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Lineáris leképezés és annak mátrixa
Feladatsor megoldásokkal
Lineáris leképezés:
Bevezetés: - Mit értünk „lineáris leképezés” alatt? Hogyan dönthetjük el egy leképezésről, hogy az valóban homogén lineáris leképezés-e?
Definíció: 

Legyenek V és W vektorterek, valamint u, v ∈ V, k ∈ R . Azt az L : V → W függvényt, amely a következő két tulajdonsággal rendelkezik, lineáris leképezésnek nevezzük:

a. L(u + v) = L(u ) + L(v) 

b. L(ku) = kL(u ) 

Ha V=W, akkor a leképezést lineáris transzformációnak hívjuk. 

Az L (u ) vektor az u vektor képe. (Az u vektor az L (u ) vektor őse) 

Feladatok: Döntsük el, hogy az alábbiak homogén lineáris leképezések, vagy nem azok!
0.1.)  
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Megoldás:
Azt kell csak megvizsgálnunk, hogy érvényes-e rá a definícióban szereplő két tulajdonság:
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Mivel mindkét tulajdonság teljesül, L homogén lineáris leképezés.
0.2.)
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Megoldás:
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Mivel az egyik tulajdonság nem teljesül, L biztosan NEM homogén lineáris leképezés!

0.3.)
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Megoldás:
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A valóban homogén lineáris leképezés (mivel mindkét tulajdonság teljesül).
0.4.)
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Megoldás:
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Az 
[image: image25.wmf]a

 szöggel való forgatás valóban Homogén Lineáris leképezés.
0.5.) Döntsük el, lineáris leképezések-e az alábbi leképezések:

a) A: V1 ( V2 , V1 = V2, síkvektorok szokásos tere. A: tengelyes tükrözés.
Megoldás:
A(u+v)=A(u)+A(v) teljesül, hiszen ha először összeadom a vektorokat, és az összegvektort tükrözöm, ugyanazt a vektort kapom, mintha először tükrözném egyenként a vektorokat, és utána adnám össze őket.

A((u)= ((Au) szintén teljesül, hiszen ha először megnyújtom a vektort, és utána tükrözöm, akkor ugyanazt a vektort kapom, mint ha tükrözés után nyújtanám meg a vektort. Tehát a leképezés lineáris.
b) A: V1 ( V2 , V1 = V2, síkvektorok szokásos tere. A: 45°-os, pozitív irányú forgatás az origó körül.
Megoldás:

A(u+v)=A(u)+A(v) teljesül, hiszen ha először összeadom a vektorokat, és az összegvektort forgatom, ugyanazt a vektort kapom, mintha először elforgatnám egyenként a vektorokat, és utána adnám össze őket.

A((u)= ((Au) szintén teljesül, hiszen ha először megnyújtom a vektort, és utána elforgatom, akkor ugyanazt a vektort kapom, mint ha elforgatás után nyújtanám meg a vektort. Tehát a leképezés lineáris.
c) A: V1 ( V2 , V1 = V2, az [a,b] intervallumon differenciálható függvények halmaza. A: deriválás.
Megoldás:

A(u+v)=A(u)+A(v) teljesül, hiszen (f+g)’=f’+g’.

A((u)= ((Au) szintén teljesül, hiszen ((f)’=(f’. Tehát a leképezés lineáris.
d) A: V1 ( V2 , V1 = V2, az [a,b] intervallumon integrálható függvények halmaza. A: integrálás.
Megoldás:

A(u+v)=A(u)+A(v) teljesül, hiszen 
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A((u)= ((Au) szintén teljesül, hiszen 
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e) A: V1 ( V2 , V1 = V2, a valós számok szokásos vektortere. A(x)=ax+b. A: V1 ( V2 ,
Megoldás:

A(u+v)=A(u)+A(v) nem teljesül, hiszen 
[image: image28.wmf]b
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. Tehát a leképezés nem lineáris.

f) A: V1 ( V2 , V1 = V2, a valós számok szokásos vektortere. A(x)=x2.
Megoldás:

A(u+v)=A(u)+A(v) nem teljesül, hiszen 
[image: image29.wmf]2
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0.6.) Legyen A lineáris leképezés V1-ről a V2-be, ci ( V1. Melyek igazak az alábbi állítások közül?
a) Ha c1, … , ck lineárisan független, akkor A(c1), … , A(ck) is lineársian független.
Megoldás:

