
Determinánsok  (jegyzet részlete) 
 
 

 
Kifejtési tétel (definíció): 
  
Egy n-edrendű determináns tetszőleges sora vagy oszlopa  szerint kifejthető, és 
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A determináns tulajdonságai 
 

1. Ha a determináns valamely sorát -val szorozzuk, a determináns az eredeti -szorosa lesz. 
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Bizonyítás: Fejtsük ki a determinánst azon ak sor szerint, amelyet 
beszoroztunk    -val.  
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2. A determináns i-edik sorának minden eleme kéttagú összeg, akkor két olyan determináns 
összegére bontható, melyből az első i-edik sorában az  összeg első tagjai, a második 
determináns i-edik sorában az összeg második tagjai szerepelnek, a többi elem változatlan. 
(Mivel az összeadás kommutatív művelet, tulajdonképpen nem fontos, hogy rendre az első, 
ill. a második tagikat tegyük e determinánsokba, csak az a lényeg, hogy az összeg egyik 
tagját az elsőbe, másikat a másodikba tegyük) 

 

 

 
 
 
 

Bizonyítás: Fejtsük ki a determinánst azon sora szerint, amelyben az összeg szerepel.      
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3. Ha egy determináns egy sora csupa 0 elemet tartalmaz, akkor a 
determináns 0. 
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Bizonyítás: Fejtsük ki a determinánst a csupa 0 elemet tartalmazó sor szerint:  
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Feladat: Bizonyítsa be e tulajdonságot az 1. tulajdonság alapján! 

:    
 



4. Ha egy determináns két sorát felcseréljük, a determináns értéke (-1)-
szeresére változik. 

Bizonyítás: Először két szomszédos sor cseréjére igazoljuk az állítást. Két tetszőleges 
sor cseréjét a szomszédos sorok cseréjével képzeljük el.  Cseréljük fel  a determináns 
i. és és (i+1). sorát. Az eredeti, és a két sor cseréje után kapott determinánsokat  
jelöljük 21  és , DD -vel.  
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Az első determinánst az i. sora szerint, míg a másodikat az (i+1). sora szerint kifejtve a 

következőt kapjuk:   n
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Ha két tetszőleges sort cserélünk fel, akkor van köztük valahány sor, 
legyen ezek száma k. Az alul lévő sort k szomszédos sor cseréjével 
tudjuk a másik sor alá vinni, ekkor szomszédosak. Ebben a pozícióban 
felcserélve őket, most az eredetileg felül lévő sor kerül alulra. Ezzel 
együtt eddig k+1 szomszédos csere történt. Ebből a pozícióból, amikor 
az eredetileg felül lévő sor helyén már a másik sor áll, és alatta pedig ő 
maga,  megint k db szomszédos sor cserével tudjuk az eredetileg felül 
lévő sort az eredetileg alul lévő helyére mozgatni. Összesen 
k+1+k=2k+1 db szomszédos csere történt, ennyiszer változott 
 (-1)-szeresére a determináns előjele, tehát  (-1)2k+1=-1 –szerese let az 
eredetinek. 
 
 
  



5. Ha egy determináns két sora megegyezik, a determináns értéke 0. 
 
Bizonyítás: Cseréljük fel a determinánsban a két egyenlő sort. Ekkor a 
determináns  értéke (-1)-szeresére változik az előző tétel értelmében. 
Másrészt nem változik, hiszen a két  determináns elemei megegyeznek. 
Ha tehát D a determináns értéke, akkor D = ( - D ), amiből D = 0. 
 
  



6. Ha egy determináns valamely sorához hozzáadjuk valamely sor  szorosát, a 
determináns értéke nem változik. 
Bizonyítás: Az eredeti és az új determinánst jelőljük DD  és -val jelölve  
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7. Egy alsó, vagy ( felső ) háromszögdetermináns értéke a főátlóban 
álló elemek szorzata. (Gauss elimináció alkalmazhatósága!) 
 
