
DETERMINÁNSOK geometriai jelentését részlegesen már a térvektoroknál vettük. 
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(két vektor által meghatározott parallelogramma területe, előjeles) 
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(három vektor által meghatározott parallelepipedon térfogata, előjeles ) 
 
 
 



Definíció: Az elsőrendű 11a  mátrix determinánsának nevezzük és detA-val jelöljük az 
a11 számot 
  

A másodrendű 
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A  mátrix determinánsának nevezzük, és detA-val  

jelöljük a következő számot: 
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Definíció: Az n-edrendű ikaA  mátrix aik  eleméhez tartozó minormátrixának nevezzük,  
és ikA -val jelöljük azt az ( n - 1 )-edrendű mátrixot, melyet úgy kapunk A-ból, hogy  annak 
i-edik sorát és k-adik oszlopát elhagyjuk. 
 

Feladat:  Az jlik )(A
 vagyis az A mátrix i. sorának és k.oszlopának elhagyásával 

keletkezett ikA  minormátrix j. sorának ás l. oszlopának elhagyásával keletkező 

minormátrixa jlik )(A
.  Mit mondhatunk  az ikjl )(A

  minormátrixról? 
 
 



Definíció: Ha az  ( n - 1 )-edrendű mátrix determinánsát már értelmeztük,  az n-edrendű A 
mátrix deteminánsának nevezzük a következő számot: 
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ijD  az ún. előjeles aldetermináns.  
 
A j11  előjelet tartalmazza az alábbi “determináns”. Ennek formája miatt az előjel 
kiszámítását szokás úgy is nevezni, hogy az aldeterminámsok az előjelet a “sakktábla 
szabály” alapján kapják.   
 

nn

n




2...

...

 

 
 
Szokás a determináns értékéről beszélni. Ekkor magát a hozzárendelést értjük a 
determináns szó alatt, a benne lévő elemeket, mint mátrixot nézzük. E négyzetes mátrixhoz 
(és bármelyik négyzeteshez) hozzárendeljük e fenti definícióban szereplő számot. Tehát e 



függvénynek a négyzetes mátrixok az értelmezési tartománya, és a szám a függvényértéke. 
Így ez a függvényérték az, amit a determinánsnak értékének nevezünk.  

 
 
Definíció: Az aij  elem előjeles aldeterminánsán értjük a ij

ji
ijD Adet1  számot. Ezt 

felhasználva egy n-edrendő A mátrix determinánsa: 
   

detA a Dj j
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, ami egy determináns 1. sora szerinti kifejtése. 

 
Tehát a determinánst úgy fejtjük ki, hogy valamely sorának minden egyes elemét 
megszorozzuk a hozzátartozó előjeles aldetereminánssal, és az így kapott szorzatokat 
összeadjuk.   
 
Feladat: Ellenőrizze, hogy a 2 x 2-es determináns a definíció szerinti képlettel számítható.  
 
Kifejtési tétel:  
  
Egy n-edrendű determináns tetszőleges sora vagy oszlopa  szerint kifejthető, és 
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Feladat:  
 
Egy konkrét 3 x 3-as determinánst fejtsen ki mindegyik sora szerint! 
 
A kifejtési tétel bizonyítása teljes indukcióval (elégségeshez, közepeshez nem kell a 
bizonyítás). 
 
A bizonyítás lépései: 
 

1. Először azt bizonyítjuk, hogy bármely sor szerint kifejtve ugyanazt a számot kapjuk.  
 

2. Az 1. hez hasonlóan lehet bizonyítani azt, hogy bármely oszlop szerint kifejtve 
ugyanazt a számot kapjuk.  
 

3. Az 1. és 2. bizonyítások alapja, hogy a kifejtési tételben az aikajl  szorzatot  tartalmazó 
tagok együtthatóiról belátjuk, hogy egyenlők, tehát mindegy, hogy sor vagy oszlop 
szerint fejtjük ki a dterminánst.  
 
