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Ez a jegyzet Bércesné Novák Ágnes: Lineáris Algebra című egyetemi jegyzete alapján készült
FIGYELEM! A jegyzet nélkülözi a lektorálást, emiatt hibák előfordulhatnak!


[bookmark: _Toc408940357]Lineáris egyenletrendszerek
a) [bookmark: _Toc408940358]Lineáris egyenletrendszerek (LE)
[bookmark: _GoBack]Definíció: Lineáris egyenlet: olyan egyenlet, amelyben az együtthatók legfeljebb első hatványon szerepelnek.
Definíció: Lineáris egyenletrendszer: lineáris egyenletek csoportja.
	Általános alak:
	Mátrixos alak:

	a11 * x1 + a12 * x2 + a13 * x3 + … + a1n * xn = b1
a21 * x1 + a22 * x2 + a23 * x3 + … + a2n * xn = b2
…          …          …       …      …       …
am1 * x1 + am2 * x2 + am3 * x3 + … + amn * xn = bmKonstans tagok
Együtthatók

	
(Bővített mátrix)

	
	


b) [bookmark: _Toc408940359]Gauss elimináció
Célja: Egyenletrendszerek megoldásainak megkeresése az alsó háromszögben levő elemek kinullázásával.
[bookmark: _Toc408940360]Alapfeltevése: A megoldáshalmaz nem változik, ha
1. az egyenletek sorrendjét megváltoztatjuk, 
2. egy nem-nulla valós számmal megszorozzuk az egyik egyenletet,
3. egyik egyenletet hozzáadjuk egy másokhoz.
Menete: Balról jobbra haladva egyenként vesszük az oszlopokat.
1. Az aktuális oszlopból kiválasztunk egy olyan nem-nulla elemet, melynek a sorában még nincs vezérelem, és ezt az elemet jelöljük ki vezérelemmé.
2. A vezérelem sorát úgy cseréljük, hogy a vezérelem a főátlóba kerüljön.
3. A vezérelem sorát elosztjuk a vezérelemmel.
4. A vezérelem sora alatt levő sorokból kivonjuk a vezérelem sorának annyi szorosát, amennyi az adott sor vezérelem alatti elemének értéke.
Definíció: Tilos sor: olyan sor, ahol a változók együtthatói mind nullák, de a konstans tag nem.
[bookmark: _Toc408940361]Megoldások száma:
1. 1, ha minden oszlopban van vezérelem ⟺ minden változó kötött változó.
2. ∞, ha nincs minden oszlopban vezérelem ⟺ van szabad változó.
3. ∅, ha van tilos sor.
[bookmark: _Toc408940362]Gauss – Jordan elimináció:
Célja: A megoldás megkeresése a főátlón kívüli elemek kinullázásával.
Menete: 
1. Gauss elimináció végrehajtása.
2. Jobbról balra haladva vesszük az oszlopokat.
· Az oszlopban található vezérelem feletti elemek kinullázása.
c) [bookmark: _Toc408940363]
Homogén lineáris egyenletrendszerek:
Definíció: Homogén LE: olyan egyenletrendszer, ahol az összes konstans tag 0.
Definíció: Triviális megoldás: olyan megoldás, ahol az összes változó értéke 0.
Megjegyzés: A homogén lineáris egyenletrendszereknek mindig van triviális megoldása.
[bookmark: _Toc408940364]Megoldások száma:
d) változók száma > egyenletek száma  ∞ megoldás
e) változók száma ≤ egyenletek száma
1.  Gauss elimináció:
· Minden oszlopban van vezérelem  csak triviális megoldás létezik
· Nincs minden oszlopban vezérelem  ∞ megoldás
[bookmark: _Toc408940365]Mátrix-algebra
Definíció: R feletti n x m mátrix: olyan téglalap alakú táblázat, melynek m sora és n oszlopa van, elemei, pedig valós számok
· Típusa: n x m
· Jele: Rn x m        =
· Általános elem: 
[bookmark: _Toc408940366]Speciális mátrixok:
1. Négyzetes / kvadratikus mátrix: Rn x n
2. Sormátrix: R1 x n  =
3. Oszlopmátrix: Rn x 1  
4. Diagonális ~/diagonálmátrix: 
5. Nullmátrix:     
6. Egységmátrix: 


[bookmark: _Toc408940367]Mátrixok közti relációk:
1. Egyenlőség:  =  ⟺ 
2. Hasonlóság: Az  négyzetes mátrix hasonló a  négyzetes mátrixhoz, ha ∃  négyzetes mátrix, melyre  = ‒1 *  * .
Jelölés:   
[bookmark: _Toc408940368]Mátrix-műveletek:
1. [bookmark: _Toc408940369]Összeadás: 
 n x m + n x m = n x m ⟺  
· (Rn x m, +): Abel-csoport (kommutatív, zárt, asszociatív, ∃egységelem, ∃ inverz)
Az összeadás egységeleme a nullmátrix, inverze pedig az ellentett mátrix (-).
Bizonyítás: Általános mátrixokra felírva egyszerűen bizonyítható.
Az összeadás inverze egyértelmű. 
Bizonyítás: mivel elemenként végzett műveletről van szó, a valós számok inverzének az egyértelműségéből következik.
2. [bookmark: _Toc408940370]Szorzás: 

· (Rn x m, *): nem művelet (nem kommutatív, nem zárt, asszociatív, ∄egységeleme, ∄ inverz,
 de  (Rn x n, *): zárt, ∃ egységeleme és ∃ inverze egy részének (reguláris mátrixok).
· disztributív az összeadásra: (  + )*  =  *   +  *  
 * (  + )=  *  +  *   
Bizonyítás: (mindkettő állítás): Általános mátrixokra felírva egyszerűen bizonyítható.
a) [bookmark: _Toc408940371]Egységelem: 
Csak a négyzetes mátrixok esetén létezik (egységmátrix csak négyzetes lehet) és ekkor egyértelmű (a jobb- és a baloldali egységmátrix megegyezik), vagyis az egységmátrixszal való szorzás kommutatív.
Bizonyítás: TFH: A ∈ Rn x n és A * En= B és En * A= C
		Ekkor 
								       