Vegyük példának azt a leképezést amikor A: V1 ( V2 , V1 = V2 a térvektorok szokásos tere. A: síkra vetítés. Ekkor minden térvektor képe egy adott síkbeli vektor lesz (azon síkbeli, mely síkra a vetítés történik). Ekkor a térben természetesen találhatunk három lineárisan független vektort, ám ezek képe mind síkbeli vektor lesz. A síkban pedig bármely vektor kifejezhető két nem párhuzamos vektor lineáris kombinációjaként. Ez tehát azt jelenti, hogy 3 síkvektor már nem alkothat lineárisan független rendszert, így az állítás nem igaz, hiszen megadtunk egy ellenpéldát.

b) Ha A(c1), … , A(ck) lineárisan független, akkor c1, … , ck is lineársian független.
Megoldás:

Vektorok akkor alkotnak lineárisan független rendszert, ha lineáris kombinációjuk csak úgy állítja elő a nullvektort, hogy minden vektor együtthatója 0. Tehát 
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.Kihasználjuk, hogy a leképezés lineáris, így az egyenlet a következő formába írható: 
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. De az A(c1), … , A(ck) vektorokról tudjuk, hogy ezek lineárisan függetlenek, tehát a nullvektort csak úgy állíthatják elő ha 
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c) Ha c1, … , ck generátorrendszer V1-ben, akkor A(c1), … , A(ck) is generátorrendszer Im A-ban.
Megoldás:

Ha c1, … , ck generátorrendszer V1-ben, akkor ez azt jelenti, hogy 
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, ami pedig pont azt jelenti, hogy a képtér minden eleme előáll az A(c1), … , A(ck) vektorok lineáris kombinációjaként, tehát az A(c1), … , A(ck) vektorok generátorrendszert alkotnak Im A-ban.
I. rész:
A leképezés mátrixa:
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Ha hangsúlyozni akarjuk, hogy mely bázispárhoz tartozó mátrixról van szó, akkor így jelöljük: 
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Tétel: 
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 bázispárra vonatkozóan az a (k x n)-es mátrix, amelynek oszlopvektorai a 
[image: image57.wmf]1
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-beli („kiindulási tér”-beli) [a] bázis vektorainak képei a képtér (
[image: image58.wmf]2

V

) [b] bázisában kifejezve.
Leképezés mátrixával kapcsolatos feladatok: Írja fel a leképzések mátrixát a megadott bázisokban (vagy ha nincs megadva bázis, akkor a kanonikus bázisokban)! 
1.1.)  y=x egyenesre tükrözés
Megoldás:


(x képe y és vice versa)
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 tényleg! 
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1.2.) Vetítés: 
[image: image65.wmf]3

3

R

R

®

 (merőlegesen x,y síkra)

Megoldás:
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1.3.) Vetítés: 
[image: image73.wmf]2
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Megoldás:
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1.4.)Vetítés az i, j, k bázisvektorok által kijelölt térből az i és k bázisvektorok által meghatározott síkra:
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Megoldás:
Az mátrix felírásához (a fenti tétel értelmében) a kiindulási tér (
[image: image84.wmf]3
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) bázisvektorainak képeit kell felírnunk a képtér (
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) bázisában.

A képtér bázisvektorai:
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A kiindulási tér bázisvektorai:                         Képük a képtér bázisában:
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A leképezés mátrixa tehát a tétel alapján:
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1.5.) Most végezzük el az előző feladatot úgy, hogy az eredményt nem a kanonikus bázisban, hanem a következőben írjuk fel!
A képtér bázisa: 
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Megoldás:
felírjuk a leképezés mátrixát a kanonikus bázisban (ezt tettük az előző feladatban), valamint felírjuk a kanonikus bázisból az új bázisra való áttérés mátrixát, és végül ezt a két mátrixot összeszorozzuk. Így kapjuk a feladatban szereplő (bázistranszformációval kiegészített) leképezés mátrixát.

A leképezés mátrixa a kanonikus bázisban:
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 bázisra való áttérés mátrixát úgy tudjuk könnyen felírni, ha felírjuk az ezzel éppen ellentétes irányú (
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) bázistranszformáció (egy speciális leképezés) mátrixát, majd annak az inverzét vesszük.

