa
4.3.2. Lexikaliselemzés
4.3.3. Szintaktikus elemzés oL
4.3.4. Szimbélumtabla o
4.3.5. Szemantikus elemzés L.
4.3.6. Interpreter

4.4. A tervezési dontések utdlagos értékelése

Hivatkozasok jegyzéke

o O O Ot Ot W NN

10
10
10

12
12
12
13
14
14
15
15
15
16
16
16
17
17
17

18

1. Bevezetés

A PLanG! programozési nyelvet 2005 éta hasznaljdk karunkon a programozas alapjainak
oktatdsara: a nyelvet és a hozza tartozo fejlesztoi kornyezetet direkt erre a célra tervezte
és implementalta Lovei Laszlé.

A PLanG oktatési célt nyelv, tervezése sordn az elsddleges szempont a proceduralis
programok miikodésének demonstralasa volt[1], ezért eszkoztara meglehetsen szegé-
nyes: hidnyoznak az alprogramok, a modszertan oktatdsat segité eszkozok, de még az
alapvetének tekinthetd elsif konstrukcié is hidanyzik a nyelvbél. A nyelv Turing-teljes
ugyan (elvégre rendelkezik eldgazassal és ciklussal), igy elvben minden fejlettebb progra-
mozdi eszkoz szimulalhato rajta, de ez — alprogramok hijan — csak nagyon nehézkesen
lehetséges, a programozassal épp csak ismerked6 didkoktél semmiképp nem varhato el.
Oktatasi céla programozasi nyelvként a PLanGnak egyszertien hasznalhaté, kiterjedt
programozoéi eszkoztarat nyujtva inspirdlnia kellene a didkokat, megnyitni el6ttiik a
programozas vilagat. Ehhez képest azt tapasztaljuk, hogy a PLanG gyakran gatolja a
tanuldt a programozas alapelveinek elsajatitdsdban.

Onall6 laboratériumi feladatom az volt, hogy ezt az intuitiv meglatast racionalis
elvekkel tdmasszam alé: formalis rendszert keresve értékeljem a PLanG minéségét, illetve
vazoljak fel egy lehetséges kiterjesztést, ami javitana a nyelv minségét.

A 2. részben min6ségi mutatokat keresiink a programozasi nyelvekhez, kiilénos
tekintettel az oktatasi céli programozasi nyelvekre.

A 3. részben futdlag attekintjiik a forditéprogramok altaldnos mitkodését.

A 4. részben a 2. részben ismertetett metrikdk szerint vizsgdlom a PLanGot és
javitasi lehetségeit, és beszamolok a PLanG kiterjesztett valtozatat fordité program

prototipusarol.

LA betiiszé felolddsa Lovei Laszlé szives kozlése szerint egyszertien Programming Language, de
érdemes megemliteni az egyetemen elterjedt legendat, hogy a PLanG a Pdzmdny Language réviditése.

2. Programozasi nyelvek

A programozési nyelv algoritmusok leirasara szolgald formalis jelolésrendszer, amelyet
emberek és szamitdgépek is értelmezni tudnak. A programozasi nyelv szolgalhat ember
és gép kozotti kommunikécié eszkozeként, lehetévé téve a programozénak, hogy a
feladatot megoldé algoritmust a szamitégép szamara értheté médon megfogalmazza.
De a programozasi nyelv kommunikacios eszkdz lehet ember és ember kozott is, hiszen
a megirt programot a programozoén kiviil masok is olvasni fogjak majd, akar mert
javitaniuk kell a programon, akar mert tovabb akarjik fejleszteni, akiar mert tanulni

akarnak bel6le.

2.1. Torténeti attekintés

Az embernek és a gépnek a kozds nyelvvel szemben tamasztott igényei jelentGsen
eltérnek. Kezdetben, a szamitégépek megjelenésekor egyértelmiien a gépek igényei
voltak el6térben: a programozonak ténylegesen a gép nyelvén kellett beszélnie, gépi
kédban kellett kozolnie a gondolatait, vagyis ténylegesen binaris szamok sorozataként
kellett megirnia a programjat, ahol minden szdm egy-egy gépi utasitést, illetve az
utasitds operandusaiként szolgalé memoriacimeket jelolte. Ez nagyon tavol all az emberi
gondolkodastdl, a természetes nyelven kifejezett algoritmustdl: a program leforditasa a
gép nyelvére a programozo igen nehéz és munkaigényes feladata volt, a program olvasasa
pedig hasonléan nehéz.

Az ember-orientalt nyelvek kialakulasanak elsé 1épése a csak embereknek szant
programleiré jelolésrendszerek megjelenése volt: Konrad Zuse Plankalkilje, Neumann
Janos és Herman Goldstine programleird folyamatabrai, Currie lambda-kalkulusa voltak
az elsé olyan rendszerek, amelyek lehetévé tették algoritmusok formélis leirdsat. Erdemes
megjegyezni, hogy bar a matematika nagyon fejlett eszkoztarat épitett ki statikus
strukturdk leirdsara, az algoritmusokat egészen addig természetes nyelven adtdk meg[2].

A negyvenes évek végén jelentek meg az els6 assembly-szintii nyelvek, ahol binaris
szamok helyett a programozé mar révid nevekkel, mnemonikokkal hivatkozhatott egy
gépi utasitésra, és konkrét memoriacimek helyett mar azonositékkal hivatkozhatott
valtozokra. Az igy leirt programot tabldzatok segitségével konnyl atirni gépi kddra, és
ez a forditdsi folyamat konnyen automatizalhaté is: igy jelentek meg az assemblerek, az
els6 forditéprogramok. Ez volt at elsé 1épés az ember-orientalt nyelvek kifejlodése felé: a
programozoknak nem kellett tobbé numerikus utasitaskédokat észben tartaniuk vagy
memoriacimeket szamolniuk, sot, a forditéprogram mar képes volt bizonyos hibakat
felderiteni a kapott programban. Es bar az assembly-szint(i nyelvekben eleinte a gépi
utasitasok és az assembly mnemonikok kézott egy-egy kapcesolat volt, de hamarosan
megjelentek az elsé ,,makrék”, azaz makréutasitasok (vagyis szo szeint ,éridsutasitasok”)
is, amelyek tobb gépi utasitasbdl 4ll6 sorozatokat helyettesitettek. Megjelentek az els6
szubrutinkonyvtarak is, amelyek lehet6vé tették a programozéd szamara a magasabb
absztrakcids szinten valé gondolkodast.

Az ilyen korai autocoding technikék fejlédésével alakultak ki a magasszintii nyel-

vek, melyeket architekturafiiggetlenség, a magas absztrakciés szint biztositasa, az
assemblyhez képest révidebb, attekinthetébb szerkezeti programok irdasanak lehetosége
jellemez, és az, hogy a nyelv kozelebb all az emberi nyelvhez. Fejlodésiikben kataliza-
torként hatott Noam Chomsky generativ nyelvelmélete, melynek alapjan viszonylag
komplex nyelvtani struktirakat hatékonyan felismerd és gépi nyelvre fordité algoritmu-
sokat lehetett kidolgozni.

A magasszintli nyelvek kifejlesztésének motivacidja a programozdéi termelékenység
novelése volt[3], a programozdk kérében mégis sokiig érezhetd volt egyfajta ellenérzés
a magasszintii nyelvekkel szemben, mondvan, hogy a magasszint{i nyelvek emberorien-
taltsdga a hatékonysdg és a kreativitds rovasara megy[4, 12. fejezet]. A szamitégépek
teljesitményének fejlédésével és az egyre szofisztikaltabb forditéprogramok megjelenésé-
vel ezek a kritikak hattérbe szorultak ugyan, de ezzel parhuzamosan egyre magasabb
szintl, egyre emberorientaltabb programozasi nyelvek jelentek meg, melyekkel szemben
a kordbbi magasszintii nyelvek kedvel6i fogalmaztak meg hasonlé kritikdkat. A magas-
szintl nyelv kifejezés igy egyre magasabb szintil nyelvekre utal: az els6 magasszintii
nyelveket egy mai programozé mar jérészt alacsonyszintiinek tekinti. A ma programozdja
szamara ,,tul magas” szinti programozasi nyelvek példaul a programkdédot automatiku-
san generald szoftvertervezési eszkozok; ezekkel szemben a mai programozok hasonlbéan a
hatékonysagot és a kreativitast féltik, mint a hatvanas évek programozo6i a magasszintii

nyelvektol[5].

