Determinánsok:

Determináns=egy szám:

Egy négyzetes mátrixhoz egy valós számot rendelünk hozzá. A eleme Tnxn 

det(A)=[image: image2.png]


=
=[image: image4.png]



Tehát vesszük minden lehetséges módon kiválasztott előjeles szorzatok összegét:

· minden sorból és oszlopból kiválasztunk pontosan egy elemet és ezeket összeszorozzuk,
· majd a szorzatokat összeadjuk (n db ilyen szorzat van)

· előjel: 
j1, j2, j3, …je, …jk, … jn sorrendben hány olyan pár van ahol:
      je > jk , ezek az adott sorrendben az oszlopindexek inverziószáma=o.
(pl: kiválasztom: a11, a25, a34… ekkor j1=1,  j2=5,  j3=4 és így j2 és j3 egy ilyen pár)
pl:

[image: image6.png]@11 ‘lul
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=[image: image8.png]Ay1° Ayp — Qg2 * Ay






     [image: image10.png]



                [image: image12.png]




                        (-1)0              (-1)1
Lemma: Egy adott sorrendben, ha két elemet felcserélünk az inverziók száma párosról páratlanra; páratlanról párosra vált.

Def: [image: image14.png]EED ay Qg

@ =217 gy g, et Ay




s=0, mivel a sorindexek a

természetes sorrendben

követik egymást

ahol  o’: az oszlopindexek  inverziója


s’: a sorindexek inverziója

Determinánsok tulajdonságai: (Tételek) (Sorra vagy oszlopra egyaránt igaz)
1) Oszlopok és sorok szerepe egyforma (szimmetrikus):  a főátlóra tükrözve a determináns értéke nem változik. Azaz det(A)=det(AT)
2) A determináns értéke két sorát felcserélve értéke (-1)szeresére változik.

3) Ha a determinánsnak van két egyenlő sora, akkor értéke 0, mivel ekkor det(A)=-det(A) kell legyen, ami csak 0 esetén lesz igaz.
4) Ha a determinánsnak egy sora csupa 0-ából áll, akkor értéke 0.

5) Ha a determinánsnak egy sorát egy [image: image16.png]


 számmal szorozzuk, akkor a det értéke [image: image18.png]


-szoros lesz. Ebből következik, ha minden sorát megszorozzuk [image: image20.png]


-val, a determináns értéke a [image: image22.png]


n-nel szorzódik, ahol n a mátrix mérete: det([image: image24.png]


*A)=[image: image26.png]


n *det(A) , ahol A є Rnxn.
6) Ha a determináns főátlója alatt (v. fölött) csak 0-ák állnak, akkor a determináns értéke a főátlóban lévő elemek szorzata. Ez a helyzet diagonális mátrixnál is, nemcsak a felső-/alsóháromszög mátrix esetében. (Ezt nevezzük a mátrix nyomának, azaz Trace-nek, jele: Tr(A). )
7) Ha a determináns egyik sora egy kéttagú összeg, akkor a determináns értéke a két olyan determináns értékének összege, melyeknek az egyik sora a kéttagú összeg egyik ill. másik fele.
8) A determináns értéke nem változik, ha egy sorához hozzáadjuk valamelyik másik sorának szám szorosát.

Aldetermináns:

 [image: image28.png]



↓

az a11-hez tartozó aldetermináns: A11
D11: a11-hez tartozó előjeles aldetermináns
Kifejtési tétel:

A determináns értéke megadható úgy is, hogy egy tetszőleges sor (vagy oszlop) elemeit szorzuk a hozzájuk tartozó aldeterminánsokkal és ezeket előjelesen összedajuk.

det(A)=[image: image30.png][P

Dy



  →a k-adik oszlop elemei szorozva a hozzájuk tartozó előjeles aldeterminánsokkal (a k rögzített): a k-adik oszlop szerinti kifejtés
Tehát kisebb mátrixok számolásához:

Első sor szerint kifejtve:


[image: image31.wmf]h
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Érdemes a legtöbb 0-t tartalmazó sor vagy oszlop szerint kifejteni a determinánst.

PÉLDÁK

0.


Det(E)=1.

1. (1.tulajdonság)
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2. (2.tulajdonság)
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3. (3.tul.)
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4.(4.tul.)
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 Bárhogy nézzük, az összeadandó szorzatokban mindig lesz legalább egy db 0.

5.(5.tul.)
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6.(6. tul.)
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 Mellékátlókra is igaz: 
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7.(7.tul.)
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8.(8.tul.)
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9. Kifejtési tétel
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Első sor szerinti helyes kifejtés:
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Ferde-kifejtéssel:

a: 1. sor elemei * 2. sorhoz tartozó aldeterminánsok
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b: 2.oszlophoz elemei * 1. oszlop aldeterminánsa
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10.
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sin

cos

cos

,

sin

sin

,

cos

2

2

=

+

=

-

x

x

x

x

x

x


11.

A mátrix függőleges tengelyére vett tükrözés.
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2 x 2-esnél -1-szerese lesz a determináns.
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3 x 3-asnál -1-szeresére változik.
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4 x 4-esnél a determináns értéke nem változik.
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12.

Ha a mátrix túl nagy, érdemes direkt kifejtés helyett Gauss-eliminálni.
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13.

[image: image54.png]3.6-23-(-52) = 1214





14.
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15.
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16.
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17. Vandermonde-determináns:
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Egy példán:


[image: image59.wmf]40
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17. Cramer-szabály (1.példa)
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18. Cramer-szabály (2.példa)
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19.
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