Bázisvektorok:       Transzformáltjaik (önmaguk a képeik, csak másik bázisban):
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                                      mindig a kanonikus bázisban értendők)
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Invertálás:
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Így a keresett leképezés mátrixa:
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1.6.) Legyen most 
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 a legfeljebb másodfokú polinomok teréből ugyanebbe a térbe képező homogén lineáris leképezés (hom. lin. transzformáció).
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Írjuk fel a leképezés 
[image: image114.wmf]A

 mátrixát!
Megoldás:
A bázisunk most mindkét térben:       
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Írjuk fel ezek képét „A” leképezés ismeretében:
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Így tehát:
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1.7.)
 [image: image123.jpg]L:Re—s R?
L(x1, X2) == (2%1 — 3%, X1 +X2)




Megoldás:
Első megoldás: oszloponként állítjuk elő a keresett mátrixot, felhasználjuk a fenti tételt, miszerint a leképzés mátrixának oszlopvektorai az [a] bázis vektorainak képei.
[image: image124.jpg]A=[L(1.0) L(0.1)]
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Második megoldás – egyenletrendszeres módszerrel:
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1.8.) 

[image: image126.jpg]L: P,oP,
L(P)(x) =P(x+1)-P(x) xeR




A bázis mindkét térben a hatványfüggvényekből álló bázis.
Megoldás:
(a 3.) példa 2. megoldásához hasonlóan)
A két tér bázisa tehát:  [image: image127.jpg]Pl s e o0 s Psr { 1.5, 7%
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Egymás mellé írom az oszlopvektorokat, és így megkapom a mátrixot: [image: image129.jpg]— o
—N o
-0 O

oo o
Il




1.9.) Határozzuk meg a síkban (
[image: image130.wmf]2
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-ben) lévő 
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 vektor +30°-kal elforgatott képét (
[image: image132.wmf]t
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) a forgatás, mint hom. lin. leképezés segítségével!        (
[image: image133.wmf]v

-hoz hasonlóan 
[image: image134.wmf]t
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 is a kanonikus bázisban adjuk meg!)
Megoldás:

(A kiindulási tér és a képtér bázisa tehát megegyezik: kanonikus bázis)              A kiindulási tér bázisvektorai; valamint azok 30°-kal elforgatott képei ugyanebben a bázisban felírva:
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Így a + 30°-kal való elforgatás mátrixa (kanonikus bázisban):
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Végül:
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1.10.)

Mi lesz a  
[image: image139.wmf]ú
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 vektor +60°-kal elforgatott képe (szintén a kanonikus bázisban)?
Megoldás:
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1.11.) 
[image: image141.wmf]3
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 vektorait az xz síkra vetítjük, majd 90°-kal elforgatjuk negatív irányba. Határozzuk meg az 
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 „vetítés, majd forgatás” lineáris leképezés mátrixát!
Megoldás:
A vetítés mátrixát az 1.) feladathoz hasonló módon kaphatjuk meg, a tétel alapján.

A képtér bázisvektorai ez alkalommal:


[image: image143.wmf]ú

û

ù

ê

ë

é

=

0

1

i

,  
[image: image144.wmf]ú

û

ù

ê

ë

é

=

1

0

k


-90°-os elforgatás mátrixa:
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[image: image147.wmf]z
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A teljes 
[image: image149.wmf]2
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 „vetítés, majd forgatás” lineáris leképezés mátrixa:
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1.12.) Állapítsuk meg, hogy az alábbi mátrix forgatási mátrix-e?
a)   
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Megoldás:
A 
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 mátrix nem lehet forgatási mátrix, mivel a főátlójában álló két elem különböző.   
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Megoldás:
A 
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 nem lehet forgatási mátrix, mivel, bár a=1, b=1 választással megfelel az 
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II. rész:
Lineáris leképezések összege, számszorosa és szorzata:
1. Definíció: 
Az 
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2. Definíció: 
Az 
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Feladat: Bizonyítsuk, hogy valóban homogén lineáris leképezés! (előadáson is elhangzott)
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Mivel mindkét tulajdonság teljesül, beláttuk, hogy a lineáris leképezések számszorosa (vagy másként skalárszorosa) valóban homogén lineáris leképezés.

3. Definíció: 
Legyenek 
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Feladatok:
2.1.) Oldjuk most meg az 1.6. példát a mátrix szorzás segítségével! 

Kiszámoljuk külön-külön a két leképezés mátrixát, és összeszorozzuk őket.

