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LINEÁRIS ALGEBRA

__________________________________________________________________________________


Generátorrendszer, bázis, dimenzió
(gyakorlaton lesznek hasonló feladatok)

Ebben a részben általánosítjuk a térbeli vektorokra már megismert hasznos fogalmakat. A legfontosabb, hogy bármely vektortérben le tudjuk írni, meg tudjuk adni a vektorokat valamilyen módon. Ez a mód a koordinátázás lesz. Látni fogjuk azonban, hogy nem minden vektorrendszer alkalmas erre, ugyanis vannak olyanok, amelyekre vonatkozóan nem lenne egyértelmű a koordinátázás, ezek nyilván hasznavehetetlenek. Ezért először meg kell fogalmaznunk, milyen tulajdonságúnak kell lennie azoknak a vektoroknak, amelyekkel a többit le szeretnénk írni. Azt követeljük meg, hogy a vektorok előállítása egyértelmű legyen. Erre már láttunk példát:
Tétel (Vektorok felbontása térben-vektoralgebrából tanultuk):

Ha adott a térben három, nem egysíkú, páronként nem párhuzamos vektor, a, b, c, akkor bármely d térbeli vektorhoz van olyan (,(,((R, amelyekre igaz, hogy d=(a+(b+(c. 

Ez a felbontás egyértelmű. Az a, b, c, vektorokat bázisnak, az (, (, ( számokat e bázisra vonatkoztatott koordinátáknak nevezzük. Ez így is jelölhető:
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A bázis fogalmát szeretnénk általánosan megfogalmazni, hogy másfajta objektumok esetén is az objektumokat elő tudjuk állítani ezen alapvektorok egyértelmű lineáris kombinációjaként. Ennek egyik útja, hogy a köznapi nyelvünkben használatos ún. függetlenség, összefüggőség fogalmát próbáljuk matematikai képlet formájában megragadni. 

Egyenlőre maradjunk  a vektorok olyan rendszerénél, amely előállítja ugyan a vektorokat, de az előállítás nem biztos, hogy egyértelmű. 

Definíció: vektorok olyan rendszer, amelyek lineáris kombinációjaként a vektortér  minden eleme előáll, generátorrendszernek nevezzük.

Példa: (
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 generátum generátorrendszere nyilván 
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Az alábbiakban generátorrendszerrel kapcsolatos példákat veszünk. 
Példa:  Generátorrendszert alkotnak-e a 
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 vektorok? (Útmutatás: Állítsuk elő a 
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 vektort lineáris kombinációjukként)

Megoldás: az útmutatást követve:
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[image: image9.wmf]Û

 Ennek a lineáris egyenletrendszernek nincsen megoldása
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 nem állítható elő a 
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 vektorok lineáris kombinációjaként, ezért ezek a vektorok nem alkotnak generátorrendszert.
Példa: Vizsgáljuk meg a következő vektorok (kanonikus bázis) által generált alteret!
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Megoldás: 
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Az eredmény nem meglepő, hiszen a térbeli felbontási tételből is adódik, e vektorok R3 egy generátorrendszerét alkotják. 

Példa: Igaz-e, hogy 
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 R3 egy generátorrendszerét alkotják? 
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.  Megoldás: Ha igen, akkor minden 
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 vektorhoz,  léteznek olyan 
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 valós számok, hogy  
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A megoldás (egyértelmű, a, b, c paraméterekkel mindegyik együttható kifejezhető): 
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Tehát minden 
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 vektorok lineáris kombinációjaként, tehát az egész tér előáll, az adott vektorok generálják a tér vektorait. (a lineáris kombináció itt is egyértelmű, összhangban a térbeli felbontási tétellel). 
R3-ban minden három, páronként nem párhuzamos, nem egysíkú vektor generátorrendszert alkot. 

Feladat: Adja meg a 2 x 2-es mátrixok egy generátorrendszerét!
Példa:

Igazoljuk, hogy a  
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 vektorok az R2 egy generátorrendszerét alkotják!