		Ugyanígy 
								       
		Mivel B és C minden eleme megegyezik az A elemeivel, ezért B = C
[bookmark: _Toc408940372]

b) Mátrixok inverze: 
Csak négyzetes mátrixok egy csoportjának van a szorzásra inverze. 
A reguláris mátrixoknak van, a szinguláris mátrixoknak pedig nincs inverze.
Tétel: Ha létezik inverz, akkor az egyértelmű.
Bizonyítás: TFH: létezik mindkét oldali inverz, méghozzá:
			-1 *    =      és     *  *  =  
Ekkor -1 = -1  *    = -1  * ( *  *) = (-1  *  ) *  * =   *  * =  *
Megjegyzés: Ha egy művelet asszociatív, akkor az inverze egyértelmű (ha létezik).
· Inverz mátrix tulajdonságai: 
· (-1) -1 =  
Bizonyítás: (-1) -1=(-1)-1* =(-1)-1(-1 *  )= ((-1)-1-1) *  = *  =
· ()-1 = -1-1 
Bizonyítás: ()*(-1-1)=( *-1)-1=()-1=-1=
(-1-1) tehát inverze ()-nek
· Mátrix invertálás menete:
· Gauss-Jordan eliminációval:

· Az egyenlet bal oldalán az elimináció előtti, a jobb oldalán pedig az elimináció utáni mátrix látható, és (bik) az (aik) inverz mátrixa.
· Ha a Gauss-Jordan eliminációval nem állítható elő egységmátrix az elválasztó vonal bal oldalán, akkor az inverz nem létezik.
Bizonyítás: (Az inverz előállítható ilyen módszerrel)
 *  -1  =   felírható a következő alakban
 
Ez az egyenlet pedig felbontható n db egyenletrendszerre. Például:
  vagy 
Az így képzett egyenletrendszereket megoldhatjuk külön-külön Gauss-Jordan eliminációval, de, mivel a bal oldalon mindig ugyanaz az  mátrix szerepel, tehát ugyanazokat a lépéseket fogjuk végrehajtani mindegyik elimináció során, célszerű a jobb oldalon az összes oszlopon egyszerre elvégezni az adott műveleteket. 
· Determinánssal: -1 =   adj()
· Adjungált mátrix: adj(), vagyis minden elem helyébe az aldeterminánst írjuk, majd az így kapott mátrixot transzponáljuk.
· Ha det() = 0, akkor az inverz nem létezik.
Bizonyítás: 
I. Bizonyítsuk be a következő egyenlet helyességét:  * adj() = det() * n

Bizonyítás: 
· a szorzat képlete tetszőleges elemre: 
· Ha i = j, akkor a kifejtési tétel szerint: 
· Ha i ≠ j, akkor a ferde kifejtési tétel szerint: 
II. Innen egyenletrendezéssel bizonyítható a tétel:
 * adj() = det() * n = n * det()   |a skalárral szorzás kommutatív
 * adj() = n * det()    |szorozzuk meg mindkét oldat balról -1-zel
-1 *  * adj() = -1 *  n * det()
n  * adj() = -1 * det()  | elosztjuk mindét oldalt det()-val
 adj() = -1
c) Speciális négyzetes mátrixok: 
· Permutáló mátrix:
Olyan mátrix melynek minden sora és minden oszlopa pontosan egy egyest tartalmaz, a többi nulla (Lényegében olyan egységmátrix, melynek oszlopait/sorait megcseréltük).
· Tetszőleges négyzetes mátrixot balról permutáló mátrixszal szorozva az eredeti mátrix sorai ugyanúgy cserélődnek, ahogy a permutáló mátrix állítható elő az egységmátrixból. Jobbról szorzásnál az oszlopok cserélődnek ugyanilyen módon.
· Pl: 
· Pl: 


· Ortogonális mátix:  * T = 
Tétel:  ortogonális ⟺ T = -1 Bizonyítás: Definícióból következik
· Givens mátrixok:
	
	
	

	x tengely körül
	y tengely körül
	z tengely körül

	térben forgatja az oszlopvektort, ha balról szorzod vele.


· Egyéb:
· Idempotens (2 = )  T, – , és  *  (ha  *  =  * ) is idempotens
· Nilpotens: 2 = 
· Unipotens: 2 = 
d) Megjegyzések: 
· Mátrixokra nem igaz, ami a valós számok esetében az egyenletrendezésnél rendkívül hasznos volt: két mátrix (szám) szorzata akkor és csak akkor nulla, ha az egyik szorzótényező nullmátrix (nulla). 
· Viszont az a mátrixokra is igaz, hogy egy tetszőleges mátrixot nullmátrixszal szorozva nullmátrixot kapunk.
· Az sem igaz, hogy ha A * C = B * C, akkor A = B (kivéve, ha C reguláris)
3. [bookmark: _Toc408940373]Hatványozás: 
· Csak négyzetes mátrixokra értelmezhető.
· 0 = 
· k =  *  *  *… *   k db (k>0 és k∈N)
· k * m = k+m
· (k)r = k*m
[bookmark: _Toc408940374]Mátrix-függvények:
4. [bookmark: _Toc408940375]Skalárral szorzás: 
c *   =  ⟺ 
· Tulajdonságok: (Bizonyítás: általános alakban leírva könnyen levezethetőek)
a) Egység: 1*  =  * 1 =  
b) bármelyik oldalról szorozhatunk skalárral: c *  =  * c : R
c) Vegyes asszociativitás:  ) )
d) Vegyes disztributivitás:     +  
( + ) =  *  +  *   
[bookmark: _Toc408940376]

