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Sajátérték, sajátvektor: 

 

Transzformáció:  L: V->V lineáris leképezés 

E részben cask transzformációkról lesz szó.   

 

Definíció: 

A   szám sajátértéke az L transzformációnak, ha van olyan NEM NULLA vektor, 

amelyre  

xxL )( . 

Ez a nem nulla X vektor az L transzformáció  sajátértékéhez tartozó sajátvektora.  

 

Példa:  A transzformációt a mátrixával adjuk meg, legyen az A.  
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Vagyis  
1

0
x  a 2  sajátértékhez tartozó sajátvektor. 

Hogyan lehet kiszámítani a sajátvektort? 

Egyszerűbb transzformációk esetében a geometriai 

tulajdonságokból számolás nélkül is megkapható: pl. egyenesre 

való tükrözésnél minden, a tengelyre eső vektor sajátvektor, 

hiszen a képe önmaga. A kép egyszerese az eredeti vektornak, 

ezért egyik sajátérték 1 (ehhez tartozó sajátvektorok alteret 
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alkotnak, a tengely egyenesét). A tengelyre merőleges egyenes 

minden vektora is sajátvektor, képe önmaga ellnetettje, ezért a 

sajátérték -1 (az ehhez tartozó alter a tengelyre merőleges 

egyenes).  

 

Ha a transzformációt a mátixával adjuk meg, akkor a 

sajátértékek és sajátvektorok a mátrixból számolhatók. 
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Karakterisztikus polinom: 
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Karakterisztikus egyenlet: 
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ijnn aA  

0)det()( AEf , 

Karakterisztikus mátrix: : 

 

AE  

  

Sajátvektor megkeresése: 

1. Megoldjuk a karakterisztikus egyenletet, ennek gyökei a sajátértékek, i  

2. Visszahelyettsítve a karaktesisztikus egyenletbe az egyik sajátértéket, megoldjuk a 

0xEA i  vagy  0xAEi , ,2,1i  egyenletrendszert.. A 

nemtriviális megoldások adják a i -hez tartozó sajátvektorokat. 

 

Példák (a leképezést a mátrixával adjuk meg): 
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Példa: 
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A fenti példákban legalább két lineárisan független sajátvektora volt a  

3 dimenziós tér transzformációjának.  

 

 

 