Megoldás: Azt kell bizonyítani, hogy bármely 
[image: image25.wmf]a
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 vektor felírható a g1, g2, g3 vektorok lineáris kombinációjaként.
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 tetszőleges. Tehát végtelen sokféleképpen írható fel egy vektor a megadott vektorok lineáris kombinációjaként. 
Például az  
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 vektor előállításainak száma is végtelen, két példa ezekből:
Legyen  
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Ha ezt a lineáris kombinációt tekintenénk a koordinátázás alapjául, akkor a vektor mátrixos alakja 
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Legyen most 
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Ha ezt a lineáris kombinációt tekintenénk a koordinátázás alapjául, akkor a vektor mátrixos alakja 
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Nyilvánvaló, hogy a nem egyértelmű felírás miatt ez  a generátorrendszer nem alkalmas vektorok reprezentálására. 
Példa: Igazoljuk, hogy az
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 vektorok R2 egy generátorrendszerét alkotják!
Megoldás: 
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, a megoldás egyértelmű, ez a generátorrendszer alkalmas lenne a vektorok reprezentálására. 
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Példa:  i, j  rendszerre mit mondhatunk?  És i, j, k –ra?

Konklúzió: bizonyos generátorrendszer elemeinek lineáris kombinációja egyértelműen állítja elő a tér vektorait, bizonyosak pedig nem. Ennek kritériuma az ún.  lineáris függetlenség . 

A lineáris függetlenség, lineáris összefüggőség fogalmak a vektorok egymással való kapcsolatát fejezik ki.  A függetlenség azt biztosítja, hogy a független vektorok közül egyik sem fejezhető ki a többi lineáris kombinációjával, míg az összefüggő vektorok közül legalább egyik  (de nem tudjuk melyik) kifejezhető a többi lineáris kombinációjával. 
Definíció:  (Lineáris összefüggés (LÖF):
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 vektorok lineárisan összefüggők, ha a 
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 lineáris kombinációban 
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 (vagyis 
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 úgy, hogy egyik tag, az i-dik, nem nulla. )
Feladat: Fogalmazza meg a lineáris összefüggőséget a triviális/nem triviális lineáris kombináció fogalmának felhasználásával. 

Példa: LÖF síkban:

1 vektor esetén:  (v1 = 0   ( ( ( 0   (   v1 = 0

2 vektor esetén: 
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/ tegyük fel, hogy 
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, így létezik a szorzásra vonatkozó inverze/
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Ez azt jelenti, hogy síkban két vektor akkor és csak akkor összefüggő, ha párhuzamosak. (Ekkor egymás lineáris kombinációjaként előállíthatók)
3 vektor esetében:
Most legyen 
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 nem párhuzamos 
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[image: image134.wmf]a


Síkban: ha 3 vektor összefüggő, akkor legalább az egyik kifejezhető a többi lineáris kombinációjaként.
Tétel (síkbeli felbontási tétel más megfogalmazása): 

Síkban  bármely három vektor lineárisan összefüggő. 
Példa: LÖF TÉRBEN

a.)
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0

lll

++=

abc


TFF. Hogy a nem párhuzamos b, akkor  
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Ekkor a vektorok egysíkúak, és egyik kifejezhető a másikkal.


Tfh. 
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c.)  
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  a térbeli felbontási tételt kaptuk 

Definíció:: Lineáris függetlenség (FGTLEN)
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Feladat: Fogalmazza meg a függetlenség fogalmát a már tanult a triviális/nem triviális lineáris kombináció fogalmának felhasználásával. 
Függetlenség síkban:
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vagyis ha Pl.:
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, akkor a lineáris kombináció sosem lehet NULLA!
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(paralelogramma szabály – az átló sosem nulla hosszúságú, ha az oldalak nem 
azok!)
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Függetlenség térben:   
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 a parallelepipedon nem elfajuló
Tétel: 

Ha v1,v2,…,vn  löf, tetszőleges vektort hozzávéve, továbbra is LÖF marad.

Biz.: λ1v1+ λ2v2+…+ λivi+…+ λnvn+ λn+1vn+1=0
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LÖF,def.-nek eleget tesz λivi  miatt ha αn+1=0-t választjuk,

hiszen λi (0-val LÖF teljesül

Kérdés:

Hány vektort szabad hozzávenni, hogy még LÖF maradjon ( ?
Tétel:

Ha v1,v2,...,vn FGTLEN, tetszőleges vektort elhagyva FGTLEN marad.