2.2. Fogalmak

A nyelv szintaxisa azon szabalyok halmaza, amelyek megadjak a nyelven irhaté Gsszes
formailag helyes programot. A szintaxis megadhaté formalis kérnyezetfiiggetlen? nyelv-
tannal[6, p. 25], ekkor a nyelv szintaktikailag helyes programjainak halmaza a nyelvtan
altal generalt mondatok halmaza, M. Egy ilyen mondat levezetési fajat szintaxisfanak
nevezziik. Megkiilonboztethetjilk a felszini és absztrakt szintaxist: mig a felszini szintaxis
szabalyai tényleges szovegekkel, karakterlancokkal operalnak, és ezekrél dontik el, hogy
alkothatnak-e formailag helyes programot; addig az absztrakt szintaxis szabalyai a
program , mélystruktiarajaval” foglalkoznak, és nem tér6dnek azzal, hogy egy absztrakt
nyelvi elemnek milyenek a felszini megnyilvanulasai, lexikalis tulajdonsagai. Az absztrakt
szintaxishoz lexikalis szabalyokat rendelve felszini szintaxist kapunk.

A nyelv szemantikaja a forméalisan helyes mondatok jelentését megadd szabélyok
Osszessége. Megkiilonboztetjik a statikus szemantikdt és a dinamikus szemantikdt: a
statikus szemantika a programok futtatéds el6tti viselkedésével, mig a dinamikus szeman-
tika a program futasidejli viselkedésével foglalkozik. A statikus szemantika szabalyai a
formailag helyes programok halmazat tovabb sziikitik egy P, C M halmazra, amelyet

az érvényes programok halmazanak neveziink: a gyakorlatban ezek azok a programok,

2 Bizonyos programozési nyelvek szintaxisit kornyezetfiiggének mondjék, hires példa erre a C++,
azonban a kornyezetfliiggdség gyakran a lexikélis sajatossagok eredménye. Definiciéink mindenképp
hatarozottabbak és egyértelmiibbek lesznek, ha a szintaxist mindig kérnyezetfiiggetlennek tekintjiik, és
a kornyezetfiiggs elemeket a statikus szemantika hataskorébe soroljuk; raadasul ez a megkdzelités jol
tikrozi a forditéprogramok miikodését.

amelyeket a forditéprogram hiba nélkiil elfogad. A dinamikus szemantika szabélyai
minden érvényes programhoz megadjak a program pontos futasidejii viselkedését.

Az absztrakt szintaxis elemeit programkonstruktoroknak, a programkonstruk-
torokat és a hozzajuk kapcsolédd szemantikai szabdlyokat egyiittesen pedig nyelvi
elemeknek nevezziik. Ezek azok az alapveto épitéelemek amelyeket hasznalva a progra-
moz6 felépitheti programjat.

Bizonyos elemhalmazokrél igazolhatd, hogy ha ezeket tartalmazza egy nyelv, akkor
a nyelv univerzalis, mas néven Turing-teljes, vagyis a nyelvvel szimuldlhaté egy
Turing-gép, ami azt jelenti, hogy minden lehetséges algoritmus kifejezhetd csak az adott
elemeket haszndalva. Proceduralis nyelvek esetében torténelmi és kényelmi okokbél a
szekvencia, az eldgazds és a ciklus halmazanak meglétét szokds a nyelv univerzalitasat
biztositonak tekinteni: ha egy nyelvben ez a harom nyelvi elem létezik, akkor az a nyelv

biztosan univerzalis[7].

A fentiek alapjan formalis definiciot is adhatunk a programozési nyelv fogalmara:

Definicié (Programozési nyelv(8, 3.1 definicid]). Egy L programozdsi nyelv megadhato

az L= (Mg, P, evals) rendezett harmassal, ahol

e M, a nyelv mondatainak, a nyelv Ky = {K;...K,} programkonstruktoraibdl
szabadon generdlt absztrakt szintaxisfak halmaza.

o Pr C Mg, Py # 0, az L-beli programok halmaza.

e cvaly a Py felett értelmezett predikdatum, a nyelv dinamikus szemantikdja, amely

akkor igaz, ha a program elvégzi a feladatdt’.

Az igy meghatarozott absztrakt nyelv lexikdlis sajatossagait egy R : K — X%,
a nyelv programkonstruktoraihoz karaktersorozatokat rendel$ fiiggvény megadasaval
definidlhatjuk. Ha ez a leképezés nem injektiv, a nyelv felszini szintaxisa koérnyezetfiiggévé
valhat.

Definicié (Konzervativ kiterjesztés[8, 3.2 definicid]). Egy £ nyelv {K; ... K,} elemekkel
valdé konzervativ kiterjesztése eqy L' nyelvnek, ha {Ky ... K} NKp =0, Kp = Kgr U
{K;y...K,}, Mg C Mg, Ppr CPp, és VP € Ppio: evalp/(P) = evalp(P). Ekkor L'-t L
leszikitésének mondjuk.

Vagyis £-t gy kapjuk, hogy £'-h6z hozzdadunk par 4j nyelvi elemet, de minden, a
régi nyelven irt program a kiterjesztett nyelvben is program, és ezek futdsidejii viselkedése
sem valtozik.

A konzervativ kiterjesztésre a L = L + {K; ... K,} jelolést, mig a lesziikitésre a
L' =L\{K;...K,} jelolést hasznaljuk.

Definicié (Nyelvhasznélat). Azt mondjuk, hogy eqy K programkonstruktor nem része
eqy programozo nyelvhaszndlatinak, ha programjaiban soha nem jelenik meg K. Ekkor a

programozé dltal haszndlt L' nyelv az idedlis L nyelv leszikitése, L' = L\ {K}.

3 Felleisen evals-t olyan predikdtumként definidlja, ami akkor igaz, ha a program termindl[8], ezzel
definiciéja a leheté legdltalanosabb. Ezt til megengedének érzem, ezért valasztottam ezt a homalyos, 4&m
intuitiv meghatirozast. Ennek pontosabb definidlasara egy lehetdség evals (feladat, program) parok
feletti értelmezése.

Egy programozo6 nyelvhasznélatabol egy nyelvi elem hidnyozhat technikai megfonto-
lasokbol (mert ,nem hatékony”), mert a hasznédlata nem illendé (jé példa erre a goto
utasitas, ami ugyan a legtobb nyelvben maig létezik, még olyan modern nyelvekben is,
mint a Ruby, de hasznélata a magasszintii programozdsban teljesen eltilint), vagy akar
mert nem tud az adott nyelvi elem létezésérol.

Naivnak tiinhet a feltételezés, hogy egy képzett programozd nem tud egy nyelvi
elemrol, de gondoljunk bele, hogy egy nyelv standard konyvtaranak fliggvényei is nyelvi
elemek; méasrészt a modern programozasi nyelvek gyakran nagyon komplexek, emberek

szamara nehezen megismerhetéek a maguk teljességében.

2.3. Programozasi nyelvek min6ségi mutatoéi

Az univerzilis programozasi nyelvek szamitaselméleti szempontbdl teljesen azonosak:
tetszoleges rendelkezésre all6 id6 és memoria mellett barmely szamitas elvégezheto veliik.
Intuitivan érezziik viszont, hogy a nyelvek ko6zott minGségi kiilonbségek vannak, ez a
kiilénbség viszont nehezen megfoghat6: magas és alacsony szintli nyelvek kozott konnyt

minoségi kiilonbséget taldlni, de két magasszinti nyelv mindségét nehéz Gsszehasonlitani.

