DETERMINÁNSOK geometriai jelentését részlegesen már a térvektoroknál vettük.
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(két vektor által meghatározott parallelogramma területe, előjeles)
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(három vektor által meghatározott parallelepipedon térfogata, előjeles )

Definíció: Az elsőrendű 
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 mátrix determinánsának nevezzük és detA-val jelöljük az a11 számot
 

A másodrendű 
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 mátrix determinánsának nevezzük, és detA-val 
jelöljük a következő számot:
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Definíció:
Az n-edrendű 
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 mátrix 
[image: image8.wmf]a

ik

 eleméhez tartozó minormátrixának nevezzük, 
és 
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A

-val jelöljük azt az ( n - 1 )-edrendű mátrixot, melyet úgy kapunk A-ból, hogy  annak i-edik sorát és k-adik oszlopát elhagyjuk.

Feladat:  Az 
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 vagyis az A mátrix i. sorának és k.oszlopának elhagyásával keletkezett 
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A

 minormátrix j. sorának ás l. oszlopának elhagyásával keletkező minormátrixa 
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.  Mit mondhatunk  az 
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  minormátrixról?
Definíció:
Ha az  ( n - 1 )-edrendű mátrix determinánsát már értelmeztük,  az n-edrendű A mátrix deteminánsának nevezzük a következő számot:
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 az ún. előjeles aldetermináns. 
A 
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 előjelet tartalmazza az alábbi “determináns”. Ennek formája miatt az előjel kiszámítását szokás úgy is nevezni, hogy az aldeterminámsok az előjelet a “sakktábla szabály” alapján kapják.  
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Szokás a determináns értékéről beszélni. Ekkor magát a hozzárendelést értjük a determináns szó alatt, a benne lévő elemeket, mint mátrixot nézzük. E négyzetes mátrixhoz (és bármelyik négyzeteshez) hozzárendeljük e fenti definícióban szereplő számot. Tehát e függvénynek a négyzetes mátrixok az értelmezési tartománya, és a szám a függvényértéke. Így ez a függvényérték az, amit a determinánsnak értékének nevezünk. 

Definíció:
Az 
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 elem előjeles aldeterminánsán értjük a 
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 számot. Ezt felhasználva egy n-edrendő A mátrix determinánsa:
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, ami egy determináns 1. sora szerinti kifejtése.

Tehát a determinánst úgy fejtjük ki, hogy valamely sorának minden egyes elemét megszorozzuk a hozzátartozó előjeles aldetereminánssal, és az így kapott szorzatokat összeadjuk.  
Feladat: Ellenőrizze, hogy a 2 x 2-es determináns a definíció szerinti képlettel számítható. 
Kifejtési tétel: 
Egy n-edrendű determináns tetszőleges sora vagy oszlopa  szerint kifejthető, és
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Feladat: 

Egy konkrét 3 x 3-as determinánst fejtsen ki mindegyik sora szerint!

A kifejtési tétel bizonyítása teljes indukcióval (elégségeshez, közepeshez nem kell a bizonyítás).
A bizonyítás lépései:

1. Először azt bizonyítjuk, hogy bármely sor szerint kifejtve ugyanazt a számot kapjuk. 

2. Az 1. hez hasonlóan lehet bizonyítani azt, hogy bármely oszlop szerint kifejtve ugyanazt a számot kapjuk. 

3. Az 1. és 2. bizonyítások alapja, hogy a kifejtési tételben az aikajl  szorzatot  tartalmazó tagok együtthatóiról belátjuk, hogy egyenlők, tehát mindegy, hogy sor vagy oszlop szerint fejtjük ki a dterminánst. 

