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Lineáris leképezések 

A lineáris leképezés olyan függvény, amelynek értelmezési 

tartománya és értékkészlete vektortér, és a következő 

tulajdonságokkal rendelkezik: 

Legyen  ez a  függvény WVL →: RkVvu ∈∈  , , , 

(a) ( ) ( ) ( )vLuLvuL +=+ . 

(b) ( ) ( )ukLkuL = . 

 

Ha V=W, akkor a leképezést lineáris transzformációnak hívjuk. 

 

Az ( )uL  vektor az u vektor képe.  (Az ( )uL  vektor őse az u 

vektor) 

 

. 
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Példák:  
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(b)  Rk ∈ , 
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2. Nyújtás:  33
1 : RRL →   
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Zsugorítás: 33
2 : RRL →   
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⇒  1L  és 2L   lineáris  transformációk.  

3.  Forgatások: 
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22: RRL →   
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L is  lineáris  transzformáció 

 

4. A  legyen nm×  mátrix.  

mn RRL → :    
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is lineáris transzformáció  

(a) nRvu ∈  , ,  

( ) ( ) )()( vLuLAvAuvuAvuL +=+=+=+ . 

(b)  Rk ∈ , 

( ) ( ) ( ) )(ukLAukkuAkuL === . 
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Példa:  (vetítés) 

( ) ( ) 01201
2

212  ,: axaaaxaxaLPPL ++=++→ , 

nP  az összes polinom, melynek foka  n≤ . Bizonyítsa be, 

hogy L lineáris leképezés! 
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Példa:  

nn PPL →: , L a deriválás,  ( ) xxL 22 = . 

L  lineáris leképezés-e? 
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Példa:  

23: RRL →   
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Igaz-e., hogy L lineáris leképezés? 

NEM, mert 
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Fontos: 
WVL → :   

 ( ) WVL 00 = , V0  a vektor összeadás egységeleme V-ben, 

másképpem nullelem V-ben, és W0  a vektor öszeadás 

egységeleme, a nullelem  W-ben. 

 ( ) ( ) ( )vLuLvuL −=− . 

 A lineáris kombináció megőrződik: kvvv  ,, , 21 K  ∈ V  

kccc  ,, , 21 K  ∈R  esetén: 

( ) ( ) ( ) ( )kkkk vLcvLcvLcvcvcvcL +++=+++ LL 22112211 . 

 Ha  V n-dimenziós vetortér { }nwwwS ,,, 21 K=  V egy 

bázisa. Minden   u  ∈V, akkor ( )uL  a lineáris 

kombinációja a bázisvektorok képeinek: 

( ) ( ) ( )nwLwLwL  ,, , 21 K  (azonban e képvektortok nem 

biztos, hogy bázist alkotnak!). 
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Egy-egyértelmű leképezések, magtér (Kernel) és képtér 

(Range, Image) 

 

Definíció: Egy-egyértelmű leképezés (kölcsönösen 

egyértelmű, bijekció) 

 

WVL → :  minden  21  , vv  ∈ V, ha 21 vv ≠  akkor 

( ) ( )21 vLvL ≠  (vagy, ami ezzel ekvivalens: ( ) ( )21 vLvL =  - ből 

következik  21 vv = ).  

 

Példa: 
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
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( ) ( )
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y
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y
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

=


=⇔ . 

Tehát e leképezés bijekció (egy-egy értelmű). 
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Magtér: 

Az  WVL → :  lineáris leképezés magtere,  ( )Lker , a V 

azon részhalmaza, amelynek minden v  vektora a W 

nullelemére képződik ( ) 0=vL . 

 

 

Példa:  
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( )Lker =? 

 

Megoldás:  

( )Lker   azon 









=

3

2

1

u
u
u

u   vektorok összessége, amelyre: 

( ) 0== AuuL . 

Tehát  ( )Lker  az 0=Au  homogén lineáris 

egyenletrendszer megoldása. 
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Az elnevezés helyes, ( )Lker  valóban altér: 

Biz.:  

 ( )Lker , 21 ∈vv , ( ) ( ) 021 == vLvL . Alkalmazzuk a tanult 

tételt, miszerint akkor altér valamely részhalmaz, ha mind a 

vektorok összeadására (+), mind a skalárral való szorzásra nézve 

zárt (és fordítva): 

 

1. ( ) ( ) ( ) 0002121 =+=+=+ vLvLvvL  ( )Lvv ker 21 ∈+⇒ . 

2. ( ) ( ) RkkvkLkvL ∈===  ,0011  ( )Lkv ker 1 ∈⇒ . 

 

Mikor bijekció valamely leképezés? 

Tétel:  

A WVL → :  lineáris leképezés akkor és csak akkor 

egy-egyértelmű, ha ( ) { }0=LKer   

 

Bizonyítás:  

:⇒ HA  L  bijekció, akkor  ( ) 00 =L -ből következik, hogy 

az egyetlen vektor V-ben, aminek képe a 0 W-ben a 0 v-ben:  

( ) 00 =L . 
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:⇐ Ha ( ) { }0ker =L :  Tf., hogy van két olyan vektor, u és 

v, amelyek képe nem különbözik:  

( ) ( )vLuL = .  

Akkor: ( ) ( ) ( ) 0=−=− vLuLvuL  vagyis e vektorok 

különbsége benne van a magtérben ( ) { }0ker =L ,  

vuvu =⇒=−   0  - a két vektor egyenlő   

 

Megjegyzések (praktikusak): 

HA nn RRL → :  lin. Leképezést a mátrix-szorzás segítségével 

definiáljuk: ( ) AxxL = , akkor a következők ekvivalensek: 

 

 ( ) { }0ker =L . 

 0=Ax  -nek csak a triviális megoldása van. 

 bAx =  -nek minden b -re egyértelmű megoldása van. 

 ( ) AxxL =   bijekció  
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Képtér: 

WVL → :  , ezen L leképezés képtere a W azon részhalmaza, 

( )LIm , amelyek valamely V-beli vektor képei: 

( )LImw ∈ , ha létezik v ∈ V  hogy ( ) wvL =   

 

Ha a képtér azonos W-vel, vagyis  ( ) WLIm = ,  akkor a 

leképezést ráképezésnek nevezzük. 
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Az elnevezés, képtér, helyes, a halmaz valóban altér: 

WVL → : , ( )LIm  altere W-nek. 

 

Bizonyítás: 

( ) 00 =L , ( )LIm∈0 , a képtér sosem üres. Minden 

( )L , 21 Imww ∈ , található olyan 21  , vv  ∈V hogy: 

( ) ( ) 2211  , wvLwvL == .  

 

1. ( ) ( ) ( ) 212121 wwvLvLvvL +=+=+ így ( )LImww ∈+ 21  

hiszen Vvv ∈+ 21 . 

2. ( ) ( ) RkkwvkLkvL ∈==  ,111 . Emmiatt ( )LImkw ∈1  

hiszen Vkv ∈1  

 

 