Bizonyítás: Fejtsük ki a determinánst az első sora szerint, majd a 
keletkező (n-1)-edrendű aldeterminást szintén az első sora szerint, és így 
tovább: 
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8. Ferde kifejtés tétele: Ha egy determináns egyik sorának elemeit rendre 
valamely másik sor elemeihez tartozó aldeterminánsokkal szorozzuk meg, 
majd ezeket a szorzatokat összeadjuk,  az eredmény 0.  
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Bizonyítás: Ezt a tételt 3 x 3 –as determinánsokra bizonyítjuk. Szorozzuk meg 
az 1. sor elemeit a 2. sor elemeihez tartozó aldeterminánsokkal: 
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Ha az egyenlőtlenség jelétől jobbra álló, ún.  ferde kifejtést  nézzük, olyan, 
mintha a determináns első sora szerint fejtettük volna ki, és az első sorban a 
második sor elemei állnának. Ha ezen jobboldal szerint rekonstruálnánk a 
determinánst, annak első és második sor egyenlő lenne, tehát értéke 0. 
  



9. A fent bizonyított 1-8 sorokra megfogalmazott tételek mindegyike 
oszlopokra is igaz. 
 
Bizonyítás: A fenti bizonyításokban a sorok helyett a megfelelő oszlop 
szerint kell kifejteni a determinánst. 
 



Cramer-szabály 
 
Tétel: Ha az A négyzetes matrix  és D=det(A) 0, akkor az Ax=b egyenletrendszernek pontosan 
egy megoldása van. A megoldásban xj=Dj/D, ahol Dj determinánst úgy kapjuk,hogy D-ben a j-
edik oszlop helyére a jobb oldali konstansokat (azaz a b vektor komponenseit) írjuk. 
 
a11x1+a12x2+…a1nxn=b1 

a21x1+a22x2+…a2nxn=b2 

...... 

am1x1+am2x2+…amnxn=b3          Másképpen:

 













































mnmnmm

n

n

b

b

b

x

x

x

aaa

aaa

aaa

bxA

......

...

............

...

...

2

1

2

1

21

22221

11211  

 

 

 

 



 

 

 

 

Példa: A második, x2 ismeretlen a Cramer szabály szerint a következőképpen kapható: 
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Bizonyítás:  
a11x1+a12x2+…+a1ixi…+ a1nxn =b1       /D1i 

a21x1+a22x2+…+ a2ixi …+ anxn =b2 /D2i 

… 

an1x1+am2x2+…+ anixi …+ annxn =bn /Dni 

Összeadva az összes egyenletet és kiemelve az ismeretleneket,  a következő adódik a bal 
oladalon: 

 

x1(a11 D1i+a21D2i+…an1Dni)+          / (1. oszlop) * (i. oszlophoz tartozó aldeterminánsok) 
+ x2(a12 D1i+a22D2i+…an2Dni)+   / (2. oszlop) * (i. oszlophoz tartozó aldeterminánsok) 
+ x3(a13 D1i+a23D2i+…an3Dni)+  / (3. oszlop) * (i. oszlophoz tartozó aldeterminánsok) 
… 

+xi(a1i D1i+a2iD2i+…an1Dni)+   / (i. oszlop) * (i. oszlophoz tartozó aldeterminánsok) 
… 

+ xn(a1n Dni+a2nD2i+…annDni)=  / (n. oszlop) * (i. oszlophoz tartozó  aldeterminánsok) 

=xi det(A).  



Az xi ismeretlen  együtthatójára alkalmazva a kifejtési tételt, az det(A)-val egyenlő. A többi 
ismeretlen együtthatója a ferde kifejtési tétel miatt a 0. 

Az egyenlet jobb oldalán álló előjeles aldeterminánsok az i. oszlophoz tartoznak, és rendre a b 
vektor elemeivel vannak megszorozva. Ezért ez egy olyan determináns kifejtése, ahol az i. 
oszlop a b vektor: 

 

b1D1i+b2D2i+b3D3i+…biDi …++bnDni= 
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Az állítást ezzel bebizonyítottuk, hiszen: 
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Négyzetes mátrix inverze 
 
 
Definíció: Az A négyzetes mátrix (klasszikus) adjungáltján az  adj(A)= (Dki) mátrixot 
értjük.  
 
 Például 3 x 3 típusú matrix adjungált mátrixa a fenti definíció szerint:  
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 Példa: Az  



31

52
mátrix adjungáltja: 
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



21

53
, mert , 

 D11 =  3, D12 =  -1, D21 = -5, D22 = 2. 
 
2 x 2-es mátrix esetén tehát könnyű megkapni az adjungáltját: a főátlóbeli elemek 
helyet cserélnek, a mellékátlóbeliek előjele ellentétesre változik.  
 



Tétel: Az A (n x n)-es mátrixot az adjungáltjával jobbról megszorozva az eredmény det(A)·En. 