5. Transzponálás (főátlóra tükrözés):
T =  ⟺ ,
ahol  mátrixot 0 elemek hozzáadásával négyzetes mátrixszá egészítettük ki.
· Transzponálás tulajdonságai:
a) (  + )T=T + T
Bizonyítás: 
(  + )T = 
T + T
b) (  * )T=T * T
Bizonyítás:
THF: T és T
(  * )T 
T * T=
c) (T) -1 =  (-1) T 
Bizonyítás: (??)
· Speciális négyzetes mátrixok:
a) Szimmetrikus mátrix:  = T
b) Ferdén szimmetrikus /antiszimmetrikus mátrix:  = -T
Tétel: Minden  ∈ Rn x n felírható egy szimmetrikus és egy antiszimmetrikus mátrix összegeként.
	Bizonyítás: legyen  ∈ Rn x n tetszőleges.
	Ekkor   ( + T) szimmetrikus, mivel 
( + T) T=(T+ (T) T) =(T+ )=( + T), és
		  ( - T) antiszimmetrikus, mivel 
( - T) T=(T+ (T) T) =( + T) = -( - T)
Így tehát  valóban előállítható egy szimmetrikus és egy antiszimmetrikus mátrix összegeként, ugyanis:
 =  +  =  ( + T) + ( - T)=  + T +  - T=   +  =
Megjegyzések:
1. A mátrixok az összeadásra és a skalárral szorzásra vektorteret alkotnak.
2. Négyzetes mátrixok összeadásra és mátrix-szorzásra gyűrűt alkotnak.
3. Ha egy művelet asszociatív, akkor az inverze egyértelmű.
[bookmark: _Toc408940377]Determináns:
[bookmark: _Toc408940378]Definíció: n-edrendű determináns:
1) Egy n x n-es, valós számokból álló táblázat, melyhez egy számot rendelünk. 
2) Egy mátrixhoz rendelt szám.
3) Maga a hozzárendelés.
Jele: det() 
Definíció:  ∈ Rn x n   eleméhez tartozó minormátrix: az az (n-1)-edrendű mátrix, melyet úgy kapunk, hogy -ból elhagyjuk annak i sorát és k oszlopát.
			Jele: ik
Definíció:  elem aldeterminánsa: elemhez tartozó minormátrix determinánsa, melyet a sakktábla-szabály szerint látunk el előjellel. Jele: Dik
Sakktábla-szabály: egy kiválasztott elemhez tartozó aldeterminánst aszerint látjuk el előjellel, hogy a kiválasztott elem helyének az alábbi táblázatban megfelelő előjelet választjuk.
	Másképp:  elem aldeterminánsának az előjele: 
Determináns kiszámítása:
a) Elsőrendű determináns értéke önmaga: 
b) N-edrendű determináns: 
· Kiválasztunk egy tetszőleges elemet  és eszerint fejtjük ki
· Eldöntjük, hogy sor vagy oszlop szerint fejtjük ki
· Sor szerint:

· Vagyis a kiválasztott elem sorából minden elemet összeszorozzuk előjeles aldeterminánsával, majd a szorzatokat összegezzük.
· Oszlop szerint:

Megjegyzés: Bár a szabály alapján is kiszámolható a másodrendű determináns, a gyorsabb számolás érdekében szokás a másodrendű determináns kiszámítási módszerét is külön definiálni: 
A főátlóbeli elemek szorzatából kivonjuk a mellékátlóbeli elemek szorzatát.
[bookmark: _Toc408940379]

Kifejtési tétel: a determináns tetszőleges oszlop illetve sor szerint kifejtve egyértelmű (ugyanazt az értéket kapjuk).
Bizonyítás: 
I. Lemma:  Vegyük A mátrix aik-hoz tartozó minormátrixának (Aik) alj eleméhez tartozó minormátrixát és jelöljük (Aik)lj-vel. Ugyanilyen módon értelmezhetjük (Alj)ik mátrixot is. Ekkor (Aik)lj = (Alj)ik.
Bizonyítás: Az egymás után törölt sorok és oszlopok egyszerre is törölhetők.
II. n x n-es mátrixot bármely sora szerint kifejtve ugyanazt a számot kapjuk.
Bizonyítás: Teljes indukcióval.
	 n=1: Igaz. Bizonyítás: triviális
	    n=2: Igaz.
		Bizonyítás:  első sor szerint kifejtve: 
második sor szerint: 
 Feltesszük, hogy n-re igaz.
 Bizonyítjuk, hogy n+1-re igaz,(hogy (n+1)x(n+1)-es determináns bármely sora szerint kifejtve ugyanazt a számot kapjuk):
· Próbáljuk bebizonyítani, hogy egy tetszőleges  tag együtthatója ugyanannyi lesz i és j sor szerint kifejtve. 
· i szerint kifejtve:
· 
· az  tagot a  tag kibontásából fogjuk megkapni
· mivel D (n+1)x(n+1)-es determináns,  n x n-es aldetermináns
· az indukciós feltevés alapján -t bármely sora szerint kifejtve ugyanazt a számot fogjuk kapni.
FONTOS: Mivel minormátrix képzésekor törlünk egy sort és egy oszlopot, nem mindegy, hogy a törölt sor/oszlop előtti vagy utáni elem minormátrixát vizsgáljuk, mivel a törlés miatt az oszlopok és sorok elcsúsznak így változik az aldetermináns előjele. A bizonyításban i,j,k,l az eredeti mátrix számozása szerinti.
· Ha i > j, akkor az eredeti mátrix j sora az aldetermináns j sorának megfelel:
· Ha l < k, akkor l a törölt oszlop előtt van, tehát az aldetermináns l oszlopa az eredeti determináns l oszlopával megegyező, vagyis:

 =

vagyis az  tag együtthatója:
· Ha l < k, akkor l a törölt oszlop után van, tehát az aldetermináns l oszlopa „elcsúszott” eggyel az előző esethez képest és ezért az  tag együtthatójának előjele az ellentettjére változik a sakktábla-szabály szerint:

