Sajátértékek, sajátvektorok

Egy kis elmélet:

Egy ( ( T skalárt az A négyzetes mátrix sajátértékének nevezünk, ha létezik olyan v ( V nemnulla vektor, amelyre Av= (v.

Egy v ( V nemnulla vektort az A négyzetes mátrix sajátvektorának nevezünk, ha létezik olyan ( ( T skalár, amelyre Av= (v.

Fontos, hogy sajátértéket, és sajátvektort csak négyzetes mátrixok esetén értelmezünk! Továbbá vegyük észre, hogy a sajátérték lehet 0, ám a sajátvektor sosem lehet nullvektor.

Egy ( ( T skalár akkor és csak akkor sajátértéke A-nak, ha az [A - (E]a mátrix determinánsa det([A - (E]a)=0.

A det([A - (E]a) polinomot A karakterisztikus polinomjának nevezzük. Más szóval tehát A sajátértékei A karakterisztikus polinomjának gyökei.

Ennek egyik fontos következménye, hogy ha egy transzformáció mátrixa diagonális, akkor a főátlóban a sajátértékek szerepelnek.

Feladatok:


Számítsuk ki a megadott mátrixok sajátértékeit, sajátvektorait, ill. vizsgáljuk meg, hogy az egyes sajátalterek hány dimenziósak!
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Megoldások:

a) A transzformáció sajátértékei a det([A - (E]a) polinom gyökei.
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det([A - (E]a)=
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A sajátvektorok kiszámításához meg kell oldanunk az 
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 homogén lineáris egyenletrendszert.

Számítsuk ki a (1=1 sajátértékhez tartozó sajátvektorokat:
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Tehát a (1=1 sajátértékhez tartozó sajátvektorok olyan vektorok, melyek első és második koordinátái megegyeznek. 
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vektor sajátvektor. Ez a sajátaltér egy dimenziós. 

Számítsuk ki a (2=-1 sajátértékhez tartozó sajátvektorokat:
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Tehát a (2=-1 sajátértékhez tartozó sajátvektorok olyan vektorok, melyek első koordinátája második koordinátának (-1)szerese. 
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 R\{0}. Így például az
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 vektor sajátvektor. Ez a sajátaltér egy dimenziós.

b) Tudjuk, hogy ha a mátrix diagonális, akkor a főátlóban a sajátértékek szerepelnek. Így ez esetben a transzformáció sajátértéke (=-1. Továbbá a középpontos tükrözés során egy vektor képe egy vele egy egyenesbe eső, de ellentétes irányú vektor lesz, így a 
(=-1 sajátértékhez tartozó sajátvektorok: 
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 R\{0}, tehát például a 
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vektor sajátvektor. Ez a sajátaltér három dimenziós.
Így tehát a sajátaltér 3 dimenziós.


c) A transzformáció sajátértékei a det([A - (E]a) polinom gyökei.

det([A - (E]a)=
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 EMBED Equation.3  [image: image23.wmf]
Számítsuk ki a (1=2 sajátértékhez tartozó sajátvektorokat:
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Tehát a (1=2 sajátértékhez tartozó sajátvektorok olyan vektorok, melyek első koordinátája tetszőleges nemnulla szám, második koordinátája pedig 0. 
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vektor sajátvektor. Ez a sajátaltér egy dimenziós.

Számítsuk ki a (2=1 sajátértékhez tartozó sajátvektorokat:
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Tehát a (2=1 sajátértékhez tartozó sajátvektorok olyan vektorok, melyek első koordinátája második koordinátának (-1)szerese. 
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 vektor sajátvektor. Ez a sajátaltér egy dimenziós.

d) A transzformáció sajátértékei a det([A - (E]a) polinom gyökei.
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A sajátvektorok kiszámításához meg kell oldanunk az 
[image: image31.wmf]0
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 homogén lineáris egyenletrendszert.
Számítsuk ki a (1=1 sajátértékhez tartozó sajátvektorokat:
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vektor (1=1-hez tartozó sajátvektor. Ez a sajátaltér egy dimenziós.

Számítsuk ki a (2=2 sajátértékhez tartozó sajátvektorokat:
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vektor (2=2-hez tartozó sajátvektor. Ez a sajátaltér egy dimenziós.

Számítsuk ki a (3=3 sajátértékhez tartozó sajátvektorokat:
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vektor (3=3-hez tartozó sajátvektor. Ez a sajátaltér egy dimenziós..


e) A transzformáció sajátértékei a det([A - (E]a) polinom gyökei.
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Számítsuk ki a (1,2=1 sajátértékhez tartozó sajátvektorokat:
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vektor (1,2=1-hez tartozó sajátvektor. Ez a sajátaltér két dimenziós.

Számítsuk ki a (3=10 sajátértékhez tartozó sajátvektorokat:
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vektor (3=10-hez tartozó sajátvektor. Ez a sajátaltér egy dimenziós.


f) A fentiekhez hasonlóan:
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 R\{0}, 2 dimenziós sajátaltér
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g) 
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j) A transzformáció sajátértékei a det([A - (E]a) polinom gyökei.
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Számítsuk ki a (1,2,3=1 sajátértékhez tartozó sajátvektorokat:
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