2.3.1. Kifejezberos

A programozdk informalisan gyakran mondjak, hogy ez vagy az a nyelv nagyobb ki-
fejezberdvel bir: hogy egy algoritmus konnyebben, elegdnsabban implementalhaté egy
nyelvben, mint a masikban, hogy egy nyelvben kéonnyebben kifejezik magukat, mint
egy masikban. Az az intuitiv meglatdsunk is hamar kialakul, hogy némely nyelvi elem
fontosabb a kifejezéerd szempontjabdl, mint a tobbi: némelyik 1ényeges, némelyik meg
csak szintaktikus cukormdz, amely konnyen kifejezheté6 mas nyelvi elemekkel, igy a nyelv
kifejez6erejéhez nem ad hozzd, csak édesebbé teszi a nyelvet az emberek szdméra.[9)]

A Kkifejezber6 szubjektiv fogalom, de voltak kisérletek a definidldsiara: a hacker-
kultirdban[10] és a szoftvertechnolégidban[4][11] is meghatarozé nézet szerint egy nyelv
kifejez6ereje a tomorségével (succintness) aranyos — egy nyelv anndl kifejez6bb, minél
kevesebb szoval tudok elmondani valamit. Ez jél illik a kifejezGer6rdl alkotott intuitiv
képiinkhoz: a tokéletes programozasi nyelv az volna, amelyben barmely feladat egyetlen
utasitassal megoldhato.

Ha a kifejezberd aranyos a nyelv tomorségével, a kifejezOer6 mérhetd egy program
sorokban, karakterekben, utasitdsokban mért hosszaval, esetleg a tomoritett forras-
kod méretével®: ezek statisztikdk készitésére konnyen alkalmazhaté metrikék, de az
eredményeket jelentésen torzitjak a nyelv lexikalis sajatossagai, névadasi és tordelés
konvenciéi, melyekrél érezziik, hogy bar fontosak, nem kellene igazan befolyasolniuk a

kifejezOerot. Ezt a problémat kikiiszobolhetjiik, ha a tomorséget egy program absztrakt

1Az elterjedt tomorits eljardsok optiméalisak, kozelitik a Shannon forrdskédolési tételébél ismert
tomoritési hatart, igy a tomoritett file mérete mond valamit a forrasszéveg entrépidjardl, informa-
cidtartalmardl. Ez a megkozelités vonzéan tudomanyosnak tiinhet, amig fel nem ismerjiik, hogy a
forrasszoveg entropidja alapvetéen a programot leird szoveg karakterereinek eloszlasatol fiigg, ami
tisztan lexikalis kérdés, és nincs nagyobb 6sszefiiggésben a nyelv kifejezéerderejével, mint a karakte-
rek szama. Ilyen megkozelitésért lasd példaul a The Computer Language Benchmarks Game oldalt:
http://benchmarksgame.alioth.debian.org.

http://benchmarksgame.alioth.debian.org

szintaxisfajanak elemszamaval mérjiik, de megfelel6 elemzo6t irni minden vizsgalandé
nyelvhez faradsagos feladat. Akarmilyen metrikat valasztunk is, a program méretének
mérése, mint a statisztikai nyelvtechnologiai eszkozok altalaban, csak akkor hasznalhato,
ha nagy korpusszal dolgozunk, a nyelv ismerete 6nmagaban tehit nem elégséges a nyelv
kifejezberejének vizsgalatahoz. Raadéasul a kifejezber6t tisztan a tomorséggel magya-
razé elmélet — formalis definicié hijan — nem ad lehet6séget, hogy barmit rigorézusan
bizonyitsunk egy nyelvrél. Nem igazan teszi lehetévé azt sem, hogy nyelvi elemekrél
érveljiink: szintaktikus cukormaéz-e, vagy létfontossagu?

Mathias Felleisen a formalis rendszerek elméletének eszkoztarat felhasznalva épitett
rendszert a kifejezGerd leirdsara és elemzésére[8]. Informélisan gy foglalhatjuk ossze,
hogy L kifejezébb £/ = L\ {K; ... K, }-nél, ha egy L-beli, valamely K; konstruktort
tartalmazé program leforditdsdhoz L'-re a program globdlis atszervezése sziikséges.
Azokat a programkonstruktorokat pedig, amelyeknek forditasahoz csak lokalis transz-
formacidkra van sziikség, kifejezhetének vagy elimindlhaténak mondjuk. A ¢ : £ — L/
forditasi fiiggvény tulajdonsidgainak megkotésével definidlhatjuk a kifejezéerd kiillonbozé
szintjeit.

Felleisen rendszerét hasznélva a nyelvtervezés folyaman formaélisan is bizonyithato,

hogy egy nyelvi elem hozzdadasa ténylegesen valtoztat-e a nyelv kifejezGerején.

2.3.2. Belso kiterjeszthet6ség és makroékifejezhetség

Egy kiterjesztheté nyelvben a programozé 1j nyelvi elemeket hozhat létre. A legtobb
nyelv kiterjesztheté valamilyen szinten, példéul lehetéséget biztosit alprogramok, 1j
adattipusok létrehozasara. Néhany nyelv arra is eszkozt biztosit, hogy a programozé
tetszOleges 1j nyelvi elemeket hozzon létre: a Lisp makr6 konstrukcidi segitségével
példaul a nyelv tetszdleges programkonstruktorokkal bovithetd. Ezeket az eszkozoket
a szintaktikai absztrakcio eszkdzeinek nevezziik, és segitségiikkel a kifejezGerd egy 1j
szintjét definidlhatjuk.

Azt mondjuk, hogy egy K nyelvi elem makrdkifejezheté L£'-ben, ha létezik egy meg-
felel6 A szintaktikai absztrakeid, amelyre o(K (e ...e,)) = A(p(e1) ... p(en)); vagyis
a nyelvi elem elimindlasa nem csak a program globalis struktarajat 6rzi meg, hanem
az eliminalt L-mondat alkotéelemeinek struktirajat is[8, 3.11 definicid]. Ez a definici6
nagyon kozel all a szintaktikus cukormazroél alkotott intuitiv képiinkhoz.

Lathato, hogy a nyelv kifejezGerejét megsokszorozza egy szintaktikai absztrakci-
0s eszkoz; és minél megenged6bbek az absztrakciés eszkozok, annal nagyobb a nyelv
kifejez8ereje. Igy példaul egy alprogram-absztrakciét biztosité nyelv, amelynek alprog-
ramjai elfogadnak paraméterként szekvencidt, nagyobb kifejezGerejii, mint amelyiknek

alprogramjai nem tudnak szekvenciat kezelni paraméterként.

2.3.3. Hasznossag és hasznalhat6sag

A programozasi nyelv az ember és gép kozotti kommunikacié eszkoze, ezért értelmezhe-

téek ra a felhaszndldi felilletek mindségi mutat6i[12]. Egy programozési nyelv hasznos

(useful) ha lehet6vé teszi, hogy a programozé gyorsan és hatékonyan irja meg a feladatét

megvaldsité programot[6]. A hasznossig 6 metrikéi:

Kifejez6er6 Két nyelv koziil a nagyobb kifejezéerejii a hasznosabb. Ez ugyan relacio,
és nem metrika, de a nyelv szintaktikai absztrakcios eszkozeinek szama és mindsége
jO becslés egy abszolut kifejezéerore.

Robosztussag A programozé hibaja nem jarhat katasztrofalis kovetkezményekkel. A
nyelv robusztus, ha nyelvi elemei lehetévé teszik a hatékony hibadetektalast.

