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Mátrix 
 
 
Def.: Legyen T kommutatív test,  k, n természetes számok. Ekkor a T test feletti kn-es mátrixon 

egy olyan téglalap alakú táblázatot értünk, amelynek k sora és n oszlopa van,  elemei pedig a T-
ből valók. 

 A mátrix típusa kn. A T – beli elemekkel rendelkező, kn típusú mátrixok halmazát T kn-nel 
is jelöljük.  

 
A továbbiakban  T =R (valós számok). 
 
További jelölések: 
 

  mnik

nm2n1n

m22221

m11211

a

a...aa

............

a...aa

a...aa

















 

 
Speciális mátrixok: 

 
Sorvektor : [a1, a2, a3, ….. an]  

 T kn 
:A  
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Oszlopvektor: 

















n

3

2

1

b

b

b

b



 
 
Nullmátrix (összeadás egységeleme):  

ika  =0, jele:        =    

















0...00

............

0...00

0...00

 0  
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Egységmátrix (szorzás egységeleme),  
kvadratikus= n x n : 

 

















1...00

............

0...10

0...01

                  
















nm

22

11

a...00

............

0...a0

0...0a

 
 
Szimmetrikus mátrix:  
 

aik= aki   











465

632

521

A
 

 
 
 
 
 
 
 

Diagonál mátrix :     

En= 
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Mátrixok számmal való szorzása (nem művelet!) 
 ·A=C  R,   cik=·aik 

 

Megállapodás szerint ·A=A·.  
 
Műveletek mátrixokkal: 
 
Mivel a már tanult vektorok speciális mátrixok, ezért a műveleteket célszerű  a már ismert  
(koordinátás alakban tanult) vektorösszeadással és (skalár)szorzattal összhangban megadni. 
 
Mátrixok összeadása:  
Ebben a részben A, B, C, 0  azonos típusú mátrixok. 
C=A+B 
cik=aik+bik   (számok) (cik ,aik, bik jelenti rendre a C (eredménymátrix), A, B mátrixok i.sorának 
k.elemét) 
 
Példa: 
 











1210

86

87

65

43

21
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A mátrix összeadás tulajdonságai: 
 

1. Valóban művelet, hiszen  két (nm) típusú mátrixhoz ugyanolyan       
típusú mátrixot rendel. (zártság) 

2.    Kommutatív : A+B=B+A  
3.    Asszociatív : (A+B)+C=A+(B+C) 

4.   Minden A-hoz létezik (egyetlen) egység, a 0 (nullmátrix),  
 amelyre A +      = A 

5.  Minden A-hoz létezik inverz (ellentett) elem, amelyre  A+A’= 
 
Mátrixok szorzása 
 
Vektorok skalárszorzatának kiszámítására vonatkozó tételen  alapul:  
 
A C= A·B mátrixot úgy kapjuk, hogy A minden sorvektorának képezzük a skalárszorzatát B minden 
oszlopvektorával. Ezért ha  A típusa  (nm), akkor B típusa (mk).  Ez azt jelenti, hogy az A és B 
mátrix csak abban az esetben szorozható össze, ha A-nak ugyanannyi oszlopa van, mint ahány sora 
B-nek. A szorzatmátrix típusa ennek megfelelően (nk).  




 m

1l
lkilik ba:c

 
 
 

Abel-csoport 

0  

0
 

 3

1i
ii baba
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Példák:          









612

501

430

  

  



654

321 



771817

3268

 
     

 
Speciális eset: egységmátrixszal való szorzás: 
 

  



10

01

 

  



65

43 



65

43

 
 
Feladat: Végezze el az alábbi szorzást: 
 
 

  



65

43

 
  




10

01  

 



MÁTRIXOK 
 

 
 
©Bércesné Novák Ágnes   7  

Mátrixok szorzásának tulajdonságai: 
 
1. Csak tágabb értelemben művelet, ha az összes mátrixok halmazát nézzük. Ha az alaphalmaz T kn , 
akkor a szorzás nem művelet, hiszen különböző típusú mátrixokon van értelmezve, és különböző 
típust hoz létre.  
 
2. nem kommutatív 
 
3. asszociatív: A·(B·C)=(A·B)·C 
 
4. disztributív: A·(B+C)=(A·B)+(A·C) 
 
                        (B+C)·A=(B·A)+(C·A ) (mivel a szorzás nem kommutatív) 
 
5. (·A)·B=A·(·B)= ·(A·B) 
 
6. A négyzetes, det (A)0 mátrixoknak van inverz eleme, A-1  (def. ld. alább). 
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I. Példa arra, hogy mátrixok szorzása NEM kommutatív: 
 

   


 





20

12
  és  

12

31
BA  

BAAB 









24

70

44

52
      . 

II.  Példa arra, hogy a szorzás műveletekor a szokásos egyenletrendezés nem érvényes: 
 
 














21

21
   és   

32

42
  , 

10

31
CBA  

BABCAC 




   DE  

21

42
       (magyarázat  alább) 

 
 

III.  Példa arra, hogy  mátrixok szorzata lehet a null mátrix úgy, hogy egyik tényező sem null mátrix: 
 











11

11
 és  

11

11
BA  

.0  ,0  DE  
00

00
      


 BABAAB  
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IV.  














 








 32
3

20

01

20

01

20

01

20

01

20

01

20

01
    

20

01
AA . 











43

21
     

10

01
  ,

43

21
222 AAIAIIA  

 
 
 
 
Def.: Azt az A-1-gyel jelölt, n x n-es mátrixot, amelyre A. A-1= (A-1.A)=En,  az A, n x n-es mátrix 
inverzének nevezzük. 
 