A vetítés mátrixa: 
[image: image187.wmf]ú

û

ù

ê

ë

é

=

1

0

0

0

0

1

1

A


A forgatás mátrixa (-90°): 
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A két kapott mátrixot összeszorozzuk. Olyan, mintha elvégeznénk először az első leképezést, a vetítést (A1), majd a másodikat, a forgatást (A2). Tehát összeszorozzuk a két mátrixot, és egyszerre végezzük el a leképezést.
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Helyesen számoltuk, az eredmény megegyezik.

2.2.) Forgassuk el a 
[image: image190.wmf]ú
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 vektort előbb 30°, majd 60°-kal.
Megoldás:
A 3. definíció (leképezések szorzata) alapján:


[image: image191.wmf]=

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

-

2

3

)

30

cos(

)

30

sin(

)

30

sin(

)

30

cos(

)

60

cos(

)

60

sin(

)

60

sin(

)

60

cos(

o

o

o

o

o

o

o

o


(Az addíciós tételek felhasználásával:)
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2.3.) Forgassuk el a 
[image: image194.wmf]ú
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 vektort 30-kal°, majd forgassuk el az eredeti vektort 60°-kal és végül adjuk össze az eredményül kapott két vektort.
Megoldás:

Mivel most a két leképezést (jelen esetben forgatást) nem egymás után hajtjuk végre, hanem előbb külön-külön végrehajtjuk őket az eredeti v vektoron, majd az így eredményül kapott képek (vektorok) összegét vesszük, ezért a feladat megoldásához a leképezések összegéről szóló (1.) definíciót használhatjuk fel:
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ú

û

ù

ê

ë

é

-

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

=

2

3

)

60

cos(

)

60

sin(

)

60

sin(

)

60

cos(

)

30

cos(

)

30

sin(

)

30

sin(

)

30

cos(

o

o

o

o

o

o

o

o



[image: image197.wmf]=

ú

û

ù

ê

ë

é

-

ú

û

ù

ê

ë

é

+

+

-

-

+

=

2

3

)

60

cos(

)

30

cos(

)

60

sin(

)

30

sin(

)

60

sin(

)

30

sin(

)

60

cos(

)

30

cos(

o

o

o

o

o

o

o

o



[image: image198.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

-

+

-

=

ú

û

ù

ê

ë

é

-

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

+

+

-

+

=

ú

û

ù

ê

ë

é

-

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

+

-

-

+

=

2

1

3

2

5

3

5

2

3

2

1

3

2

1

3

2

1

3

2

1

3

2

3

2

1

2

3

2

3

2

1

2

3

2

1

2

1

2

3


(Jól látható, hogy egészen más eredményt kaptunk, mint ugyanezen leképezések szorzatával a 2.2. feladatban.)
2.4.)
a) Nyújtsuk meg a 
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 vektort a 2-szeresére, majd forgassuk el -90°-kal!

b) Nyújtsuk meg a 
[image: image200.wmf]ú
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 vektort a 2-szeresére, illetve forgassuk el a v vektort -90°-kal, majd összegezzük a kapott képvektorokat!
Megoldás:

Az előző feladathoz hasonlóan (az ’a’ feladatban a leképezések skalárszorosáról szóló (2.) definíciót is felhasználjuk.)

a) 
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b) 
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2.5.) Forgassuk el a 
[image: image205.wmf]ú
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 vektort előbb 80°, majd 100°-kal.
Megoldás:
a) A 2.2. feladathoz hasonlóan:
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b) Érdemes észrevenni, hogy a 80°+100°=180°-kal való forgatás nem más, mint egy tükrözés a két forgatás közös origójára: 
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2.6.) ℝ3 vektorait az yz síkra vetítjük, majd pozitív (óra járásával ellentétes) irányban 90°-kal

elforgatjuk.
Megoldás: 
oszloponként állítjuk elő a keresett mátrixot, felhasználjuk a fenti tételt, miszerint a leképzés mátrixának oszlopvektorai az [a] bázis vektorainak képei.
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2.7.)  A 2. példa megoldása másképp, két mátrix szorzataként: először kiszámoljuk a vetítés mátrixát, majd a 90°-os forgatásét.
Megoldás:
Forgatás:
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A feladat megoldása tehát:
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A két kapott mátrixot összeszorozzuk. Olyan, mintha elvégeznénk először az első leképzést, a vetítést (A1*x), majd a másodikat, a forgatást (A2*az eredmény). Tehát összeszorozhatjuk a két mátrixot, s egyszerre végezhetjük el a leképzést.
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Helyesen számoltunk, ugyanazt kaptuk, mint az előző megoldásban (2.6.).
3.1.) Határozzuk meg a képtér és a magtér dimenzióját az alábbi leképezéseknél.
a) A: V1 ( V2 , V1 = V2, a valós test feletti legfeljebb 100-adfokú polinomok (és a 0) szokásos vektortere. (A polinomokat p(x)-szel jelöljük.) A: p(x) ( (0 p(x). ((0 (0)
Megoldás:

Ha egy polinomot egy (0 konstanssal szorzok, akkor a polinom fokszáma nem változik, csak az együtthatók változnak. Így a képtér szintén a legfeljebb100-adfokú polinomok vektortere lesz, a magtér pedig az azonosan 0 polinom lesz. Így dim(Im A)=101, dim (Ker A)=0.

b) A: V1 ( V2 , V1 = V2, a valós test feletti legfeljebb 100-adfokú polinomok (és a 0) szokásos vektortere. (A polinomokat p(x)-szel jelöljük.) A: p(x) ( p(x) - x p’(x).
Megoldás:

Ha egy polinomot deriválunk, akkor a polinom fokszáma eggyel csökken. Így az x(p’(x) polinom fokszáma megegyezik az eredeti polinom fokszámával. Ha a leképezésünk ilyen alakú: p(x) ( p(x) - x p’(x), akkor a képtér szintén a legfeljebb századfokú polinomok vektortere lesz, azonban vegyük figyelembe, hogy ha p(x)=ax, akkor p(x) - x p’(x)=0. Így a képtérben egyrészt nem szerepelnek elsőfokú polinomok, másrészt a képtérben levő polinomok egyikében sem lesz elsőfokú tag. Továbbá a magteret az elsőfokú és az azonosan 0 polinomok alkotják. Ezért dim(Im A)=100, dim(Ker A)=1.

c) A: V1 ( V2 , V1 = V2, síkvektorok szokásos tere. A: tengelyes tükrözés.
Megoldás:

A tengelyes tükrözés során síkvektor képe síkvektor. Továbbá tengelyes tükrözés során csak a nullvektor képe lehet nullvektor. A magtér tehát a nullvektor. Így tehát dim(Im A)=2, dim (Ker A)=0.

d) A: V1 ( V2 , V1 a térvektorok szokásos tere, V2 pedig a síkvektorok szokásos tere. A: adott síkra történő merőleges vetítés.
Megoldás:

Térvektorok adott síkra történő merőleges vetítésekor minden térvektor képe síkvektor lesz, továbbá minden olyan térvektor képe a nullvektor lesz, melyek merőlegesek az adott síkra. A magtér tehát az adott síkra merőleges vektorok halmaza és a nullvektor. Így dim(Im A)=2, dim (Ker A)=1.

e) A: V1 ( V2 , V1 = V2, síkvektorok szokásos tere. A: 45°-os, pozitív irányú forgatás az origó körül.
Megoldás:

Síkvektor képe elforgatás után síkvektor lesz, és az elfogatás során csak a nullvektor képeként állhat elő nullvektor. Így tehát dim(Im A)=2, dim (Ker A)=0.

f) A: V1 ( V2 , V1 = V2, a valós test feletti legfeljebb 100-adfokú polinomok (és a 0) szokásos vektortere. (A polinomokat p(x)-szel jelöljük.) A: p(x) ( p’(x).
Megoldás:

Deriválás során minden polinom fokszáma eggyel csökken. Így a képtér a max. 99-fokú polinomok vektortere lesz. Továbbá a konstans polinom deriváltja 0, így a magteret az azonosan 0 és a konstans polinomok adják. Tehát dim(Im A)=100, dim (Ker A)=1.

További hasznos feladatok (ebben a témakörben) az alábbi linken elérhető előadásdiákban találhatók:

http://digitus.itk.ppke.hu/~b_novak/dmat/lin_lekep.pdf
Források:
Bató Kinga anyaga: http://digitus.itk.ppke.hu/~b_novak/dmat/lin_lek_matrixa_Kinga.pdf
Csány Gergely anyaga: https://wiki.itk.ppke.hu/twiki/bin/view/PPKE/DMI?sortcol=table;table=up (/”LIN_LEKEPEZES_ES_MATRIXA_MO.doc”)

Sonneveld Ilona anyaga: http://digitus.itk.ppke.hu/~b_novak/dmat/Lin_lek_Ilus.pdf
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