Emberorientaltsag A nyelv emberorientdlt, ha amikor csak lehet, a programozé
igényeit a gép igényei elé helyezi.

Feladatorientaltsag A nyelvnek csak azokat a nyelvi elemeket kell biztositania, ame-
lyeket a programozok feladataik sordn hasznalnak; és nem szabad olyan nyelvi
elemeket biztositania, amelyeket nem hasznalnak. Ugyanis minél tobb nyelvi ele-
met biztosit egy nyelv, annédl komplexebb, nehezebben hasznalhaté lesz, aranyosan

kisebb lesz a programozdk nyelvhasznalata.

Ezek a metrikdk gyakran nehezen mérhetéek, de objektivek. Ezzel szemben a hasz-
nalhatésag (usability) metrikii eredendéen szubjektivek, egy nyelv — vagy barmely
rendszer — hasznalhatésaga a felhasznalé demografiai hatterétdl és tapasztalatatol fugg|s).
A haszndlhatdsag analizisére Green adott 1989-ben objektiv, raciondlis rendszert, ame-
lyet a jelolésrendszerek kognitiv dimenzidinak (cognitive dimensions of notation, CD)
nevezett el[13]. A CD rendszere 14, paronként fiiggetlen dimenziét ad egy jelolésrendszer
hasznélhatésaganak meghatérozasara[l4]. Ezekb6l a programozési nyelvek szempontja-
bdl legfontosabbak a kovetkezok:

Absztrakcié Milyen szintaktikai absztrakcios eszkézoket biztosit a nyelv? Hany ilyen
eszkoz hasznélatat kell elsajatitani a nyelv minimalis hasznédlatahoz?

Hibak vonzasa Mennyire néveli a nyelv a programozoi hibak el6forduldsanak esélyét?

Konzisztensség Hasonl6 dolgok hasonlé modon fejezhetéek ki a nyelvben? Hasonld
szemantikdju nyelvi elemek hasonlé szintaktikaval és lexikalis tulajdonsagokkal
rendelkeznek?

Leképezés kozelisége Mennyire konnyen fejezhetd ki a nyelven a programozé algorit-
musa, hany nyelvi elem felel meg a programozoé elvi megoldasanak egy 1épésének,
milyen kénnyen fejezhet6 ki a feladat allapotterének miiveletei a nyelvben?

Szellemi er6feszités Mekkora erofeszitést kivan a nyelv hasznalata?

Szerepkifejezés Mennyire nyilvanvald, hogy egy dolog mire j67 Milyen mértékben lehet
kovetkeztetni egy nyelvi elem szemantikajara a szintaxisa és lexikalis tulajdonsdgai
alapjan?

Terjengodsség Milyen roviden lehet kifejezni egy algoritmust a nyelven? Milyen hosszi-
ak a nyelv lexémai?

Viszkozitas Mekkora a kis valtoztatasok ara? Mennyire valtoztathatd egy program

lokalis strukturaja a globalis struktira valtoztatasa nélkil?

Egyik dimenzié sem egyértelmiien ,j6” vagy ,rossz”, a dimenzidk megitélése a nyelv

feladatatol figg.

2.4. Oktatasi célu programozasi nyelvek

A programozas oktatdsa mas kovetelményeket tamaszt egy nyelvvel szemben, mint az
ipari felhaszndlés[12]. A kognitiv dimenziok optimalis értékei a kifejezetten a programozés

alapjainak oktatasara szdnt nyelvre a kovetkez6képpen alakulnak:

Absztrakcié — alacsony Az oktatasi nyelv absztrakcids korldtjanak, vagyis a nyelv
hasznélatdhoz minimalisan megtanulandé absztrakcios eszkézok szamanak nagyon ala-
csonynak kell lennie, és egyszerii programok irasahoz nem is sziikséges tl sok absztrakcios
eszkoz. A Java nyelvben példaul mér a legegyszeriibb program irasihoz talalkozni kell

az objektumosztaly fogalmaval.

Hibdk vonzasa — nagyon alacsony A hiba frusztrédlja és elbizonytalanitja a tanu-
16t, a nyelvtervezés soran minden aron toérekedni kell a programozo6i hibalehetdségek
minimalizdlaséra. Az C++ utasitaslezaré pontosvesszdjének elhagyasa példdul gyakori
hiba, amit a kezd6k nehezen is azonositanak, hiszen a gcc forditéprogram hibaiizenete

szt sem ejt pontosvesszorol.

Konzisztensség — kozepes A konzisztensség segithet a tanulénak, hiszen ha elsaji-
totta egy nyelvi elem hasznélatat, akkor automatikusan hasznalni fogja tudni a hasonl6
nyelvi elemeket. Ugyanakkor nem biztos, hogy a kezd6 képes felismerni egy szemantikai
hasonlésagot két nyelvi elem kozott, illetve nem tudja kihasznalni az elvi hasonlésagot.
Jo példa a tulzasba vitt konzisztensségre a Turing és az Ada nyelvek témbelem-lekérdez6
operatora, ami ugyanugy sima zardjelként jelenik meg, mint a fliggvényhivas, mondvan,
hogy mindkettd értéklekérés; a diak ugyanakkor egy A(1) konstrukciét ldtva nem tudja
eldonteni, hogy A valtozd-e vagy fliggvény.

Leképezés kozelisége — nagyon magas A nyelvnek illeszkednie kell a tanuldk
feladatahoz és megolddsahoz, tiikkroznie kell a tanuldk 1étez6 ismereteihez, vilagképéhez;
de mutatnia kell az elsajatitandé vilagképet is. A Pascal oktatonyelv példaul jé leképezése
egy idealis virtualis gépnek, de a kezddk vilagképétol tavol all, ami kiillonosen a tombok

és a karakterlancok nehézkes kezelésénél szembet(ing.

Szellemi erdéfeszités — alacsony A programozas soran elkeriilhetetlen a szellemi
erdfeszités, de nem szabad, hogy a nyelv hasznalata sziikségteleniil nehezitse a feladat
megoldasat. A Scheme oktatonyelvben példaul a lambda-kalkulus igényeihez idomulés

nehéz feladat a kezdd programozoénak.

Szerepkifejezés — magas Jol megvalasztott felszini szintaxis mellett a tanulé sokkal
konnyebben olvashat és érthet meg programokat. Egy jé szerepkifejezésii nyelvi elem
nem igényel kiilonésebb magyarazatot, hasznédlata azonnal értet6dd. Példaul a C++
cout « "Hello world"; utasitasa sokkal kevésbé szerepkifejez6, mint a Pascal-szerti
print "hello world": a cout szdval ellentétben a print felismerhet6 a laikus szdméra

is, a « operator megértése pedig abszolut fejlettebb tudast kivan.

Terjengdsség — kbzepes A nyelvnek strukturalisan elég tomornek kell lennie ahhoz,
hogy egyszerli programokat nagyon réviden, redundancia nélkiil ki lehessen fejezni, de
a tulzott tomorség az olvashatdsag rovasara megy. Bébeszédil nyelv példdul az App-
leScript, amelynek a természetes nyelvhez valé hasonlésdga gyakran a programstruktira

atlathatatlansdgdhoz vezet.

Viszkozitas — alacsony A programozas tanuldsa gyakran jar kisérletezd prébélga-
tassal[12]; ha ez a probalgatéds, a programok véltoztatgatasa nehéz és kényelmetlen
feladat, a tanuld lelkesedése csokkenni fog, frusztracidhoz vezethet. Magas viszkozitasa
nyelv példaul az Ada: deklaracios blokkjai, erds tipusossaga, import-szabalyai, nehézkes

forditasi mechanizmusa mind nehezitik a gyors probalgatast.