Biz.: Előzőre visszavezetjük, tfh. a FGTLEN rendszerből már elhagytunk egy vektort, és az így kapott rendszer, LÖF. Az előző tétel szerint, ha ehhez a LÖF rendszerhez hozzáveszünk egy vektort, a rendszer  LÖF marad. Tehát akkor az eredeti is LÖF lenne, ami ellentmondás.
Tétel:  v1,v2,...,vn  A.CS.A LÖF,  ha (i, hogy vi=
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a.) Ha LÖF, akkor  ( vi = 
[image: image76.wmf]å

¹

=

n

i

k

k

1

 λkvk
λ1v1+ λ2v2+…+ λivi+…+ λnvn=0        (i hogy     λi(0

λ1v1+ λ2v2+…+ λnvn = -λivi[image: image143.wmf]1
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Ugyanis:
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Tétel:  Ha 
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 lineárisan összefüggő lenne, ellentmondás!
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Tehát, 
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Tétel: A 
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 előállítás akkor és csak akkor egyértelmű, ha 
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 lineárisan független rendszer.
Bizonyítás: („visszafelé”)
Tegyük fel, hogy 
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 független rendszer. Ekkor egyértelmű v előállítása.
Indirekt módon: 
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Bizonyítás:  („oda”)
Ha a felírás egyértelmű, akkor 
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 független.
Indirekt módon: Tegyük fel, hogy 
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De akkor: 
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 egy másik, különböző felírását kapnánk, ami ellentmondana 
[image: image111.wmf]v

 egyértelmű felírásának.

Példa:  Három dimenzióban, tegyük fel, hogy egyik vektor a másik kettő lineáris kombinációja:
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Ekkor: 
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Két különböző lineáris kombináció létezik. 
Példa: összefüggő-e a alábbi vektorrendszer:
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Megoldás:
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 Miként állítható elő a 
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Csak triviális megoldás létezik, ezért függetlenek.

Definíció: A lineárisan független vektorokból álló  generátorrendszert bázisnak nevezzük.

A bázisnak tehát két fontos tulajdonsága van: 

- a bázisvektorok lineárisan függetlenek

- minden vektor előáll a bázisvektorok lineáris kombinációjaként

Példa: 

Bizonyítsuk be, hogy az 
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 vektorok az R3 egy bázisát alkotják.

Megoldás:  Első tul.: függetlenség
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Csak triviális megoldása van, tehát független rendszer.

( A paralelepipedon térfogata(0, csak akkor, ha a vektorokat „0-szor”     



vesszük.)
Második tul.: Minden vektor előállítható a bázisvektorok lineáris kombinációjaként (hf).
Megjegyzés: A megoldásból kitűnik, hogyha det(A)=0, ahol A a vektorokat mint oszlopokat tartalmazza, akkor van triviálistól különböző megoldás, vagyis, akkor összefüggő a  vektorrendszer.

Az előzőekből láttuk, hogy egy vektorrendszer akkor és csak akkor FGTLEN, ha bármely más vektor EGYÉRTELMŰEN írható fel az elemek lineáris kombinációjaként. Ezért a vektortér vektorait a bázisok segítségével reprezentálhatjuk (máskülönben az előállítás nem lenne egyértelmű)

Definíció:    Ha a 
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 vektorok bázist alkotnak, akkor  a 
[image: image121.wmf]å

=

=

n

k

k

k

v

v

1

a

 lineáris kombinációban a 
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 valós számokat a v vektor  
[image: image123.wmf]i
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 bázisra vonatkoztatott koordinátáinak nevezzük. 
Amennyiben megállapodunk a vektorok felírási sorrendjében, akkor a vektor egy rendezett szám n-esel reprezentálható, melyet a vektor mátrixos alakjának nevezünk. Ez rögzített bázisra egyértelmű. Ha a bázist nem írjuk, ki, akkor mindig a kanonikus bázisra gondolunk.
KICSERÉLÉSI TÉTEL: 

Az f1, … fn független vektorokból  álló rendszer bármely fi  vektorához  a g1 , …, gj generátorrendszerből található olyan gk vektor, amellyel fi –t kicserélve a 

f1, … fi-1,  gk, fi+1, … fn                rendszer is független

Következmény: 
 f1, … fi-1, gk,fi+1, … fn                g1, …gj     j ( n , 

vagyis a generátorrendszer elemszáma mindig nagyobb, vagy egyenlő, mint a független vektorokból álló rendszer elemeinek száma.
Tétel: Bármely vektortérben a bázisok elemszáma egyenlő.

Bizonyítás: A kicserélési tétel szerint, bármely független vektorrendszer elemei kicserélhetők egy adott generátorrendszer elemeivel úgy, hogy független rendszert kapunk. A bázis független vektorokból álló generátorrendszer. 

Mivel a bázis generátorrendszer is:

FGETLEN
legyen  Bázis1, elemszáma  n1, a GEN.rsz. legyen Bázis2, elemszáma n2

Ekkor n2(n1
FGETLEN legyen Bázis2 elemszáma n2 – GEN. rsz. Legyen Bázis1, elemszáma n1, 

Ekkor n1( n2. Ez csak úgy lehetséges, ha  n1=n2.