· Ha i < j, akkor az eredeti mátrix j sora az aldeterminánsban „elcsúszik”, így az az  tag együtthatójának előjele ellentettjére változik:
· l < k: 
· l > k: 
· j szerint kifejtve:
· 
· az  tagot a  tag kibontásából fogjuk megkapni
· Az előző pontban tárgyalt lépéseket végigjárva a következő eredményt kapjuk az  tag együtthatójának:
· Ha i > j, akkor:
· l < k: 
· l < k: 
· Ha i < j, akkor:
· l < k: 
· l > k: 
· Mivel a lemmából tudjuk, hogy , ezért az i és j szerinti kifejtést összevetve megállapíthatjuk, hogy tetszőleges  tag együtthatója megegyezik.
· Ekkor tehát az összes tag együtthatója és vele együtt a tagok összege is ugyanannyi lesz, mivel az összes tag megfelel ennek az általános tagnak. 
· Ebből következik, hogy a determináns értéke is ugyanannyi, akár i, akár j sor szerint fejtjük ki. 
III. n x n-es mátrixot bármely sora szerint kifejtve ugyanazt a számot kapjuk.
Bizonyítás: A II. pont bizonyításával analóg módon bizonyítható.
IV. Sor és oszlop szerint kifejtve ugyanazt a számot kapjuk.
Bizonyítás: Látható, hogy a II. és III. pontban is az  tetszőleges tag együtthatóját vizsgáltuk, és ez mindkét esetben megegyezett. 
Megjegyzés: A determináns értékét Gauss eliminációval is kiszámolhatjuk úgy, hogy az elimináció során nem végzünk sorcserét és a sorokat sem osztjuk le a vezérelemmel (tehát a főátlóban nem csak egyesek szerepelhetnek), és a Gauss elimináció utáni felső háromszögmátrix főátlóbeli elemeit összeszorozzuk. Ez a módszer számítástechnikában gyakran használt, mivel nagyságrendekkel gyorsabb, mint a kifejtéses. 
Megjegyzés: A determináns értékét úgy is kiszámolhatjuk, hogy a mátrix minden sorából és oszlopából pontosan egy elemet választunk, és ezeket összeszorozzuk. Ezt minden lehetséges módon elvégezzük, így n! db szorzatot kapunk. E szorzatok közül – előjellel látjuk el azokat, melyek a sorindexek természetes sorrendjét követő felírásban az oszlopindexek permutációja páratlan, egyébként + előjelet kap. (Vagyis, ha a sorindex szerint növekvő sorrendbe állítjuk a kiválasztott elemeket, akkor páros vagy páratlan számú szomszédok közti cserével rendezhetjük őket az oszlopindexek szerinti sorrendbe.) Az így kapott előjeles szorzatokat aztán összegezzük, és így megkapjuk a determináns értékét.
[bookmark: _Toc408940380]

Ferde kifejtés tétele: Ha a determináns egyik sorának elemeit rendre egy másik sor elemeihez tartozó (előjeles) aldeterminánssal szorozzuk meg, majd ezeket a szorzatokat összeadjuk, akkor a kapott összeg 0 lesz:
Bizonyítás: Teljes indukcióval.
 n=2: Igaz.
	Bizonyítás:   
n=3: Igaz.
	Bizonyítás:   ,
ugyanis , 
mivel a fenti determináns két sora megegyezik, így az értéke biztos 0.
 Feltesszük, hogy n-re igaz.
 Bizonyítjuk, hogy n+1-re igaz: n=3 alapján.
[bookmark: _Toc408940381]Determináns tulajdonságai:
1. Ha a determináns egy sorát λ-val megszorozzuk, akkor a determináns értéke λ-szorozásra változik.
Bizonyítás: 
Fejtsük ki a determinánst a λ-val megszorzott sor szerint:
,
.
2. Ha a determináns i-dik sorának minden eleme egy kéttagú összeg, akkor két olyan determináns összegére bontható, hogy az első i-dik sorában rendre az összeg egyik tagjai, a második i-dik sorában pedig rendre az összeg másik tagjai szerepeljenek, a többi elem pedig mindkét mátrix esetében az eredeti mátrix elemeivel egyezik meg.
Másképp: Ha a determináns i-dik sorának minden eleme egy kéttagú összeg, akkor felbontható két mátrix összegére az alábbi módon:

Bizonyítás: 
Fejtsük ki a determinánst az i-dik sor szerint:
.
3. Ha egy determináns egy sorának minden eleme nulla, akkor a determináns értéke is nulla.
1. Bizonyítás: 
Fejtsük ki a determinánst a csupa nullát tartalmazó sor szerint:
.
2. Bizonyítás: 
Felfoghatjuk úgy is, hogy a mátrix i-dik sorát megszoroztuk nullával, ekkor:
, ami mindenképp nullával egyenlő


4. Ha egy determináns két sorát felcseréljük, akkor a determináns értéke a (-1)-szeresére változik.
Bizonyítás: 
I. Először A mátrix két szomszédos sorának cseréjét vizsgáljuk. TFH az i-dik sort cseréltük ki az (i+1)-dikkel és a csere utáni mátrix B. 
· A mátrix i-dik sora szerint kifejtve: ,
· B mátrix (i+1)-dik sora szerint kifejtve: , ugyanis a sakktábla szabály miatt a szomszédos sorokban az aldeterminánsok előjele éppen az ellenkezője egymásnak.
· Ebből következik, hogy det(A)=  det(B)
II. Két nem szomszédos sor esetén k sor található a cserélendő sorok közt.
· A két sor közül a fentebbi (k+1) db szomszédos sorok közti cserével juttatható a másik sor alá. A másik pedig k db cserével vihető az első helyére.
· A csere során tehát (k+k+1) szomszédos sorok közti cserét végeztünk.
· Ezért a determináns értéke (-1)2k+1 = (-1)-szeresére változik.
5. Ha egy determináns két sora megegyezik, akkor a determináns értéke nulla.
Bizonyítás: 
Cseréljük meg a két ugyanolyan elemeket tartalmazó sort. Ekkor a determináns értékének egyrészről a (-1)-szeresére kellene változnia, másrészről viszont maga a táblázat nem változott a csere által, így a determináns értékének sem szabad változnia. Ez akkor és csak akkor lehetséges, ha D = 0.
6. Ha egy determináns egyik sorához hozzáadjuk egy másik λ-szorosát, akkor a determináns értéke nem változik.
Bizonyítás: Dλ =0

I. 2. tulajdonság alapján:

II. 1. és 5. tulajdonság:
7. det(A)=det(AT)
Bizonyítás: 
A kifejtési tétel szerint a determináns sor és oszlop szerint is kifejthető. Fejtsük ki A-t az i-dik sora szerint, AT-t pedig i-dik oszlopa szerint. Ekkor a két egyenlet megegyezik.
8. Az 1-7 tulajdonság mindegyike igaz oszlopokra is.
Bizonyítás: 
A kifejtési tétel szerint a determináns sor és oszlop szerint is kifejthető. Az tulajdonságok oszlopra való bizonyítása analóg az összes eddigire.
[bookmark: _Toc408940382]Speciális determinánsok:
9. Háromszögmátrixok determinánsa: 
	
