DM konzultáció
Rajna Zalán

generátorrendszer, bázis, dimenzió (feladatsor)
Egy kis elmélet (ismétlés):

· Lineáris kombináció: v = α1∙x1+ α2∙x2+... αn∙xn, ahol αi
[image: image1.wmf]Î

R,
vagyis ismét egy vektort kapunk így a vektorok számszorosainak összegéből.
· LÖF (lineárisan összefüggő vektorok): ha 0 = λ1∙x1+λ2∙x2+... λn∙xn igaz, és 
[image: image2.wmf]$

k, hogy λk≠0.
Példa a fenti alapján: 0 = α1∙x1+ α2∙x2+... αn∙xn+α’∙v, ahol ha a fenti lineáris kombinációt tekintjük, akkor látszik, hogy α’ = -1 esetén igaz, vagyis LÖFa definíció alapján. (Nyilván így volt kifejezhető.)
· LFG (lineárisan független vektorok): 0 = λ1∙x1+λ2∙x2+... λn∙xn igaz ACSA ha 
[image: image3.wmf]"

k-ra λk=0,
tehát egyik vektort sem tudjuk a többi lineáris kombinációjaként előállítani.
· Generátorrendszer: g1, g2, ...gk generátorrendszert alkotnak V (pl. n dimenziós) vektortéren, ha

[image: image4.wmf]"

v
[image: image5.wmf]Î

V előállítható v=α1∙g1+ α2∙g2+... αk∙gk lineáris kombinációként.
Tehát látszik, hogy lehetnek LÖF vektorok, valamint az is, hogy „k” nem lehet kisebb, mint „n”.
· Bázis: LFG generátorrendszer → egyértelmű; „k” = „n”; nem fejezhetőek ki egymásból és minden
v 
[image: image6.wmf]Î

V előállítható a lineáris kombinációjával.
· Dimenzió: egy vektortér dimenziója a bázisának elemszáma.
Vagyis a következő összefüggéseket érdemes látni:

LÖF rendszer + v
→ LÖF rendszer
bázis + v
→ LÖF rendszer (nyilván csak akkor, ha v≠0)
generátorrendszer + v
→ LÖF rendszer (nyilván csak akkor biztosan, ha v≠0)
bázis - v
→ LFG renszer
LFG rendszer - v
→ LFG rendszer
Kanonikus bázis (jelölés v[ ]): ahol bi=
[image: image7.wmf]÷
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, vagyis n dimenziós vektortér bázisában i=1, 2, 3,... n. Mindig az i-dik elem 1-es, a többi 0-ás.
i-dik elem. Például két dimenzióban: 
[image: image8.wmf]÷

÷

ø

ö

ç

ç

è

æ

0

1

és 
[image: image9.wmf]÷

÷

ø

ö

ç

ç

è

æ

1

0

.
Feladatok, példák:
1.) a= 
[image: image10.wmf][
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. Ezek a vektorok generátorrendszert alkotnak-e R2-ben?
Ha generátorrendszer, akkor például állítsuk elő a 
[image: image13.wmf][
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 vektort a, b és c lineáris kombinációjaként.
2.) a= 
[image: image14.wmf][
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, b=
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. Ezek a vektorok generátorrendszert alkotnak-e R3-ban?
Ha generátorrendszer, akkor például állítsuk elő a 
[image: image18.wmf][
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 vektort a, b, c és d lineáris kombinációjaként.
3.) Ezek a vektorok LFG rendszert alkotnak?

4.) Bázis-e a, b és c vektor R3-ban?

5.) Generátorrendszer-e b, c és d R3-ban?
6.) A fenti b, c és d vektorok bázist alkotnak R3-ban?
7.) Hány dimenziós az a, b, c, d vektorok által generált altér?
8.) Generátorrendszer-e a következő a, b, c és d vektor R4-ben? a=
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Milyen altérben alkot ez a négy vektor generátorrendszert?
9.) Mennyi az a, b, c, d vektorok által generált altér dimenziója?
10.) Hány dimenziós teret határoznak meg a következő vektorok? 
[image: image23.wmf][
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11.) Maximum másodfokú polinomok terén adjunk meg bázist!
12.) A fenti példában (x-1) és (x+4) bázist alkot a másodfokú polinomok terén?

13.) Adjunk egyszerű példát [b] bázisra a 2x2-es mátrixok terére.

14.) Hány LFG a következő mátrix oszlopvektorai közül? 
[image: image26.wmf]ú
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15.) Hány dimenziós teret generálnak a következő mátrix oszlopvektorai? 
[image: image27.wmf]ú
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16.)* Bizonyítsuk be, hogy a1=
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, valamint b1=
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, b2=
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 által meghatározott A illetve B síkok párhuzamosak!
Plusz feladatok, anyagok:

12. példa: http://www.math.u-szeged.hu/~mmaroti/okt/2009t/linearisalgebra.pdf
3-4.: http://www.stud.u-szeged.hu/Szabo.Tamas.10/linalg/recept.pdf
1., 7.: http://www.math.bme.hu/algebra/a2/2009/fe04_07a2.pdf
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