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Homogén lineáris lejképezések mátrixa 
 

Volt:  ha 
kn VV 21:A →  (a felső indexek a dimenziót jelölik) és  

kxnTA∈   
 ( ) xAyx ⋅== :A , akkor  ),( 21

kn VVHOM∈A  
 

Most:  ),( 21
kn VVHOM∈∀A  -hez ∃  

kxnTA∈ , hogy  [ ] xAxy ⋅== A  

amennyiben nV1 , nV2  bázisait rögzítjük, ez az A  mátrix  egyértelmű.  HA hangsúlyozni 

akarjuk, mely bázispárhoz tartozó A  mátrixról van szó, akkor ezt igy jelőljük: [ ][ ][ ]baA , ahol [ ] { }naaaa ,....,, 21=  

      nV1  bázisa 

     [ ]abA                  [ ] { }kbbbb ,....,, 21=  kV2  bázisa,  

 az A mátrix a leképzés mátrixa 
 

Tétel: az ),( 21
kn VVHOM∈∀A  leképezés mátrixa [ ][ ][ ] ],...,,[ 21 nba KKKA = , 

ahol )(: i

def

i aK A=  

az a leképezés mátrixa az 
kn VbVa 21 ][,][ ∈∈  bázispárra vonatkozóan az a (KxN)-es 

mátrix, melynek oszlopvektorai az [a] bázis vektorainak képei. 
 
példa: y=x egyenesre tükrözés 
  (x képe y és vice versa) 
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példa: vetítés: 
33 RR →  (merőlegesen x,y síkra) 
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példa: vetítés: 
23 RR →  (merőlegesen x,y síkra) 
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Bizonyítás: Konstruktív, meg is adjuk a kérdéses mátrixot: 
 
nV1  ŰÁZISA: na,...,1a  
kV2 ŰÁZISA: kb,...,1b    (ai INDEXE LESZ AZ OSZLOPINDEX) 

 
∈+++= kk bbba 122111 ...)( βββ11A  kV2  
∈+++= kk bbba 222212 ...)( βββ12A kV2  

. 

.. 
∈+++= kknnn bbba βββ ...)( 2211nA kV2  

 
∈+++= nnaaax ααα ...2211

nV1  
∈+++= )...)( 221 nnaaax αααnΑ(A kV2  

)...)))( 21 naaax Α(Α(Α(A n21 ααα +++=  
+++++++++= ...)...)...)( 2222112211 kkkk bbbbbbx βββαβββα 122111 ((A  

=++++ )...221 kknn bbb βββα 1nn (   
+++++++++= ...)...()...( 22222121112121 bb nnnN αβαβαβαβαβαβ11  

knknk b)...( 211 αβαβαβ ++++ k1  
 
EZEK AZ ÚJ KOORDINÁTÁK 
 
HOGYAN LEHET VALAMELY VEKTOR ÚJ KOORDINÁTÁIT KISZÁMÍTANI? 
 
A knβ  EGYÜTTHATÓKAT  MÁTRIXŰA RENDEZZÜK ÚGY, HOGY A MÁTRIX i.. 
OSZLOPA A KIINDULÁSI TÉR i. ŰÁZISVEKTORÁNAK KÉPVEKTORA LEGYEN (A 
KÉPTÉRŰEN). 
 
AZ ÍGY KAPOTT MÁTRIX A LEKÉPEZÉS MÁTRIXA A MEGADOTT ŰÁZISOKRA 
VONATKOZÓAN.  RÖGZÍTETT ŰÁZISPÁRRA EZ EGYÉRTELMĥ. EZZEL A 
MÁTRIX-SZAL SZOROZVA  AVEKTOR EREDETI KOORDINÁTÁIT, MEGKAPJUK 
AZ ÚJAKAT. EREDETI KOORDINÁTÁK nV1 -ŰEN ÚJ KOORDINÁTÁK kV2 -ŰAN 
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   LEKÉPEZÉS MÁTRIXA  (∗  a szokásos mátrix szorzást jelenti.) 
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Megjegyzés:  
 
Most hogy tudjuk, minden leképezést megadhatunk egy mátrix segítségével, a képtérrel 
kapcsolatban célszerĦ a leképezést reprezentáló  mátrix szorzást úgy tekinteni,  mint a 
leképezés mátrixa oszlopvektorainak lineáris kombinációját: 
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Tehát ezen oszlopvektorok generátuma a képtér.  Azonban a képtér megadásához bázist kell 
biztosítani, tehát e generátorrendszerből ki kell választani egy alkalmas bázist.  
 
 
 
Tétel: Tegyük fel, hogy egy Vn->Vn homogén lineáris transzformáció (különböző 
sajátértékekhez tartozó) sajátvektorai bázist alkotnak. Ekkor  a transzformáció mátrixa e 
bázisra vonatkozóan diagonális, és a főátlóban rendre a megfelelő sajátértékek állnak.  
 
Bizonyítás:  
A transzformáció mátrixának oszlopvektorai a  bázisvektorok képei. Sajátvektor képe önmaga 
sajátértékszerese. Pl. az i. sajátvektor,  is  mátrixos alakja a sajátértékek bázisában egy olyan 

oszlopvektor, amelynek i. koordinátája iλ ,  összes többi koordinátája pedig nulla: 
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Ezek az oszlopvektorok alkotják a leképezés mátrixát: az első oszlopnak az első, a második 
oszlopnak a második, az i. oszlopnak az i. pozícióján áll a megfelelő sajátérték, ezért a mátrix 
valóban diagonális lesz.   
 
 

[ ]
2

2

1

3

23

13

2

2

22

12

1

1

21

11

332211

2323222121

1313212111

2

2

1

321

2232221

1131211

...
....3

.........
...

...
...
...

...
...

...............
...
...

α
β
β
β

α
β
β
β

α
β
β
β

α
β
β
β

αβαβαβαβ
αβαβαβαβ
αβαβαβαβ

α
α
α

ββββ
ββββ
ββββ














++














+














+














=















++++
++++
++++

=













∗















kn

n

n

kkknknkkk

nn

nn

knkkk

n

n

a

 