	

	Alsó háromszögmátrix
	Felső háromszögmátrix


Tétel: Determinánsuk egyenlő a főátlóbeli elemek szorzatával.
Bizonyítás: Felső háromszögmátrixra. Teljes indukcióval.
 n=2: Igaz. Bizonyítás:   
 Feltesszük, hogy n-re igaz.
 Bizonyítjuk, hogy n+1-re igaz:
,
 ahol  n x n-es determináns,
 tehát igaz rá az indukciós feltevés, miszerint értéke a főátlóbeli elemek szorzatával egyenlő.
Megjegyzés: A következő háromszögmátrixok determinánsa egyenlő a mellékátlóbeli elemek és (-1)n szorzatával:,
Következmény: A determináns értéke Gauss-eliminációval is kiszámolható.
10. Blokkmátrixok determinánsa: Egyenlő a blokkok determinánsának az szorzatával.
Pl: 
Megjegyzés: Az állítás természetesen tetszőleges méretű A,B,C determinánsok esetén igaz, és a blokkok száma is közömbös.
[bookmark: _Toc408940383]Vektorok:
[bookmark: _Toc408940384]Vektorgeometria:
[bookmark: _Toc408940385]Definíció: Vektor: irányított szakasz. (nyíllal ábrázoljuk)
Jele: a, a, , ahol A a vektor kezdőpontja, B pedig a végpontja.
Megjegyzés: a vektorgeometriában csak két- és háromdimenziós vektorokat tudunk értelmezni.
Szabad / kötött vektor: Egy vektort szabad vektornak nevezzük, ha a kezdő- és végpontja nem lényleges, hanem hosszával és irányával jellemezzük. Ha fontos a kezdő- és végpontja, akkor kötött vektornak nevezzük.
· A fizikával ellentétben a matematikában (tehát innentől a  továbbiakban) szabad vektorokat használunk.
Definíció: Vektorok által bezárt szög: a két vektort közös kezdőpontja legyen közös. Ekkor a két szakasz által meghatározott kisebbik szög a két vektor bezárt szöge. (0°≤ α ≤ 180°)
· α = 0°  irányuk megegyezik, α = 180°  ellentétes irányúak. 
Vektorok egyenlősége: a = b ⟺ hosszuk és irányuk megegyezik.
Vektorok párhuzamossága: a || b ⟺ irányuk megegyezik vagy ellentétes.
Vektor-függvények és -műveletek:
1. Abszolút érték: (függvény) vektor hossza 
2. [bookmark: _Toc408940386]Összeadás: (művelet)
a) Nyílfolyam módszer: a és b vektorok összegét úgy kapjuk, hogy b vektort eltoljuk önmagával párhuzamosan úgy, hogy kezdőpontja a vektor végpontjával egybeessen. Ekkor a vektor kezdőpontjából b vektor végpontjába mutató vektort nevezzük a két vektor összegének.
b) Paralelogramma módszer: a és b vektorok kezdőpontja egybeesik, akkor összegüket úgy is definiálhatjuk, hogy kettőjük közös kezdőpontjából az általuk meghatározott paralelogramma szemközti csúcsába mutató vektor.
· A vektorok összeadása kommutatív, asszociatív, van egységelem (a nullvektor) és van inverz (ellentett vektor).
Bizonyítás: Rajz alapján.
Definíció: nullvektor: olyan vektor, melynek kezdő- és végpontja egybeesik (tehát hossza nulla) és iránya tetszőleges. (egy ponttal ábrázoljuk)
Jele: 0, 
Az összeadás egységeleme a nullvektor.
Minden vektorral párhuzamosnak, és minden vektorra merőlegesnek tekinthetjük.
Definíció: vektor ellentettje: az a vektor, melynek hossza megegyezik adott vektorral, ám iránya ellentétes azzal.
Jele: -a, -a, , a-1
Az összeadás inverze az ellentett vektor.
3. Kivonás: a és b vektor különbségén azt a vektort értjük, mely a kivonandó vektor végpontjából kisebbítendő vektor végpontjába mutat.
· Az összeadás inverz műveleteként is felfogható.
Bizonyítás: x+b=a  x+b+( b-1)=a+ b-1  x=a+ b-1=a+(-b)=a-b
[bookmark: _Toc408940387]

