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Homogén lineáris leképezések (=lineáris leképezések) 
(gyakorlaton lesz hasonló feladat) 

 
A lineáris leképezés olyan függvény, amelynek értelmezési tartománya és értékkészlete vektortér, és két 
speciális tulajdonsággal rendelkezik. A homogén lineáris leképezések nékülözhetetlenek a száémítógépes 
grafikában, és ezáltal egy sor más mérnöki alkalmazásban is, pl. repülőgépek tervezése, molekula 
modellezés.  
 
Definíció:  
Legyenek  V és W vektorterek, valamint RkVvu ∈∈  , , .   Azt az WVL →:  függvényt, amely a következő 
két tulajdonsággal  rendelkezik, lineáris leképezésnek nevezzük.  
 
(a) ( ) ( ) ( )vLuLvuL +=+ . 
(b) ( ) ( )ukLkuL = . 
 
Ha V=W, akkor a leképezést lineáris transzformációnak hívjuk. 
 
Az ( )uL  vektor az u vektor képe.  (Az ( )uL  vektor őse az u vektor) 
 

. 
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Az alábbi példákban szereplő leképezésekről döntse el, hogy lineárisak-e. 
 
 
Példák:  
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Megoldás:  
 
Az a.) b.) tulajdonságokat kell bizonyítani: 
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(b)  Rk ∈ , 
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2. Nyújtás:  
33
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Zsugorítás: 
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3.  Forgatások (elemi úton kiszámolva): 
 

                      
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22: RRL →   
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
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4. Mátrix-szal való szorzás:  A  legyen nm×  mátrix.  

mn RRL → :    
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 (a) 
nRvu ∈  , ,  ( ) ( ) )()( vLuLAvAuvuAvuL +=+=+=+ . 

(b)  Rk ∈ , ( ) ( ) ( ) )(ukLAukkuAkuL === . 
 
Azt is a későbbiekben bizonyítjuk majd, hogy minden homogén lineáris leképezést meg lehet adni alkalmas mátrix-szal 
való  szorzással. (E mátrixot a leképezés mátrixának nevezzük majd.) 
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5. Jelöljük nP -nel  az összes, legfeljebb n-edfokú polinomok halmazát.  
 
Megoldás: ( ) ( ) 01201

2
212  ,: axaaaxaxaLPPL ++=++→ , 
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(b)  Rk ∈ , 
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6. 1: −→ nn PPL , L a deriválás. 
. 

Megoldás:  
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(b) Rk ∈ , 
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Példa arra, hogy egy leképezés NEM lináris: 

Legyen 
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L nem lineáris leképezés,  mert 
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Így a b.) tulajdonságot már nem is kell vizsgálni.  
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A definíció egy fontos következménye:  
 
Feladat: Bizonyítsa be, hogy valamely L leképezés akkor és csak akkor homogén lineáris, ha 
 ( ) )()( 2121 vLkuLkvkukL +=+  
 
Feladat: 
Rn  bármely v vektorához rendeljük hozzá  v*= Av vektort, ahol az A  egy n x n-es mátrixot jelöl. Hogyan lehet megtalálni 
azokat a vektorokat, melyeknek képe párhuzamos önmagával?  
 
Megoldás:  
 
Rendezve a mátrix egyenletet, az alábbi homogén lineáris egyenletrendszert kell megoldani:  
 ( ) 0)(      )( =−=−⇔== xAEAxxExExAx λλλλ  
 
Ennek csak akkor lesz triviálistól különböző megoldása, ha a ( )AE −λ  együttható mátrixban a GAUSS elimináció 
befejezésekor az utolsó sorban csupa nulla lesz, ebből a λ -k kiszámolhatók.  Visszahelyettesítéssel kapjuk a keresett 
vektorokat.  
  
Definíció:  A λ  szám sajátértéke az L transzformációnak, ha van olyan NEM NULLA vektor, amelyre  

xxL λ=)( . 
Ez a nem nulla x vektor az L transzformáció λ sajátértékéhez tartozó sajátvektora.  
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Példa:  A transzformációt a mátrixával adjuk meg, legyen az A.  




=
20
03

A . 

Ha  


=
0
1

x ,  akkor xAx 3
0
3

0
1

20
03 =


=





= .  

Igy  


=
0
1

x   a  3=λ   sajátértékhez tartozó sajátvektor. 

HA  


=
1
0

x ,  akkor  xAx 2
2
0

1
0

20
03 =


=





=  

Vagyis  


=
1
0

x  a 2=λ  sajátértékhez tartozó sajátvektor. 

 
Feladatok: 
 
- Számolás nélkül keressük meg a síkban valamely tengelyre vontakozó tükrözés sajátvektorait! 
 
- Számolás nélkül keressük meg a síkban valamely pont körül való elforgatás sajátvektorait! 
 
Példa sajátvektor kiszámítására síkbeli transzformáció esetén:  
 





−=

42
11

A . 
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TFH. 


=
2

1

x
x

x  sajátvektor:  

( ) 0)(      )(
42
11

2

1 =−=−⇔==






−= xAEAxxExEx

x
x

Ax λλλλ . 

 
 




=






−
−−=−

0
0

42
11

)(
2

1

x
x

xAE λ
λλ  

 
Gauss eliminációval: 

 

3    vagy 2         == λλ  
 

1.  Ha 2=λ , 

 0
22
11

)2(2     22
2

1 =






−
−=−=−⇔==

x
x

xAEAxExExxAx . 

. 0   t,
1
1

           
2

1 Rtt
x
x

x ∈≠


=


=⇔
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2. Ha  3=λ , 

 0
12
12

)3(3     33
2

1 =






−
−=−=−⇔==

x
x

xAEAxExExxAx . 

.  0,r   ,
1
2/1

           
2

1 Rrr
x
x

x ∈≠


=


=⇔
 

 
Definíció: Legyen L valamely V –> W lineáris leképezés. Azon vektorok összességét L-ben, amelyek képe a nullvektor, a 
leképezés magterének nevezzük, és Ker(L)-lel jelöljük 
 
Ker=Kernel, mag 
 
Feladat: Bizonyítsa be, hogy a magtér soha nem üres! 
 
Lemma: A V-beli null vektor képe a W-beli nullvektor. 
 
Tétel: Legyen L valamely V –> W lineáris leképezés R felett. Bizonyítsa be, hogy Ker(L) altere V-nek.  
 
Definíció: Legyen L valamely V –> W lineáris leképezés R felett. Azon vektorok összességét W-ben, amelyek valamely V-
beli vektor(ok) képei, a leképezés képterének nevezzük, és Im(L)-lel jelöljük 
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Im=Image, kép 
 
Tétel: Legyen L valamely V –> W lineáris leképezés R felett. Bizonyítsa be, hogy Im(L) altere W-nek.  
 
Ez a tétel azt mondja ki, hogy a lineáris leképezésnek, mint függvénynek az értékkészlete is vektortér, a W-beli +-ra és az R-
beli számszorosra nézve.    
 
Dimenzió tétel: Legyen L valamely V –> W lineáris leképezés. Dim(Ker(L))+Dim(Im(L))=Dim(V) 
Bizonyítás később. 
 
 
 