1. Először azt bizonyítjuk, teljes indukcióval,  hogy bármely sor szerint kifejtve 

ugyanazt a számot kapjuk.  
 

n=1, re triviális. 
n=2-re:  

 



Első sor szerinti kifejtés: 21122211
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Második sor szerinti kifejtés: 11221221
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Első oszlop szerinti kifejtés:  11212211
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Második oszlop szerinti kifejtés: 11222112
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Feltesszük, hogy az (n-1) x (n-1) –es determinánsra igaz az állítás. Ennek alapján 
bizonyítjuk, hogy az n x n-es determinánsra is igaz, hogy bármelyik sora szerint kifejtve 
ugyanazt a számot kapjuk. 
 
Fejtsük ki a determinánst először az i., majd a j. sora szerint, i<j: 
 
A determináns i. sora szerinti kifejtés: 
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Az aikajl szorzatot tartalmazó általános tag úgy adódik, hogy  a Dik aldeterminánst az 
eredeti j. sornak megfelelő (most j-1.) sor szerint kifejtjük. (Ezt megtehetjük, hiszen az 
 (n-1) x (n-1)-es Dik  determinánsra teljesül az indukciós feltétel: ezért bármelyik sora 
szerint kifejthető.  
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vagyis az általános, aikajl szorzatot tartalmazó általános tag: 
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ha k<l 
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vagyis az általános, aikajl szorzatot tartalmazó általános tag: 
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Most fejtsük ki a determinánst a j. sora szerint.  
 
Az  aikaj l szorzatot tartalmazó általános tag úgy adódik, hogy a j. sora szerint kifejtett 
determinánsban szereplő megfelelő aldeterminánst az eredeti i. sornak megfelelő sor 
szerint kifejtjük: 
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vagyis az általános, aikajl szorzatot tartalmazó általános tag: 
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ha a k<l 
 
az általános, aikajl szorzatot tartalmazó általános tag: 
 

))Adet((aa)1( ikjlikjl
)1l()1j(

ha k< l. Mivel ))( ikjlA jlik )(A
, ezért az 

aikajl általános tag együtthatói ugyanazok minden i, j, k, l természetes számra. Másképpen 
az i. sor szerinti kifejtés összegének tagjai egyenlők a j. sor szerinti kifejtés tagjaival. 
 
Megjegyzés: Gyakran a determináns definícióját a következőképpen adják meg:  (ld. pl. 
Freud R.: Lineáris algebra): Az n x n –es mátrixhoz számot rendelhetünk.Ha a 
hozzárendelt szám az alábbiakban ismertetett szabály szerint történik, akkor ezt a számot 
az  n x n- es mátrix determinánsának nevezzük. Ezt a számot a következőképpen 
képezzük: a mátrix minden sorából és oszlopából pontosan egy elemet választunk, és 
ezeket összeszorozzuk. Ezt minden lehetséges módon elvégezzük, igy n! db szorzatot 
kapunk. E szorzatokat + vagy – előjellel látjuk el aszerint, hogy a sorindexek természetes 



sorrendjét követő felírásban az oszlopindexek permutációja páros, vagy páratlan. Az 
előjellel ellátott szorzatokat összegezve kapjuk a determináns értékét. Képletben: 

 

det(A):= )()3(3)2(2)1(1
)( .....)1( nn

I aaaa  

)(I az oszlopindexek inverzióinak száma (inverzió: természetes sorrendtől eltérő. ) 
 
Feladat: A determináns alább felsorolt tulajdonágait bizonyítsa be a fenti definíció 
alapján! 
 



 
A determináns tuladonságai 

 
1. Ha a determináns valamely sorát -val szorozzuk, a determináns értéke  

 -szorosa lesz. 
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Bizonyítás: Fejtsük ki a determinánst azon sor szerint, amelyet beszoroztunk   -val.  
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2. Ha detA i-edik sorának minden eleme kéttagú összeg, akkor detA felbontható  

két olyan determináns összegére, melyből az első i-edik sorában az előbb említett  
összeg első tagjai, a második determináns i-edik sorában az összeg második tagjai  
szerepelnek, a többi elem változatlan. (Mivel az összeadás kommutatív művelet, 
tulajdonképpen nem fontos, hogy rendre az első, ill. a második tagikat tegyük e 
determinánsokba, csak az a lényeg, hogy az összeg egyik tagját az elsőbe, mésikat a 
másodikba tegyük) 
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Bizonyítás: Fejtsük ki a determinánst azon sora szerint, amelyben az összeg szerepel. 
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3. Ha egy determináns egy sora csupa 0 elemet tartalmaz, akkor az értéke 0: 
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Bizonyítás: Fejtsük ki a determinánst a csupa 0 elemet tartalmazó sor szerint: 
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4. Ha egy determináns két sorát felcseréljük, a determináns értéke (-1)-szeresére  

 változik. 
 