4. Skalárszoros, skalárra szorzás (vektor számszorosa): (függvény)
Definíció: λ * a : λ ϵN ⟺ a-t λ-szor ismételten összeadjuk.
· Ha λ pozitív, akkor a iránya nem változik, de hossza λ-szorosára nő.
· Ha λ negatív, akkor a iránya ellentettjére változik, és hossza |λ|-szorosára nő.
Definíció kiterjesztése: λ * a : λ ϵR ⟺ a hosszát |λ|-szorosára növeljük, és irányát λ előjele szerint változtatjuk.
Definíció: Egységvektor: olyan vektor, melynek hossza egységnyi (=1). Jele: e, e
Megjegyzés: irányok jellemzésére szoktunk egységvektorokat használni.
Tétel: a vektor ellentettje ⟺ a vektor (-1)-szerese. Bizonyítás: Definíciók alapján.
Tétel: a || b ⟺ ∃ λ ϵR: a = λ b
Bizonyítás:
I. a || b  ∃ λ ϵR: a = λ b
· Ha a és b egyirányúak: 
a=|a|ea és b=|b|eb, ahol ea a-val, eb b-vel párhuzamos egységvektor.
 és ,
ea = eb, mivel hosszuk (=1) egyenlő és azonos az irányuk.
Tehát: , vagyis  és 
· Ha a és b ellentétes irányúak: 
a=|a|ea és b=|b|eb, ahol ea a-val, eb b-vel párhuzamos egységvektor.
 és ,
ea = -eb, mivel hosszuk (=1) egyenlő és ellentétes az irányuk.
Tehát: , vagyis  és 
II. a = λ b  a || b 
· Ekkor a számszoros definíciója szerint azonos vagy ellentétes irányú a két vektor, tehát mindenképpen párhuzamosak.
Számszoros tulajdonságai:
a) 1 a = a 1 = a   Megállapodás szerint.
b) Vegyes asszociativitás: , ahol λ, μ ∈ R
Bizonyítás: a vektor hossza mindkét esetben (μ λ)-szorosára változik, iránya pedig marad, ha mindkettő pozitív vagy mindkettő negatív és ellentettjére vált, ha egyik negatív.
c) Vegyes disztributivitás:  és 
Bizonyítás:
I. 
· Az egyenlet mindkét oldalán a-val párhuzamos vektort kapunk, melyek hossza egyenlő:
·  számszoros definíciója alapján
· Ha (λ + μ) is pozitív: 
· , mivel(λ + μ) pozitív
· , mivel λ, μ és |a| valós számok
· , számszoros definíciója alapján
· Ha (λ + μ) is negatív: 
· , mivel(λ + μ) negatív
· -, szakasz hossza mindig pozitív, és a negatív előjel csak az irányon változtat, a hosszon nem, abszolútérték-jelen belül elhagyható
·   ez igaz, mivel (b + c) egy vektor, vagyis irányított szakasz. Egy szakaszt pedig, ha kettévágok, akkor a két részszakasz hosszának összege megegyezik az eredeti szakasz hosszával.
II. 
· Hasonló háromszögek tétele: |d| = λ |c|d
λ b
λ a
a
b
c

· d = λ c mivel 
· c = a + b és d =  λ a + λ b  λ (a + b)= λ c = d =  λ a + λ b
5. [bookmark: _Toc408940388]Skalárszorzat (belső szorzat/pont szorzat): (függvény)
Definíció: a · b = |a| |b| cos(α), ahol α az a, b vektorok által bezárt szög.
Geometriai jelentés:
a) a · e (|e|=1)  a vektor e vektor egyenesére eső előjeles merőleges vetülete.a

b) Bizonyítás: x = a · e = |a| |e| cos(α) = |a| cos(α) x
e
α

c) a · b  a vektor b vektor egyenesére eső merőleges vetületének |b|-szerese.
Bizonyítás: a · b = |a||b|cos(α) = [|a|cos(α)] |b|=x|b|
Tétel: a · b = 0 ⟺ a ⊥ b
Bizonyítás: 
I. a · b = 0  a ⊥ b
· ha |a|=0 vagy |b|=0, akkor a és b biztos merőleges, mert a nullvektor minden vektorra merőleges.
· ha cos(α)=0  α = 90° (máshol nem veszi fel a cosinus függvény a nullát 0°és 180° közt)  merőlegesek egymásra
II. a ⊥ b  a · b = 0
· α = 90° cos(α)=0  a · b = |a||b|cos(α) = 0
Megjegyzés: Mivel |a||b| minden esetben pozitív, ezért a skalárszorzat előjelét a két vektorok közbezárt szöge fogja meghatározni a következő módon: Ha a és b hegyes szöget zárt közbe, akkor a skalárszorzat pozitív, ha tompát, akkor negatív.


Skalárszorzat tulajdonságai:
a) a · a ≥ 0 és {a · a = 0 ⟺ a = 0} ( a skalárszorzat pozitív definit)
Bizonyítás: a · a = |a|2 cos(α) 
· α=0° cos(α)=1 |a|2 cos(α)= |a|2  ≥ 0   Megjegyzés: |a|2  = a2  
· ha a = 0, akkor |a|2 cos(α) = 0
· ha a · a = 0, akkor a szorzás két tagja merőleges egymásra
· csak a nullvektor lehet merőleges önmagára
b) Szimmetrikus: a · b = b · a
Bizonyítás: a közbezárt szög nem függ a szorzás sorrendjétől 
és |a||b|cos(α)= |b||a|cos(α)
c) Homogén: λ (a · b) = (λ a) · b
Bizonyítás:
· Ha λ = 0: Triviális
· Ha λ > 0:
· λ (a · b) = λ (|a||b|cos(α)) = λ |a||b|cos(α)
· (λ a) · b = |λ a||b|cos(α) = λ |a||b|cos(α)
· Ha λ < 0:
· (λ a) vektor a vektorral ellentétes irányú, ezért, ha a és b közbezárt szöge α, akkor (λ a) és b közbezárt szöge 180°- α 
· cos(180°- α) = -cos(α)
· λ (a · b) = λ (|a||b|cos(α)) = λ |a||b|cos(α)
· (λ a) · b = |λ a||b|cos(180°- α) = -λ |a||b|-cos(α)= λ |a||b|cos(α)
Megjegyzés: szimmetrikusság miatt: λ (a · b) = (λ a) · b = (λ b) · a
d) Lineáris: a ·(b + c) = a · b + a · c
Bizonyítás:
I. e ·(b + c) = e · b + e · c, ahol e vektor a-val párhuzamos egységvektor+
 e • c
 e • (b + c)

e
e
b
c
(b + c)
 e • b

II. a ·(b + c) = a · b + a · c, ahol a = e λ
e ·(b + c) = e · b + e · c    | mindkét oldalt megszorozzuk λ-val
(e λ) ·(b + c) = (e λ) · b + e · c    
Megjegyzés: A skalárszorzat nem asszociatív (nem is értelmezhető az asszociativitás).
[bookmark: _Toc408940389]