A kifejezetten a programozas alapjainak egyetemi szint(i oktatdsira szant nyelv ese-
tében a hasznossag metrikai kézé soroljuk a médszertani helyesség tamogatasat: a
nyelvnek alakitania kell a didk gondolkoddsmodjat, jo programozéi szokasok, programo-
zastechnikai és szamitastudomanyi alapvetések elsajatitasara kell késztetnie. Ez gyakran
ellentétbe keriil a hasznalhatésag metrikaival: mdodszertanilag helyes megkiilonboztetést
tenni példaul fliggvények és eljarasok kozott, bar a tanuldk ilyen megkiilonboztetést

nem tesznek|[12].

3. Forditéprogramok

Formalisan a forditoprogram egy T : Py — P, transzformdcios figgvény, melyre
VP € Pr : evalg(P) = evaly (T (P)). L-t forrasnyelvnek, £'-t pedig targynyelvnek
nevezzik. A forrdsnyelv altaldban magasszinti, a targynyelv pedig alacsonyabb szint,
példaul assembly-szintl, vagy gépi kédua nyelv: az ilyen atalakitast végzo programot
compilernek nevezzik[6].

A compiler feladata a gyakorlatban az, hogy a forrasnyelvi programot az embereknek

szant, szoveges formabdl a gép szamara futtathaté programmad alakitsa.

3.1. A compiler altalanos felépitése

A compiler feladatat két jol elkiilonithetd részfeladatra bontjuk: az analizis fazisa-
ban a forrdasnyelvi programot elemzi, és az arrél nyert tudast a program egy bels6
reprezenzacionak nevezett strukturdban tarolja; majd a szintézis fazisaban a bels6

reprezentécié alapjan felépiti a targynyelvi programot|[6][15].

LeX|kaI’|’s Szmtaktnj(us Szemantlnkus Belsd : [Kédgenerétor [Optimalizalé
elemzo elemzo elemz6 reprezentdcid

Analizis Szintézis

1. dbra. A compiler felépitése.

Az analizis els6 feladata, hogy a forrasnyelvi programot reprezental6 karaktersoroza-
tot a nyelv lexikalis elemeit reprezentald szimbolumok sorozatdra bontsa. Ezt a feladatot
a lexikadlis elemzd végzi. A kapott szimbolumsorozatot a szintaktikus elemzd vizsgalja
tovabb, a szekvencialis mondatbdl probalja feldllitani a program hierarchikus struktira-
jat: azt a kérdést prébalja megvalaszolni, hogy egy formalis nyelvtan milyen levezetése
adja ki a kapott mondatot. Ha a program szintaktikailag helyesnek bizonyul, akkor
tovabb elemzi a szemantikus elemzd, amelynek feladata, hogy ellenérizze, megfelel-e a
program a statikus szemantika szabalyainak.

Az analizis kimenete a belsd reprezenztacio, amely a forrasnyelvi programmal szeman-
tikailag ekvivalens kéztesnyelvi program. A belsd reprezenticié a gyakorlatban sokféle
lehet: valamilyen fastruktira, valamilyen absztrakt utasitdsok szekvencidlis sorozata.[15]

A szintézis soran a kddgenerdtor a belsd reprezentdcié minden egységéhez szeman-
tikailag ekvivalens targynyelvi utasitast rendel. A kapott targynyelvi programon a
kodoptimalizdlé tovabbi transzforméaciokat végez, hogy ndvelje a kapott program haté-

konysagat.

3.2. A kornyezetfiiggetlen analizis eszkozei

Miutéan a lexikalis elemz6 a program szdévegét a forrasnyelv felszini szintaxisat leiré G
kornyezetfiiggetlen nyelvtan terminalis szimbolumainak s sorozatava, a nyelv mondatava,
alakitotta, a szintaktikus elemz6 feladata konstruktivan bizonyitani, hogy s valéban

levezetheté G-bél. A bizonyitas konstruktiv volta az jelenti, hogy az elemz6 algoritmus

10

ténylegesen megadja az s-t generald levezetési fat. Egy nyelvtant nemegyértelmiinek
mondunk, ha létezik hozza olyan mondat, amely tébbféleképpen levezethetd, ami av-
val jar, hogy kiilonb6z6 elemzésekhez kiilonb6z6 targyprogramok tartoznak — ez nem
kivanatos tulajdonsag.

A kérnyezetfiiggetlen analizis j6l kutatott, megoldottnak tekinthetd probléma®. Ear-
ley 1968-ban adott algoritmust, amely tetszéleges kérnyezetfiiggetlen nyelvtant O(n?)
idében elemez, azonban sok algoritmus létezik, amely a kornyezetfiiggetlen nyelvek
halmazanak valamely részhalmazéaba tartozé nyelveket ennél hatékonyabban, vagy egy-
szer(ibben implementalhaté médon elemzi. A legfontosabb ilyen nyelvosztalyok az LR(1)
grammatikdk, az LL(k) és az LL(1) grammatikdk osztélya. Az ezen nyelvosztalyokat
meghatarozo algoritmusokkal kdnnyen automatizalhaté médon elemzd tdbldazatokat épit-
hetiink a nyelvhez, amelyek lineéris id6ben képesek feldolgozni a bemeneti karaktersort®.
Az ilyen elemzd tablazatokat épité automatizald eszkozoket az iparban széles koriien
hasznaljak. Ilyen példaul a hires YACC, illetve nyilt forraskodu valtozata, a GNU bison
(médositott LR(1) elemzdk), és a modernebb, Java-alapi ANTLR (moédositott LL(k)
elemz6).

Az automatizalt elemzOgeneratorok hasznos eszk6zok, de a forditéprogramok tervezoi
gyakran mégis kézzel irjak meg az elemzot. Régi, elterjedt, bevalt mdodszer a rekurziv
leszdlldsos elemzés mbdszere, melynek 1ényege, hogy a nyelvtan minden nemterminélis
szimbolumahoz a szimbulum helyettesitési szabalyat mgvaldsito eljarast rendelve, egy
vagy tObb eloreolvasott szimbdélum alapjan dontést hozva, az implementaciés programo-
zési nyelv végrehajtasi vermét hasznalva szimuldlunk veremautomatat.

A rekurziv leszallasos elemezd eldnye a tablazatos mddszerekkel szemben, hogy
nagyon konnyd megvaldsitani, lehet6séget ad informativ hibatizenetek generalasara,
és jol olvashaté is, amennyiben az elemzot végignézve megismerhetjiik a nyelvtant.
Tovabbi elény, hogy az eljarasokban megkotés nélkil ki tudjuk hasznalni a Turing-
teljes implementacios nyelv teljes eszkozkészletét, vagyis a szimuldlt veremautomatank
kifejezberejét tetszés szerint névelhetjiik — igaz, az implementacios komplexitas karara.

Rekurziv leszélldsos elemz6ét hasznal példaul a Lua programozasi nyelv forditéprogramja.

5 Ami nem jelenti, hogy ne lenne fejlédés, ne sziiletnének maig jabb, hatékonyabb algoritmusok,
megkozelitések: példdul Bryan Ford 2004-ben ismertette a Chomsky-nyelvosztalyokbdl kilépS Parsing
Ezpression Grammar nevii nyelvosztalyt és az ezen alapuld szintaktikai elemz&t[16].

5Ezen és egyéb elemzd algoritmusok leirdséért lasd [6, 4-6. fejezetek].

11

4. A PLanG programozasi nyelv kiterjesztése

4.1. Kovetelményfeltaras

Mint minden szoftverfolyamatnak, a nyelvtervezés elsé fazisa is a kovetelmények feltarasa:
a nyelv feladatterének elemzése, a felhasznaldi igények felmérése. Célszerti lett volna
kérdoives felmérést végezni els6éves didkok részvételével, komolyabban kutatni a nyelvek
pedagogiai aspektusait, illetve elemezni lehetett volna az egyetem rendelkezésére all6
nagyméretii korpuszt; erre er6forrasok hianyaban nem keriilt sor.