Bizonyítás: Elegendő két szomszédos sor cseréjére igazolni az állítást. 
 
 Ha ugyanis az i-edik sort a j-edik sorral szeretnénk felcserélni ( j > i ), akkor az  
 i-edik sor (j - i ) lépésben kerül a j-edik helyére, majd a j-edik ( j - i -1 ) lépésben  



 vissza az i-edik helyére. Ez összesen j - i + j - i - 1 szomszédos sorcserét jelent, azaz  
 az előjel 11 122 ij  szeresére változott. 
  

Egyszerűség kedvéért ( az általánosság megszorítása nélkül ) tekintsük az első két  
 sor cseréjét. Az eredeti, és az első két sor cseréje után kapott determinánsokat  
 jelőljük D D1 2,  és -vel. Így 
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A kifejtési tétel szerint egy determináns bármelyik sora szerint kifejthető, ezért  
 fejtsük ki az első determinánst az első sora szerint, míg a másodikat a második sora  
 szerint. Így 
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 amivel az állítást igazoltuk. 
 

5. Ha egy determináns két sora megegyezik, a determináns értéke 0. 
 



Bizonyítás: Cseréljük fel a determinánsban a két egyenlő sort. Ekkor a determináns  
 értéke (-1)-szeresére változik ( előző tétel ), másrészt nem változik, hiszen a két  
 determináns elemei megegyeznek. Ha tehát D a determináns értéke, akkor 
 D = ( - D ), amiből D = 0. 
 

6. Ha egy determináns valamely sorához hozzáadjuk valamely sor  szorosát, a  
 determináns értéke nem változik. 

 
Bizonyítás. Az eredeti és az új determinánst jelőljük D D1 2,  és -vel. Így 
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7. Egy alsó, vagy ( felső ) háromszögdetermináns értéke a főátlóban álló elemek  

 szorzata. 
 
Fejtsük ki a determinánst az első sora szerint, majd a keletkező aldeterminást szintén az 
első sora szerint, és így tovább: 
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Bizonyítás: A kifejtési tételt alkalmazva fejtsük ki a determinánst az első ( utolsó )  
 sora szerint, majd a kapott ( n - 1 )-edrendű determinánst ismét az első sora szerint,  
 stb. Így az állítás nyilvánvaló. 
 

8. Az eddigiekben sorokra megfogalmazott tételek mindegyike oszlopokra is  
 igazak. 

 
Bizonyítás: Az ismert tételek felhasználásával bármelyik determináns átalakítható  
 felső háromszögdeterminánsá. Ezt a főátlóra tükrözve alsó háromszögdeterminánst  
 kapunk. Erre alkalmazva az előbbi tételeket az állításhoz jutunk. 
 

9. Ferde kifejtés tétele: Ha egy determináns egy sorának elemeit valamely másik sor 
elemeihez tartozó  
 aldeterminánsokkal szorozzuk akkor az így kapott összeg 0.  

 Vagyis  a D i kij kj
j

n

1

0    esetén. 

 
 
Ha a determináns kifejtésére vonatkozó képletben  az aik sor elemei helyett pl. az alk sor 
elemeit szorozzuk meg rendre a Dik aldeterminánsokkal, akkor az így kapott szám nulla. 
Helyes kifejtés:  det(A)= a11D11+a12D12+…+a1nD1n 



Ferde kifejtés:  0= a21D11+a22D12+…+a2nD1n 
 
 
Bizonyítás(Hf. ált.): 
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Ha a másodikként szereplő ferde kifejtést  nézzük, olyan, mintha a determinéns első sora 
szerint fejtettük volna ki, és az első sorban a második sor elemei állnának. Ekkor az első és 
második sor egyenő, tehát a determináns 0.  