6. Vektoriális szorzat (külső szorzat/keresztszorzat): (művelet)
Definíció: a és b vektorok vektoriális szorzatán azt a vektort értjük, melyre igaz:
1) |a x b| = |a| |b| sin(α), ahol α az a, b vektorok által bezárt szög.
2)  a x b vektor iránya mind a-ra, mind b-re merőleges, és jobbrendszert alkot.
a x b = |a| |b| sin(α)  e, ahol |e|=1, e ⊥ a, e ⊥ b és a, b, e jobbrendszert alkotnak.
Definíció: Az a, b, c vektorok jobbrendszert/Jobbsodrású rendszert alkotnak, ha a vektorokat közös kezdőpontból ábrázolva a c vektor irányából nézve az a vektor 180°-nál kisebb forgatással vihető át a b vektor irányába.
Szemléletesen: Ha az a, b, c vektorokat rendre meg tudom feleltetni a jobb kezem hüvelyk, mutató és középső ujjának.
Geometriai jelentése: m

|a x b|

b

a


m = b ·ea=|b|cos(α) paralelogramma magassága
|a x b| = |a| |b| sin(α) = |a| * m paralelogramma területe
Tétel: a x b = 0 ⟺ a || b
Bizonyítás: 
I. a x b = 0  a || b
· ha |a|=0 vagy |b|=0, akkor a és b biztos párhuzamos, mert a nullvektor minden vektorral párhuzamos.
· ha sin(α)=0  α = 0° vagy α = 180° (máshol nem veszi fel a sinus függvény a nullát 0°és 180° közt)  párhuzamosak egymással
II. a || b  a x b = 0
· α = 0° vagy α = 180°  sin(α)=0  a · b = |a||b|sin(α) = 0
Vektoriális szorzat tulajdonságai:
a) Antikommutatív: a x b = -b x a
Bizonyítás: Jobbrendszer követelményeiből fakad.
b) Disztributív összeadásra: 
(a + b) x c = a x c + b + c
a x (b + c) = a x b + a + c
Bizonyítás: Nem kell tudni.
Megjegyzés: A kommutativitás hiánya miatt van szükség két szabályra.
Megjegyzés: A vektoriális szorzás nem asszociatív.
Megjegyzés: Az eddigi vektor-függvényekkel és –műveletekkel ellentétben a vektoriális szorzást csak háromdimenziós vektorokra értelmezzük, nem általánosítjuk az általános vektorokra praktikus alkalmazás hiányában.
[bookmark: _Toc408940390]

7. Vegyes szorzás (külső szorzat/keresztszorzat): (művelet)
Definíció: a, b, c vektorok vegyes szorzatán az  (a x b) · c valós számot értjük.
(a x b) · c = |a| |b||c| sin(α) cos(β) e,
ahol α az a, b vektorok által, β pedig a a x b és c vektorok által bezárt szög.
Geometriai jelentése: 
m = c ·e=|c|cos(α) paralelepipedon magassága
|a x b| = |a| |b| sin(α) = |a| * m paralelogramma területee
b

 β

α

a x b 

a

m

c


|a x b| * m = |a x b| * (c ·e)  paralelepipedon térfogata|a x b|

|a x b|


|a x b| * (c ·e) =|a| |b| sin(α) * |c| cos(α)
A vegyes szorzat [(a x b) · c = |a| |b||c| sin(α) cos(β) e], tehát  a, b, c vektorok által meghatározott paralelepipedon előjeles térfogatát adja meg, ahol e a paralelepipedon térbeli orientációját adja meg.
Megjegyzés: A vektorgeometriában csak síkbeli és térbeli vektorok értelmezhetőek.
[bookmark: _Toc408940391]Vektoralgebra:
[bookmark: _Toc408940392]Síkbeli és térbeli vektorok:
Definíció: Lineáris kombináció: a1, a2, a3, …, an vektorok lineáris kombinációja: 

Síkbeli felbontási tétel: Ha adott a síkban két nem párhuzamos vektor, a és b, akkor bármely azonos síkbeli c vektor előállítható a és b vektorok lineáris kombinációjából. 

Bizonyítás: (Konstruktív)M
b

A c vektor kezdőpontján át húzunk a-val, végpontján át b-vel
párhuzamos egyeneseket. Mivel a és  b nem párhuzamos vektorok, ezért M pontban metszik egymást. c

A
B
a


Továbbá a || és b ||.
Ekkor c a + b
Tétel: Ha a és b nem párhuzamos, akkor a felbontás egyértelmű.
Bizonyítás: (Indirekt): TFH nem egyértelmű, mert létezik kétféle felbontás:
	c = α1 a + β1 b
	kivonjuk egymásból a két egyenletet: 0 = (α1- α2) a + (β1- β2) b

	c = α2 a + β2 b
	


Két vektor összege akkor és csak akkor lehet 0, ha
a) Ellentétes irányúak és egyenlő hosszúak  nem párhuzamosak
b) Mindkettő vektor nullvektor
· a és b közül egyik sem lehet nullvektor, mert akkor párhuzamosak lennének
· a és b együtthatóinak kell tehát nullának lennie, ez csak akkor lehetséges, ha α1 = α2 és β1 = β2. a két felbontás tehát megegyezik egyértelmű
Definíció: a1, a2, a3, …, an vektorokat lineárisan független vektoroknak nevezzük, ha egyik sem írható fel a többi vektor lineáris kombinációjaként.
Definíció: a1, a2, a3, …, an vektorokat lineárisan összefüggő vektoroknak nevezzük, ha valamelyik felírható a többi vektor lineáris kombinációjaként.
Tétel: a1, a2, a3, …, an vektorok pontosan akkor lineárisan függetlenek, ha nem összefüggők.
Megjegyzés: b vektor pontosan akkor független a vektortól, ha egyik sem skalárszorosa a másiknak.
↳ Tétel: Síkban két vektor akkor, és csak akkor lineárisan független, ha nem párhuzamosak.
↳ Tétel: Térben három vektor akkor, és csak akkor lineárisan független, ha nem egysíkúak.
Térbeli felbontási tétel: Ha adott a térben három páronként nem párhuzamos és nem egysíkú vektor, a, b és c, akkor bármely térbeli c vektor előállítható a, b és c lineáris kombinációjából. 