Mivel 1étez6 nyelv kiterjesztésérol van szé, elemezni kellett a létez6 nyelvet is a 2.4.

részben ismertetett metrikak szerint.

4.1.1. A PLanG programozasi nyelv értékelése

A PLanG els6 pillantasra szembet(ing jellegzetessége, hogy kulcsszavai magyar nyelviiek,
ami magyar didkok szamara névelheti a szerepkifejezé erét. Mégis sok kulesszo esetlen,
furcsa megfogalmazasi (MEGNYIT, KI, KEREK, RND), béar rovid (ami csokkenti a terjen-
gOsséget). Mig az angol programozasi nyelvek kulcsszavai, fiiggvénynevei rendszerint
felszolito maodu igék, addig a PLanG moddszeresen féneveket és mellékneveket hasznal,
még a fiiggvénynevekre is. Az ilyen fiiggvények, utasitdsok szerepkifejezo ereje alacsony
(vajon KEREK 10.5 kerekiti az értéket, vagy azt mondja meg, kerek szam-e az érték? a
NAGY ’z’ azt mondja, nagybetii-e a paraméter vagy nagybetiivé alakit?). A kulcsszavak
koziil a CIKLUS nem feltétlen érthetd egy olyan didknak, aki még soha nem programozott;
szerepkifejez&bb lehetett volna példaul az *ISMETELD kulcsszo.

Az operatorok kozott is vannak alacsony szerepkifejezésii elemek: az @ infix operdtor
jelentése még gyakorlott programozdknak sem nyilvanvald, de nem magatél értetddd az
sem, hogy a /= az athuzott egyenléségjel helyett all, és a DIV és a / osztasok koziil sem
evidens, melyik melyik. Hasonléképp, bar kis programozoi eloképzettséggel ,nyilvanval6”
a := értékadd utasitds szemantikdja, kezd6knek nem feltétlen az: anekdotikus bizonyiték
szerint viszonylag gyakori hiba, hogy a didk nem tudja, melyik oldal adja, és melyik
kapja az értéket. Valéban, a := j6 példaja a memetikus kompatibilitasnak, vagyis hogy
csak azért csindlunk valamit Ggy, mert masok is tgy csinaltak, és nem vessziik figyelembe
az eltérd igényeket[12, 6.1.5.2. rész]. Szintén alacsony a tombdeklaraciok szerepkifejez
ereje (EGESZ[5]), ez is a memetikus kompatibilitasra torekvésbél fakad.

Az 1/0 utasitasok szerepkifejezd ereje viszonylag magas, hasznéalatuk kevés szellemi
erdkifejtést kivan. A szdveg tipust valtozok 1/O-kezelése nem idempotens’, de mivel
a beolvasas a sor végéig tart, a leképezés kozeliségének szempontjabol zavard esetek
szama kisebb, mint olyan nyelvekben, ahol a beolvasas az els6 szdkozig tart.

A leképezés kozelisége kozepes-alacsony. JOl teljesitenek az operatorok, amelyek
viselkedésiikben és megjelenésiikben is megfelelnek a didkok matematikai tudasanak.
Kiilonosen szép, hogy az undris fliggvényeket nem kell zdrdjelezni (sin x), és egyedi,

am nagyszer az elemszam-lekérdezés cirkumfix operatora (|tomb|). Zavaré lehet a ma-

"vagyis 1étezik olyan z szoveg tipusi érték, amelyet kifrva, majd a kiirt értéket beolvasva y-ba z # y

12

tematikai jelolésben megszokott *a < b < c jellegli asszociativ dsszehasonlitds hidnya.
Nehézséget jelenthet az EGESZ és VALOS tipusok megkiilonboztetése, kizelebb allna a
didkok gondolkodasédhoz egy egyszer(i *SZAM tipus.

A fix méretli tombok valamelyest tdvol vannak a hallgaték gondolkodasatol: ismerd-
sebb lenne a tanuldknak egy, a matematikai halmazokra jobban emlékeztets tipus. A
tomboknek rdadasul nagyok kevés miivelete van: lehet persze gy érvelni, hogy miiveletek
megvalOsitasa a hallgato feladata, ebbol tanulnak — azonban az absztrakciés eszkozok
teljes hidnya a hallgatét arra kényszeriti, hogy minden esetben kiilon, manuéalisan,
ciklussal végezze el a miiveleteket, ami csokkenti a robosztussagot és noveli a szellemi
erOfeszitést.

A nyelvtan szép, letisztult, eléreolvasast nem igényl6é LL(1)-es nyelvtan. Nagy erénye,
hogy nincs sziitkség utasitaslezaré jelre, ez jelentésen csokkenti a ,becstiszé” hibak(ld. 12,
4.2.2 rész] valosziniiségét. A legtobb hibalehetéséget a valtozodeklardcids rész teremti,
mert a PLanG nem deklaraciés blokkot, hanem cimkézett felsorolast hasznal, és a
felsorolasbdl nagyon konnyt elhagyni a vesszét. Az igy keletkezett hibat viszonylag
nehéz feladat detektdlni, a referenciaimplementéicié nem is teszi meg. A deklardcios
rész a nyelv viszkozitasat is noveli: 0j valtozo bevezetéséhez a hasznalat helyétol tavosli
deklardcios részt kell szerkeszteni, amit nehezit a hibavonzé szintaxis. Altaldban, a
deklaraciés rész jo példaja a gép- és nem emberorientalt tervezésnek: az emberek
szamara csak csekély haszna van, elsGsorban a gépek szamara hasznos, megkonnyiti a
feldolgozast és a kddgenerdlast.

A PLanG egyaltalan nem nytjt absztrakcios eszkdzoket, a programozé semmilyen
formaban nem valtoztathat a nyelven. Az alprogramok hidnya nagyban néveli a ter-
jengOsséget és nagyobb szellemi erdfeszitést kivan, a felhasznal6 altal definidlt tipusok
hianya csékkenti a robosztussagot és a modszertani helyességet.

Modszertani helyességet tamogatd eszkézok nincsenek: dedikalt hibakezelési eszkoz
hidnyaban a tanul6 nem sajatithatja el a megfelel6 hibakezelést; a nyelv a megjegyzéseken
kiviil nem kinal strukturalt, formalis eszkozt az elofeltételek és utdfeltételek rogzitésére
(holott a targy ezek hasznalatdra hangsilyt helyez)

Ezen kiviil hianyzik a nyelvbdl egy elsif konstrukcié és a deklaraciéval egybekotott
valtozodincializélas lehetosége. Bar mindkettd kifejezheté a PLanG programkonstrukto-

raival, az igy kapott szerkezetek olvasisa nehezebb, iradsa kevésbé hibatiiré.

4.1.2. A futtatékornyezet értékelése

A PLanG hasznélata a tanuldk szdamaéara elvilaszthatatlan a grafikus futtatokornyezet
hasznalatatél, igy a nyelv elemzéséhez hozzatartozik a futtatékdrnyezet hasznossaganak
és hasznalhatésaganak vizsgélata is.

Kétségkiviil hasznos a kifejezésfat és a memodriamodellt kirajzolé modul, bar haszan-
alatuk nem intuitiv. A programszerkeszté modul nagyon primitiv, hidnyzik a szintaxis-
kiemelés, zardjelparossag-ellenérzé (ez noveli a hibak vonzédsat), undo funckionalitas,
gyorsbillentytik nincsenek (ez noveli a viszkozitdst). Az alapvetd editorfunkcidk koziil

hidnyzik a tabulator méretének megaddsianak lehetOsége, a legutébb szerkesztett file-ok

13

PLanG idealis

absztrakci6 nincs alacsony
hibdk vonzéasa kozepes nagyon alacsony
konzisztensség kozepes kozepes
leképezés kozelisége kozepes-alacsony nagyon magas
szellemi er6feszités kozepes alacsony
szerepkifejezés kozepes-magas magas
terjengGsség alacsony-kozepes kozepes
viszkozitas = kozepes-magas alacsony

1. tdblazat. A PLanG kognitiv dimenzi6i az idedlis értékekkel dsszehasonlitva

megnyitasanak lehetésége. A gombsorban a nagy zold ,Futtatas” gomb jé hasznalha-
tésagt, de példdul a ,,Szerkesztés” és az ,Ertelmezett program szerkesztése” gombok
kozotti kiilonbség egyaltalan nem vilagos.