1. Először azt bizonyítjuk, teljes indukcióval,  hogy bármely sor szerint kifejtve ugyanazt a számot kapjuk. 

n=1, re triviális.

n=2-re: 
Első sor szerinti kifejtés: 
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Második sor szerinti kifejtés: 
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Első oszlop szerinti kifejtés:  
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Második oszlop szerinti kifejtés: 
[image: image25.wmf]11

22

21

12

22

21

12

11

a

a

a

a

a

a

a

a

+

×

-

=


Feltesszük, hogy az (n-1) x (n-1) –es determinánsra igaz az állítás. Ennek alapján bizonyítjuk, hogy az n x n-es determinánsra is igaz, hogy bármelyik sora szerint kifejtve ugyanazt a számot kapjuk.

Fejtsük ki a determinánst először az i., majd a j. sora szerint, i<j:
A determináns i. sora szerinti kifejtés:
D= 
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Az aikajl szorzatot tartalmazó általános tag úgy adódik, hogy  a Dik aldeterminánst az eredeti j. sornak megfelelő (most j-1.) sor szerint kifejtjük. (Ezt megtehetjük, hiszen az
 (n-1) x (n-1)-es Dik  determinánsra teljesül az indukciós feltétel: ezért bármelyik sora szerint kifejthető. 
ha l<k:
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vagyis az általános, aikajl szorzatot tartalmazó általános tag:
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ha k<l
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vagyis az általános, aikajl szorzatot tartalmazó általános tag:
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Most fejtsük ki a determinánst a j. sora szerint. 
Az  aikaj l szorzatot tartalmazó általános tag úgy adódik, hogy a j. sora szerint kifejtett determinánsban szereplő megfelelő aldeterminánst az eredeti i. sornak megfelelő sor szerint kifejtjük:
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ha a l<k
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vagyis az általános, aikajl szorzatot tartalmazó általános tag:
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ha a k<l
az általános, aikajl szorzatot tartalmazó általános tag:
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 EMBED Equation.3  [image: image36.wmf]jl
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, ezért az aikajl általános tag együtthatói ugyanazok minden i, j, k, l természetes számra. Másképpen az i. sor szerinti kifejtés összegének tagjai egyenlők a j. sor szerinti kifejtés tagjaival.
Megjegyzés: Gyakran a determináns definícióját a következőképpen adják meg:  (ld. pl. Freud R.: Lineáris algebra): Az n x n –es mátrixhoz számot rendelhetünk.Ha a hozzárendelt szám az alábbiakban ismertetett szabály szerint történik, akkor ezt a számot az  n x n- es mátrix determinánsának nevezzük. Ezt a számot a következőképpen képezzük: a mátrix minden sorából és oszlopából pontosan egy elemet választunk, és ezeket összeszorozzuk. Ezt minden lehetséges módon elvégezzük, igy n! db szorzatot kapunk. E szorzatokat + vagy – előjellel látjuk el aszerint, hogy a sorindexek természetes sorrendjét követő felírásban az oszlopindexek permutációja páros, vagy páratlan. Az előjellel ellátott szorzatokat összegezve kapjuk a determináns értékét. Képletben:
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az oszlopindexek inverzióinak száma (inverzió: természetes sorrendtől eltérő. )

Feladat: A determináns alább felsorolt tulajdonágait bizonyítsa be a fenti definíció alapján!
A determináns tuladonságai
1. Ha a determináns valamely sorát SYMBOL 108 \f "Symbol"-val szorozzuk, a determináns értéke 

SYMBOL 108 \f "Symbol"-szorosa lesz.
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Bizonyítás: Fejtsük ki a determinánst azon sor szerint, amelyet beszoroztunk  
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 -val. 
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2. Ha detA i-edik sorának minden eleme kéttagú összeg, akkor detA felbontható 
két olyan determináns összegére, melyből az első i-edik sorában az előbb említett 
összeg első tagjai, a második determináns i-edik sorában az összeg második tagjai 
szerepelnek, a többi elem változatlan. (Mivel az összeadás kommutatív művelet, tulajdonképpen nem fontos, hogy rendre az első, ill. a második tagikat tegyük e determinánsokba, csak az a lényeg, hogy az összeg egyik tagját az elsőbe, mésikat a másodikba tegyük)
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Bizonyítás: Fejtsük ki a determinánst azon sora szerint, amelyben az összeg szerepel.
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3. Ha egy determináns egy sora csupa 0 elemet tartalmaz, akkor az értéke 0:
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Bizonyítás:
Fejtsük ki a determinánst a csupa 0 elemet tartalmazó sor szerint:
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4. Ha egy determináns két sorát felcseréljük, a determináns értéke (-1)-szeresére 

változik.