Bizonyítás: (Konstruktív)
c
 
c’
 
a
 
b
d
d’
S
 
S’
 
D
 

T
 
 
V
 
d”

a és b meghatározza az S síkot és az ezzel párhuzamos S’-t, amely d kezdőpontját tartalmazza.
c nem párhuzamos sem a-val, sem b-vel, ezért d végpontjához húzott párhuzamos egyenese D pontban metszi az S’ síkot.
c’ = , d’ = , d” = d’ és d” S síkon van
 c’ = γ c, mivel párhuzamosak
 d” = α a+β b, a síkfelbontási tétel szerint
⟹ d = c’ + d’= c’ + d”= α a + β b + γ c
Tétel: Ha a, b és c nem párhuzamos és nem egysíkú, akkor a felbontás egyértelmű.
Bizonyítás: (Indirekt): TFH nem egyértelmű, mert létezik kétféle felbontás:
	c = α1 a + β1 b+ γ1 c
	kivonjuk egymásból a két egyenletet: 
0 = (α1- α2) a + (β1- β2) b+ (γ1- γ2 ) c

	c = α2 a + β2 b+ γ2 c
	


Három vektor összege akkor és csak akkor lehet 0, ha … (??)
… ezért α1 = α2, β1 = β2 és γ1= γ2 a két felbontás tehát megegyezik egyértelmű
[bookmark: _Toc408940393]Általános vektorok:
Definíció: a1, a2, a3, …, an vektorokat generátorrendszernek nevezzük, ha lineáris kombinációjukból az adott tér összes vektora előállítható.

Definíció: Bázisnak nevezzük azokat a generátorrendszereket, melyeknek a vektorai az adott térben lineárisan függetlenek. A bázis vektorai a bázisvektorok. Jele: b = (b1, b2, b3, …, bn)
Tétel: A felbontás egyértelmű.
Speciális bázisok:
a) Ortogonális bázis: a bázisvektorok páronként merőlegesek.
b) Normált bázis: a bázisvektorok egységvektorok
c) Ortonormált bázis: ortogonális és normált is.
Megjegyzés: Az ortonormált, jobbrendszerű bázisra vonatkoztatott koordináták a vektor Descartes-koordinátái.
Definíció: Legyen a egy adott tér tetszőleges vektora, b pedig adott tér bázisa. Ekkor a vektor előállítható a bázisvektorok lineáris kombinációjából, és a vektor b bázisra vonatkoztatott  koordiátáinak a lineáris kombinációban b1, b2, b3, …, bn vektorok együtthatóit nevezzük.
Tétel: A koordináták egyértelműek. Bizonyítás:  
Definíció: Valamely a vektor (rögzített sorrendű!) b bázisra vonatkoztatott koordináta mátrixán azt az oszlopmátrixot értjük, amely rendre a a vektor b bázisra vonatkoztatott koordinátáit tartalmazza.
	Jele: a = 
	Értelmezése: a  = α1 b1 + α2 b2 + α3 b3 +… αn bn 


[bookmark: _Toc408940394]Számolás koordinátákkal megadott vektorokkal:
1. Abszolút érték: 
2. Összeadás: két vektor összegének koordináta mátrixa megegyezik az összeadandók koordináta mátrixainak mátrix-összeadás szerinti összegével.
Bizonyítás: 
a + b = α1 b1 + α2 b2 + α3 b3 +… αn bn + β 1 b1 + β 2 b2 + β 3 b3 +… β n bn =
= (α1+ β 2)  b1 + (α2 + β 2) b2 +( α3 + β 3) b3 + … + (αn + β n) bn =

3. Számszoros: vektor számszorosának mátrixa megegyezik koordináta mátrixának számszorosával.
Bizonyítás:  a =  (α1 b1 + α2 b2 + α3 b3 +… αn bn) =  α1 b1 +  α2 b2 +  α3 b3 +…  αn bn =

4. Skalárszorzat: két vektor skalárszorzatát koordinátákkal úgy számoljuk, hogy az egymásnak megfelelő koordinátákat összeszorozzuk, majd a szorzatokat összegezzük.

Bizonyítás: a · b = (α1 b1 + α2 b2 + α3 b3 +… αn bn) · (β 1 b1 + β 2 b2 + β 3 b3 +… β n bn) =
kihasználjuk a skalárszorzat homogenitását
= α1 b1 · β 1 b1 + α2 b2 · β 2 b2 + α3 b3 · β 3 b3 +… αn bn · β n bn =
tudván, hogy b1 · b1 =1, b2 · b2 =1, b3 · b3 = 1, stb.
= α1 b1 · β 1 b1 + α2 b2 · β 2 b2 + α3 b3 · β 3 b3 +… αn bn · β n 
Megjegyzés: A koordinátánként való szorzást megoldhatjuk mátrix-szorzással is úgy, hogy az első tagot transzponáljuk, hogy megfelelő formátumú legyen.
Megjegyzés: Skalárszorzat hasznos a fizikában is vektorok felbontásánál.
Megjegyzés: Síkokat meghatározhatunk nomálvektoruk alapján, és skalárszorzattal eldönthetjük egy vektorról, hogy a síkon van-e (ha a skalárszorzat 0, akkor igen). 
(sík egyenlete: Ax + By + Cz = Ax0 + By0 + Cz0 = D, ahol A,B,C a normálvektor koordinátái)
5. Vektoriális szorzat: Koordinátáik alapján két vektor vektoriális szorzata a következőképpen számolható:
a x b 
Bizonyítás: a x b = (α1 i + α2 j + α3 k) x (β 1 i + β 2 j + β 3 k)
kihasználjuk a vektoriális szorzat disztributivitását
α1 i x β 1 i + α2 j x β 1 i + α3 k x β 1 i + α1 i x β 2 j + α2 j x β 2 j +
+ α3 k x β 2 j + α1 i x β 3 k + α2 j x β 3 k + α3 k x β 3 k =
tudván, hogy i · i = 0, j · j = 0, k · k = 0, és 
i · j = k, j · k = i, k · j = i, és
k · j = -i, j · i = -k, i · k = -j,
= α1 i x β 1 i + α2 β 1 -k + α3 β 1 j + α1 β 2 k + α2 j x β 2 j +
+ α3 β 2 -i + α1 β 3 -j + α2 β 3 i + α3 k x β 3 k =
= k (α1 β 2 - α2 β 1) + j (α3 β 1 - α1 β 3) + i (α2 β 3 - α3 β 2) = 
6. Vegyes szorzat: Koordinátáik alapján két vektor vegyes szorzata a következőképpen számolható:
(a x b) · c 
Bizonyítás: 
(a x b) · c 
Ha pedig a fent definiált számítási módot használjuk:
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