Megjegyzés: A mátrix inverzének  egyértelműsége a szorzás asszociativitásának következménye.  
 
Inverz mátrix tulajdonságai: 

1.   AA  11 . 

2.   111   ABAB   FONTOS!! Bizonyítsa be! 

3.    TT AA 11    
4. Ha C invertálható (nem szinguláris), akkor a mátrix egyenletet lehet a szokásos módon 
rendezni: 

 .    BABCAC   BIZ.: szorozzuk be az egyenlet mindkét oldalát jobbról 
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C-1-gyel. 

 BACBCA     . BIZ.: szorozzuk be az egyenlet mindkét oldalát balról C-1-
gyel. 

 
Példa volt:  














21

21
   és   

32

42
  , 

10

31
CBA       BABCAC 




   DE  

21

42
       

 
Itt az egyenletrendezés azért nem érvényes, mert C SZINGULÁRIS (Nincs inverze!) 
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Inverz mátrix számítása Gauss-Jordan eliminációval: 
 
Példa: 

















531

532

211

A .Keressük az inverzet a következő alakban:  











333231

232221

131211
1

xxx

xxx

xxx

A
 

 

3

333231

232221

131211
1

100

010

001

531

532

211

E

xxx

xxx

xxx

AA 






































. 
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Ez a következő egyenletek megoldását jelenti: 

















































0

0

1

531

532

211

31

21

11

31

21

11

x

x

x

x

x

x

A , 















































0

1

0

531

532

211

32

22

12

32

22

12

x

x

x

x

x

x

A , 















































1

0

0

531

532

211

33

23

13

33

23

13

x

x

x

x

x

x

A  

 
Három lineáris egyenletrendszert kell megoldani, olyanokat, amelyeknek az együttható mátrixa 

azonos, és a jobboldali b konstansokból álló vektor rendre: 





























1

0

0

  ,

0

1

0

 ,

0

0

1

.  



MÁTRIXOK 
 

 
 
©Bércesné Novák Ágnes   13  

A három egyenletrendszer kibővített mátrixai: 




















0

0

1

5

5

2

3

3

1

1

2

1

, 


















0

1

0

5

5

2

3

3

1

1

2

1

, 


















1

0

0

5

5

2

3

3

1

1

2

1

. 

A Gauss-Jordan elimináció első lépésében például az utolsó elem nullázásakor a köv. adódik:  

   )1()3()3(
 

















1

0

1

3

5

2

2

3

1

0

2

1

, 
















0

1

0

3

5

2

2

3

1

0

2

1

, 
















1

0

0

3

5

2

2

3

1

0

2

1

. 

 
                                    
 
         AZONOSAK A JELÖLT RÉSZEK 
 
Csak az utolsó oszlopban van eltérés. Igy egyszerre is megoldhatjuk a 3 egyenletrendszert, 
megjegyezve, hogy az 4., 5., 6. oszlop rendre az első, második, harmadik egyenletrendszerhez 
tartozik. 
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1

0

0

0

1

0

0

0

1

5

5

2

3

3

1

1

2

1

















 





   )1()3()3(
 

  

1

0

0

0

1

0

1

0

1

3

5

2

2

3

1

0

2

1























. 

          A                      3E  
 
 
stb... 
Az  nn  -es A mátrix inverzének számítása: 

1. nn 2  kibővített mátrix:  

 















1

0

0

0

1

0

0

0

1

2

1

2

22

12

1

21

11


































nn

n

n

nn

n

a

a

a

a

a

a

a

a

a

EA
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A Gauss-Jordan eliminációt  alkalmazva:  DEn   alakra hozzuk  a mátrixot, D lesz az A 
inverze (amennyiben nE  létrehozható). Előfordulhat, hogy a mátrix első n oszlopában NEM áll elő az 
egységmátrix, akkor az inverz NEM létezik, a mátrix szinguláris. 
 
Példa (folytatás):  

A fenti módszerrel keressük meg az 















531

532

211

A
 mátrix inverzét: 

1.  

  

1

0

0

0

1

0

0

0

1

5

5

2

3

3

1

1

2

1

















 





. 

   
)1(*2)2()2(

)1()3()3(

  
  

1

0

0

0

1

0

1

2

1

3

1

2

2

1

1

0

0

1






















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   )2(*1)2(
    

1

0

0

0

1

0

1

2

1

3

1

2

2

1

1

0

0

1




















 

   
)2(*2)3()3(

)2()1()1(

    

1

0

0

2

1

1

3

2

3

1

1

1

0

1

0

0

0

1






















 

   
)3()2()2(

)3()1()1(
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2. Tehát A inverze: 
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Tétel: 
Ha  A  nn  -es mátrix, és  A reguláris (nem szinguláris, vagyis, van inverze) akkor az bAx   
lineáris egyenletrendszernek egyértelmű megoldása van, és ez bAx 1 . 

A tétel megfordítása is igaz, ha az bAx   lineáris egyenletrendszernek egyértelmű a megoldása, 
akkor az A mátrix reguláris. 
Bizonyítás:  
: A reguláris, van egyértelmű inverze: 1A , ezzel: 

    bAxbAxIbAAxA n
1111           . 

: TFH.,  bAx   -nek egyértelmű megoldása d.  Ez azt jelenti, hogy az  bA   kibővített mátrix 

redukált lépcsős alakja  dEn  , amit az elemi sorműveletekkel kaptunk. Ez azt jelenti, hogy 
ugyanazokat a az elemi sorműveleteket az  nEA   kibővített mátrixra alkalmazva, az    DEn   redukált lépcsős alakot kapjuk, ahol D  az  A mátrix inverze..  
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Példa: Oldjuk meg az alábbi lineáris egyenletrendszert! 
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Megoldás:  
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