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Lineáris algebra


Homogén lineáris leképezés mátrixa
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Homogén lineáris leképezések mátrixa
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 bázispárra vonatkozóan az a (KxN)-es mátrix, melynek oszlopvektorai az [a] bázis vektorainak képei.

példa:
y=x egyenesre tükrözés



(x képe y és vice versa)
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példa: vetítés: 
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példa: vetítés: 
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Bizonyítás: Konstruktív, meg is adjuk a kérdéses mátrixot:
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(ai INDEXE LESZ AZ OSZLOPINDEX)
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EZEK AZ ÚJ KOORDINÁTÁK

HOGYAN LEHET VALAMELY VEKTOR ÚJ KOORDINÁTÁIT KISZÁMÍTANI?

A 
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 EGYÜTTHATÓKAT  MÁTRIXBA RENDEZZÜK ÚGY, HOGY A MÁTRIX i.. OSZLOPA A KIINDULÁSI TÉR i. BÁZISVEKTORÁNAK KÉPVEKTORA LEGYEN (A KÉPTÉRBEN).

AZ ÍGY KAPOTT MÁTRIX A LEKÉPEZÉS MÁTRIXA A MEGADOTT BÁZISOKRA VONATKOZÓAN.  RÖGZÍTETT BÁZISPÁRRA EZ EGYÉRTELMŰ. EZZEL A MÁTRIX-SZAL SZOROZVA  AVEKTOR EREDETI KOORDINÁTÁIT, MEGKAPJUK AZ ÚJAKAT.
EREDETI KOORDINÁTÁK
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LEKÉPEZÉS MÁTRIXA  (
[image: image70.wmf]*

 a szokásos mátrix szorzást jelenti.)
Megjegyzés: 

Most hogy tudjuk, minden leképezést megadhatunk egy mátrix segítségével, a képtérrel kapcsolatban célszerű a leképezést reprezentáló  mátrix szorzást úgy tekinteni,  mint a leképezés mátrixa oszlopvektorainak lineáris kombinációját:
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Tehát ezen oszlopvektorok generátuma a képtér.  Azonban a képtér megadásához bázist kell biztosítani, tehát e generátorrendszerből ki kell választani egy alkalmas bázist. 

Tétel: Tegyük fel, hogy egy Vn->Vn homogén lineáris transzformáció (különböző sajátértékekhez tartozó) sajátvektorai bázist alkotnak. Ekkor  a transzformáció mátrixa e bázisra vonatkozóan diagonális, és a főátlóban rendre a megfelelő sajátértékek állnak. 
Bizonyítás: 

A transzformáció mátrixának oszlopvektorai a  bázisvektorok képei. Sajátvektor képe önmaga sajátértékszerese. Pl. az i. sajátvektor,  
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 mátrixos alakja a sajátértékek bázisában egy olyan oszlopvektor, amelynek i. koordinátája 
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,  összes többi koordinátája pedig nulla:
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Ezek az oszlopvektorok alkotják a leképezés mátrixát: az első oszlopnak az első, a második oszlopnak a második, az i. oszlopnak az i. pozícióján áll a megfelelő sajátérték, ezért a mátrix valóban diagonális lesz.  
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