A futtatOkornyezet nem interaktiv, a programok elére bekészitett bemenetekkel
dolgoznak, ez ellentétes a tanuldk elézetes varakozasaval. A forditas folyamata két
1épésbdl 4ll, ez is meglepetést okozhat, és noveli a nyelv viszkozitasat. A futtatékornyezet
altal biztositott filekezelés nagyon zavard, nem intuitiv: nem valédi, hanem virtualis
file-okkal dolgozik. Fz rendszerint megzavarja a tanuldokat, magyarazatot igényel, és

csokkenti a tanulé PLanGba vetett hitét, csdkkenti motivacidjat.

4.1.3. Osszegzés

A PLanG kifejlesztésének célja az volt, hogy az addig papiron irt pszeudokdédot fut-
tathatova tegye, illetve hogy eszkozt adjon a proceduralis programok miikédésének
demonstralasara, elemzésére[l]. Bar ennek a célnak jol megfelelt, aktivan hasznalt, a
kurzus alapjaként szolgdld oktatédsi céli programozasi nyelvként hasznalhatdsdgi mutatoi

meglehetésen rosszak (14sd az 1. tdblazatot).

4.1.4. Ajanlasok

Alapvetd fontossagu alprogramok és Osszetett tipusok definidlasdnak lehetGsége, ez
névelné a nyelv hasznossagat, és javitana tobb hasznalhatésagi dimenzion is.

A hasznélhatosag tekintetében sokat nyernénk a deklaracids lista blokka alakitasaval,
vagy akar a valtozok szabad, programtorzson beliili deklaracidjanak engedésével. Engedni
kellene a véltozé deklaracidéval egybekotott inicializalasat.

A nyelv szerepkifejezd ereje névelhetd lenne a fiiggvénynevek felsz6lité modu igévé
atalakitasaval, még ha ezzel a programszoveg , gyerekesebbnek” is tiinik.

Kevés koltséggel jarna egy assertion konstrukcié implementélasa, amely eszkozt
biztositana az el6feltételek, utéfeltételek kezelésére. Szintén olcsd, de a hasznossigot
néveld elem egy hiba konstrukcid, amely lehet6vé tenné a programozénak a hiba preciz
jelzését.

Ajanlott lenne a tombdok kezelésének egyszeriisitése, példaul egy foreach konstrukcid

bevezetésével, de egy dinamikusabb témb tipus bevezetése is elényos lehet.

14

4.2. Tervezési dontések

A tervezett nyelvet XPLanGnak (eXtended PLanG, azaz kiterjesztett PLanG) neveztem
el, és gy dontéttem, a PLanG konzervativ kiterjesztése lesz, vagyis minden érvényes
PLanG program érvényes XPLanG program is lesz. Ennek az az elonye, hogy igy az
XPLanG konnyen kivalthatja a PLanGot; masrészt izgalmasnak tlint a lehetéség, hogy

az XPLanG a régi, elsésként irt PLanG programjaimat értelmezni tudja.

A megvaldsitdshoz hasznélt nyelvnek a leforditott program korldtlan hordozhatdsiga
miatt a Javat valasztottam. Legalacsonyabb verzidszamu tamogatott virtudlis gépnek
abszolut elterjedtsége miatt a hatos JVM-et valasztottam, bar felmeriilt az 6tés JVM
tamogatdsa is, mivel az egyetem turdus szerverén csak 6t6s verzioju Java fut. Mar a
projekt otletének felmeriilésekor volt egy olyan hatsé szandékom, hogy népszerisitsem a
forditéprogramokat hallgatétarsaim korében, ezért minél hozzéférhetébb szoftvert sze-
rettem volna irni, amelynek megértése, forditasa, modositasa konnyt, ezért hataroztam
el, hogy minél kevesebb fiiggdség felhaszndlasaval fogok dolgozni. Azt is eldontéttem,
hogy automatizalt parser generator haszndalata helyett kézzel fogok rekurziv leszalla-
sos elemz6t irni, egyrészt demonstrativ jellege miatt, masrészt mert megkdnnyiti az

informativ hibaiizenetek generalasat.

Minél altalanosabb forditéprogramot akartam irni, egy keretrendszer-félét, amely
felszini szintaxissal paraméterezhetd. Az volt az almom, hogy t6bb leszarmazott nyelvet
kezeljen a program: a PLanGot, a PLanG apro felhasznalhatésagi javitasokkal ellatott
kiterjesztését, majd még tobb, egyre jobban kiterjesztett PLanG valtozatokat; raadasul
azt is szerettem volna elérni, hogy a lexikalis tulajdonsagok minél konnyebben testre-
szabhatdak legyenek (erre [17] inspiralt), példdul azért, hogy kulfoldi vendéghallgatok is

tudjak hasznalni a nyelvet.

A fenti dontések utodlagos értékeléséért lasd a 4.4 részt.

4.3. A prototipus implementacidgja

A prototipus kézponti osztalya a rosszul elnevezett Parser, amely 1étrehozasakor egy,
valamely nyelv nyelvtandt enkapszuldlé Grammar objektummal paraméterezhets. A
Parser rendelkezik még egy Lexer objektummal, ami a programot leiré szimbélumsoro-

zat forrasa, és egy Context objektummal, ami a szimbolumtabldkat enkapszulalja.

4.3.1. A nyelvtan megadasa

A forditéprogram altal hasznélt nyelvtant egy Grammar objektumban adjuk meg: vi-
szonylag szép, deklarativ szintaxissal sorolhatjuk meg a nyelv altal hasznalt lexikalis
elemeket a hozzdjuk tartozé felszini formakkal (ezek karaktersorozatok vagy reguléris
kifejezések), beépitett fiiggvényeket, operatorokat. A nyelvtan helyettesitési szabalyait

egy rekurziv leszallasos elemz6 fliggvényeiként adjuk meg.

15

szabdly

Forra .. karakterek tokenek AST AST
orrasszoves Loz Interpreter

allapot helyes AST-node

4j dllapot AST-node

allapot ——

2. 4bra. A prototipus idealizalt adatfolyam diagramja.

4.3.2. Lexikalis elemzés

A Lexer a forrasszéveget bontja fel szimbdélumokra a Contextben térolt szimbdlumlista
alapjan. Implementaciéja nagyon egyszerii: a forrasszéveg bemeneti karakterfolyama-
ra megprébaljuk riilleszteni a szimbdélumokat leird reguléris kifejezéseket, majd a
leghosszabb egyezést tekintjiik taldlatnak, és ezt adjuk fel a Parsernek. Fzt az imp-
lementéciot eleinte ideiglenesnek szantam, de a feladathoz mérten hatékonynak és
megbizhaténak bizonyult.

Fontos megjegyezni, hogy a Lexer valéjaban nem szimboélumokat ad vissza, hanem
Tokeneket. A Token rekord tartalmazza a szimbdélumot, a tulajdonképpeni karakterso-

rozatot, illetve a karaktersorozat el6fordulasanak helyét a szévegben.

4.3.3. Szintaktikus elemzés

A Parser a szintaktikus elemzést a Grammar S metédusanak hivasaval kezdi meg, ahon-
nan a nyelvtan szabdlyfliiggvényeinek rekurziv hivasaival megy tovabb. Ezen szabaly-
fliggvények visszatérési értéke egy Node, azaz az absztrakt szintaxisfa egy csomoépontja.