 
Bizonyítás: A szóbanforgó szorzat: 
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A főátló elemeit a mátrix szorzás szabálya szerint kiszámítva:  
 
c11=a11·D11+a12·D12+...+a1n·D1n=det(A),  mert ez az 1. sor szerinti kifejtés. 
c22= a21·D21+a22·D22+...+a2n·D2n=det(A),  mert ez a 2. sor szerinti kifejtés.  
.... 
cnn= an1·Dn1+an2·Dn2+...+ann·Dnn= det(A),mert ez az n. sor szerinti kifejtés. 
 
A többi elem:  cik=ai1·Dk1+ai2·Dk2+...+ain·Dkn=0,  
 
hiszen az i.dik sor elemei rendre a k. sorhoz tartozó aldetereminánsokkal vannak szorozva: ez az 
összeg a ferde kifejtés szerint 0.  
         
  
 

= det(A)·En        = A adj(A) 
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Tétel: Ha A négyzetes mátrix, és det(A)0, akkor  A-1= )(adj
)det(

1
A

A
   ahol   

 
adj(A)= (Dki),  az A mátrix ún. (klasszikus) adjungált mátrixa.  
 
Bizonyítás:  Mivel mátrixok szorzása asszociatív, ezért a struktúrákról szóló fejezetben 
igazoltak szerint pontosan egy inverz létezik. Ha tehát találunk egy olyan mátrixot, melyre 
 A·B = En,  akkor ez a B mátrix  nem lehet más, csakis az A mátrix inverze. 
 
 
Az előző tétel szerint: 
 
A adj(A)= det(A)·En 
 

Beszorozva az egyenletet az )det(

1

A  skalárral az alábbi adódik: 
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Példa:  
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Feladat: Igazolja, hogy a fenti példában megadott inverz helyes!  
 
 
 

Példa: 
 

Az  



31

52
mátrix adjungáltja: 




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53
, determinánsa 1. Ezért ebben az esetben az adjungált 

egyben az inverz is.  
 
 
Feladat: Igazolja a fenti példában kiszámolt inverz helyességét. 
 



Definíció: A nem nulla determinánsú mátrixok az ún.  reguláris mátrixok. A nulla determinánsú 
mátrixok az ún. szinguláris mátrixok.  
 
 

Tétel: Inverz mátrix tulajdonságai  VOLT, ism. : 
 
1. Ha az A mátrixnak van inverze, akkor van az inverzének is, és:    AA

11   
 

2. Ha az A, B mátrixoknak van inverze, akkor van az inverse az AB mátrixnak is és:  111 ABAB      
 

3. Ha az A mátrixnak van inverze, akkor van a transzponáltjána is, és:   T11T AA    
 

4.    Ha C invertálható (nem szinguláris), akkor a mátrix egyenletet lehet a szokásos módon 
rendezni: 

 Bakkor A  BC ACHa    

 Bakkor A  CBCA  Ha   
 



 

Ismétlés: Az naaa ...,2,1  n  dimenziós vektortérbeli vektorok  akkor és csak akkor 
függetlenek  ha e vektortokból, mint oszlopokból alkotott mátrix determinánsa nem nulla.  
det [ )...,2,1 naa(a ] 0              
 
Bizonyítás: A függetlenség definíciójából kiindulva: a  0  vektor csak triviálisan állítható elő az 
adott vektorokból:  
 
A megfelelő egyenletrendszer: 

 

 
Gauss eliminációval:  
 

 



 
Két  esetet különböztetünk meg:  
- Ha   (vagyis a Gauss elimináció során a főátló utolsó eleme 0 ), és ekkor  det(A) 

is 0, hiszen az elimináció során az együttható mátrix determinánsának nulla volta nem 
változik meg az elemi sorműveletek alkalmazásával.  Ekkor VAN nem triviális megoldás, 
tehát  vektorok lineárisan függő rendszert alkotnak . 

- Ha  akkor det(A)0. Ekkor  *  miatt  kell legyen. De akkor a 
szukcesszív approximációval kapott többi ismeretlen is nulla, hiszen őket mindig a rájuk 
következőkből kapjuk:    *        

Ekkor tehát csak a triviális megoldás létezik, ezért az naaa ...,2,1  vektorok lineárisan 
függetlenek. 
 
Egyszersmint bebizonyosodott a kövekező tétel is: 
 
Tétel: Az  n x n-es  homogén  lineáris egyenletrendszernek akkor és csak akkor van triviálistól 
különböző megoldása, ha együtthatómátrixának determinánsa nulla.  
 