Definíció: A V vektortér dimenzióján valamely bázisának elemszámát értjük. Jelölés: Dim V
(A definíció helyes, hiszen minden bázisnak ugyanannyi eleme van az előző tétel szerint.)
KICSERÉLÉSI TÉTEL: 

Az f1, … fn független vektorokból  álló rendszer bármely fi  vektorához  a g1 , …, gj generátorrendszerből található olyan gk vektor, amellyel fi –t kicserélve a 

f1, … fi-1,  gk, fi+1, … fn                rendszer is független

Bizonyítás: 

f1, … fn FGETLEN, akkor ( fi-hez van olyan gk, amire kicserélve fi-t FGETLEN marad:

Ugyanis ha pl. f1-hez nem lenne egyik gi sem jó, akkor minden egyes gi-re:


g1 f2, …fn LÖF            
g1 : f2, … fn-nel kifejezhető: 
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g2 f2, … fn LÖF           
g2 : f2, … fn-nel kifejezhető: 
[image: image125.wmf]å
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…


gj f2, … fn LÖF          
 ge : f2, … fn-nel kifejezhető: 
[image: image126.wmf]å
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vagyis a gi -k helyébe f2, … fn-k lineáris kombinációját írhatjuk.     

Mivel gi-kel ( vektor kifejezhető, így f1 is: f1 = (1g1 + … (jgj, de a gi-k ki vannak fejezve fk-kal, ezért f1 is ki van fejezve  a többi fk-val, tehát az fk vektorok összefüggők lennének. Ez ellentmondás.

Tétel 

Legyen V nem nulla vektortér, n pozitív egész. Az alábbiak ekvivalensek:

 -  dim V = n

-  V-ben található n független vektor, de bármely n+1 összefügg

-  V-ben található n elemű generátorrendszer, de n-1 elemű nem.

Következmények:

- V-ben bármely n elemű független rendszer bázist alkot

– V-ben bármely n elemű generátorrendszer bázist alkot

Fontos apróságok:

-  Egy vektortér bármely véges generátorrendszere tartalmaz bázist.

- Ha egy V vektortérnek van véges generátorrendszere, akkor bármely lineárisan független rendszer kiegészíthető bázissá.

Feladatok: 

Adjuk meg  P2 (legfeljebb másodfokú polinomok) egy bázisát, és egy ettől különböző generátorrendszerét. 

Típusfeladatok:

· adott vektorok generátorrendszert alkotnak-e?

· adott vektorok bázist alkotnak-e?

· adott vektorok függetlenek-e?

· adott vektorokkal másik adott vektor kifejezhető-e?

· adott vektornak mik a koordinátái egy bázisra vonatkozóan?

· adott vektort többféleképpen kifejezni löf generátorrendszer elemeivel

Összefoglalás

E fejezetben láttuk, hogy minden vektortér felfogható bizonyos vektorok generátumaként. E vektorok összessége a generátorrendszer. Ez azt jelenti, hogy a tér minden vektora előállítható a generátorrendszer elemeinek lineáris kombinációjával.   Ha a generátorrendszer  vektorai lineárisan függetlenek, akkor minden más vektor egyértelműen áll elő ezek lineáris kombinációjaként. Ezért az ilyen, független vektorokból álló  generátorrendszereket megkülönböztetésül bázisnak nevezzük. A bázisvektorok lineáris kombinációjaként előállított vektorok koordinátái a lineáris kombinációban szereplő skalárok.  A koordináta tehát mindig valamely előre rögzített bázisra vonatkozik. A bázisok elemszáma egyenlő, ez a szám a vektortér dimenziója. 













































Ez esetben a felírás egyértelmű!�(Függetlenek a vektorok.)
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Csak úgy lehet lineárisan összefüggő, ha � EMBED Equation.3  ���, ui, ha például � EMBED Equation.3  ��� lenne � EMBED Equation.3  ���-ban � EMBED Equation.3  ��� miatt � EMBED Equation.3  ��� és � EMBED Equation.3  ��� lineárisan összefüggő lenne, vagyis párhuzamos.








� EMBED Equation.3  ��� kifejezhető  � EMBED Equation.3  ���-val és � EMBED Equation.3  ���-vel!





Ezt vesszük hozzá





LÖF volt ,
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Független volt





Ezt vettük hozzá.
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