A megvaldsitott absztrakt szintaxisfa regularis és heterogén: ,heterogén” mert a
csomopontok kiilonféle tipustak (kiilon leszarmazott osztély valdsitja meg példaul
a feltételes utasitast és a kifejezést), és ,reguldris” mert a csomépontokat egységes,

homogén interface-en keresztiil is lehet kezelni.

4.3.4. Szimbdlumtabla

A szimboOlumtéblat a Context osztdly valdsitja meg. Minden nevesitett szemantikai egy-
séget (tipusokat, valtozokat, fliggvényeket) egy kozos LeBlanc-Cook szimbdlumtabldban
tarol[lasd 18, p. 30], de heterogén interface-t biztosit.

16

4.3.5. Szemantikus elemzés

A Grammar egy szabdlyfiiggvénye kérheti egy Node szemantikus ellendrzését a rosszul
elnevezett ASTTypechecker osztalytol. Az ASTTypechecker ellenérzi az adott Node és
leszarmazottai tipushelyességét, és megkisérli rezolvalni a fiiggvényhivdasokat. A prototi-
pus kezeli a tulterhelt fiiggvényeket: a PLanG operatorai mind tulterhelt fiiggvényként

vannak megvalésitva.

4.3.6. Interpreter

Az elkészilt, tipushelyes absztrakt szintaxisfit az ASTInterpreter osztaly segitségével
tudjuk futtatni. Az ASTInterpreter kozvetleniil a szintaxisfat bejarva hajtja végre a

programot.

4.4. A tervezési dontések utolagos értékelése

Ebben a részben a 4.2 részben ismertetett tervezési dontéseket fogom értékelni.

Szép cél volt ugyan az, hogy minden PLanG program legyen érvényes XPLanG
program is, de emiatt az XPLanGban is megjelennek a PLanG legnagyobb felhasznal-
hatdsagi problémai, az alacsony szerepkifejezo erejii kulcsszavak és a deklardcios lista. A
valtoztathaté lexikalis elemek a kulcsszavak problémajara megoldast nytijtanak, de a
deklaraciés lista silyos problémai megmaradtak.

Nem volt egészen szerencsés valasztas a Java sem: a korlatlan hordozhatdsag szép cél
ugyan, de hasonlé eredményt ériink el, ha a népszerli operaciés rendszerekre forditott
binaris dlloményokat terjesztjiik, az egzotikusabb rendszerekhez pedig biztositjuk a
forditas lehetOségét.

Ezzel szemben gondot okozott, hogy a Java virtudlis gép indulasa sok id6t vesz
igénybe, igy a Javaban irt parancssoros forditéprogram noveli a nyelv effektiv viszkozita-
sat. A Java hatarozott objektumorientaltsaga is gyakran nehezitette a tisztdn imperativ
XPLanG fejlesztését, tobbszor objektumelvii gondolatok szivarogtak bele a tervezésbe;
ez kiilénosen a tipusrendszer alakitasanal jelentett gondot. De ha mar Javat hasznal-
tam, sok gondot megspérolhattam volna kiilsé konyvtarak szabadabb hasznalataval:
fliggbségkezeld eszkozok hasznalataval a kiilsé konyvtarak kezelése kezdéknek sem nehéz
feladat. Szintén érdemes lett volna kihasznalni a Java 8 nytjtotta lehet&ségeket.

Nem volt rossz dontés viszont sajat elemzot késziteni: nem keriilt sokkal idébe,
mint egy parsergenerator hasznalatat tisztességesen elsajatitani, és valéban nagyobb
kontrollom volt igy a hibaiizenetek generaldsiban, az elemzés logikai folyamatat is
egyszerusiteni tudtam, és rengeteget tanultam.

Az, hogy egyszerii forditéprogram helyett egyfajta keretrendszert irtam komolyan
megnehezitette és lassitotta a fejlesztést. Egyértelmiien a tulzott generalizacio csapdédjaba
estem, minden tekintetben célszerlibb lett volna egy csak az XPLanGot értelmezé

forditéprogramot irni.

17

Hivatkozasok jegyzéke

1]
2]

[10]

[11]

[12]

[13]

[14]

Lovei L., maganlevelezés, 2015. feb.

D. Knuth és L. Trabb Prado, ,,The early development of programming languages”,
Stanford University, tudoményos jelentés STAN-CS-76-562, 1976.

J. Backus, ,, The history of FORTRAN I, II, and 111", ACM SIGPLAN Notices,
vol. 13, no. 8, pp. 165—180, 1978. aug.

F. P. Brooks Jr., The Mythical Man-month. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1995., 1SBN: 0-201-83595-9.

Vet6 1., Szoftvertechnologia eldadas, 2015.
Csornyei Z., Forditéprogramok, 2. kiadas. Typotex, 2006., 1SBN: 9639548839.

Féthi A., Bevezetés a programozdshoz, 3. kiadas. 2012. [Online]. URL: http :
//people.inf.elte.hu/fa/pdf/konyv.pdf (utolsé elérés 2015.05.04.).

M. Felleisen, ,,On the expressive power of programming languages”, in Science of

Computer Programming, Springer-Verlag, 1990., pp. 134-151.

P. J. Landin, ,, The mechanical evaluation of expressions”, The Computer Journal,
vol. 6, no. 4, pp. 308-320, 1964. jan.

P. Graham, ,Succintness is power”, 2002. m4j. [Online]. URL: http: //www .
paulgraham.com/power.html (utolsé elérés 2015.05.14.).

S. McConnell, Code Complete, 2. kiadas. Redmond, WA, USA: Microsoft Press,
2004., 1sBN: 9780735619678.

L. Mclver, ,,Syntactic and semantic issues in introductory programming education”,
PhD disszertacié, Monash University, 2001. jan.

T. R. G. Green, ,,Cognitive dimensions of notations”, in People and Computers V,
Cambridge University Press, 1989., pp. 443-460.

T. R. G. Green és A. Blackwell, ,,Cognitive dimensions of notations and other
information artifacts: a tutorial”, 1998. okt. [Online]. URL: http://www.cl.
cam . ac . uk / ~afb21 /CognitiveDimensions / CDtutorial . pdf (utolsé elérés
2015.05.14.).

L. Torczon és K. Cooper, Engineering A Compiler, 2. kiadas. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2011., 1sSBN: 012088478X.

B. Ford, ,Parsing expression grammars: a recognition-based syntactic foundation”,
ACM SIGPLAN Notices, vol. 39, no. 1, pp. 111-122, 2004. jan.

Balogh Zs., Testreszabhatd programozdsi nyelv implementdldsa, 6nallé laboratériu-
mi beszdmolé, PPKE ITK, 2012.

M. L. Scott, Programming Language Pragmatics, 3. kiadas. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2009., 1SBN: 978-0-12-374514-9.

18

http://people.inf.elte.hu/fa/pdf/konyv.pdf
http://people.inf.elte.hu/fa/pdf/konyv.pdf
http://www.paulgraham.com/power.html
http://www.paulgraham.com/power.html
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

	Bevezetés
	Programozási nyelvek
	Történeti áttekintés
	Fogalmak
	Programozási nyelvek minőségi mutatói
	Kifejezőerő
	Belső kiterjeszthetőség és makrókifejezhetőség
	Hasznosság és használhatóság

	Oktatási célú programozási nyelvek

	Fordítóprogramok
	A compiler általános felépítése
	A környezetfüggetlen analízis eszközei

	A PLanG programozási nyelv kiterjesztése
	Követelményfeltárás
	A PLanG programozási nyelv értékelése
	A futtatókörnyezet értékelése
	Összegzés
	Ajánlások

	Tervezési döntések
	A prototípus implementációja
	A nyelvtan megadása
	Lexikális elemzés
	Szintaktikus elemzés
	Szimbólumtábla
	Szemantikus elemzés
	Interpreter

	A tervezési döntések utólagos értékelése

	Hivatkozások jegyzéke