Bizonyítás: Elegendő két szomszédos sor cseréjére igazolni az állítást.


Ha ugyanis az i-edik sort a j-edik sorral szeretnénk felcserélni ( j > i ), akkor az 

i-edik sor (j - i ) lépésben kerül a j-edik helyére, majd a j-edik ( j - i -1 ) lépésben 

vissza az i-edik helyére. Ez összesen j - i + j - i - 1 szomszédos sorcserét jelent, azaz 

az előjel 
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 szeresére változott.

Egyszerűség kedvéért ( az általánosság megszorítása nélkül ) tekintsük az első két 

sor cseréjét. Az eredeti, és az első két sor cseréje után kapott determinánsokat 

jelőljük 
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A kifejtési tétel szerint egy determináns bármelyik sora szerint kifejthető, ezért 

fejtsük ki az első determinánst az első sora szerint, míg a másodikat a második sora 

szerint. Így
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amivel az állítást igazoltuk.

5. Ha egy determináns két sora megegyezik, a determináns értéke 0.

Bizonyítás: Cseréljük fel a determinánsban a két egyenlő sort. Ekkor a determináns 

értéke (-1)-szeresére változik ( előző tétel ), másrészt nem változik, hiszen a két 

determináns elemei megegyeznek. Ha tehát D a determináns értéke, akkor

D = ( - D ), amiből D = 0.

6. Ha egy determináns valamely sorához hozzáadjuk valamely sor SYMBOL 108 \f "Symbol" szorosát, a 

determináns értéke nem változik.

Bizonyítás.
Az eredeti és az új determinánst jelőljük 
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7. Egy alsó, vagy ( felső ) háromszögdetermináns értéke a főátlóban álló elemek 

szorzata.

Fejtsük ki a determinánst az első sora szerint, majd a keletkező aldeterminást szintén az első sora szerint, és így tovább:
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Bizonyítás:
A kifejtési tételt alkalmazva fejtsük ki a determinánst az első ( utolsó ) 

sora szerint, majd a kapott ( n - 1 )-edrendű determinánst ismét az első sora szerint, 

stb. Így az állítás nyilvánvaló.

8. Az eddigiekben sorokra megfogalmazott tételek mindegyike oszlopokra is 

igazak.

Bizonyítás:
Az ismert tételek felhasználásával bármelyik determináns átalakítható 

felső háromszögdeterminánsá. Ezt a főátlóra tükrözve alsó háromszögdeterminánst 

kapunk. Erre alkalmazva az előbbi tételeket az állításhoz jutunk.

9. Ferde kifejtés tétele: Ha egy determináns egy sorának elemeit valamely másik sor elemeihez tartozó 

aldeterminánsokkal szorozzuk akkor az így kapott összeg 0. 
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 esetén.

Ha a determináns kifejtésére vonatkozó képletben  az aik sor elemei helyett pl. az alk sor elemeit szorozzuk meg rendre a Dik aldeterminánsokkal, akkor az így kapott szám nulla.

Helyes kifejtés: 
det(A)= a11D11+a12D12+…+a1nD1n
Ferde kifejtés: 
0= a21D11+a22D12+…+a2nD1n
Bizonyítás(Hf. ált.):

1. 
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Ha a másodikként szereplő ferde kifejtést  nézzük, olyan, mintha a determinéns első sora szerint fejtettük volna ki, és az első sorban a második sor elemei állnának. Ekkor az első és második sor egyenő, tehát a determináns 0. 
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