Diszkrét Matematika I. konzultáció 2010/2011 1. félév
Összeállította: Juhász János, Molekuláris bionika 2. évfolyam

Bázistranszformáció

A kérdés, hogy ha az eddig használt bázisból egy másik bázisra szeretnénk áttérni, akkor hogyan lehet kiszámolni a vektorok új koordinátáit kiszámolni a régi koordináták és az új bázis segítségével.
Pl.:1.a: eredeti bázis: 
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Új bázis: 
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[a]=v, az előzőhöz hasonlóan: v=
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 EMBED Equation.3 [image: image17.wmf]ú
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x és y a koordináták, belőlük áll elő a vektor az adott bázisban ([a]) ez a koordinátás alak, 

(A mátrix a bázistranszformáció mátrixa (mint az eddig tanult transzformációknál, leképezéseknél)).
Lényegében ugyanarról a vektorról beszélünk (a képük fedné egymást, ha egy olyan koordinátarendszerben ábrázolnánk, ahol a bázisvektorok ugyanabban a bázisban vannak felírva (PL.: a kanonikusban)), ezért:  
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 EMBED Equation.3 [image: image21.wmf]ú

û

ù

ê

ë

é

y

x

,  (balról szorzok a
[image: image22.wmf]ú

û

ù

ê

ë

é

2

1

1

3

 inverzével)   
        
[image: image23.wmf]1

2

1

1

3

-

ú

û

ù

ê

ë

é

   
[image: image24.wmf]ú

û

ù

ê

ë

é

1

0

0

1


[image: image25.wmf]]

[

9

9

e

ú

û

ù

ê

ë

é

=
[image: image26.wmf]]

[

a

y

x

ú

û

ù

ê

ë

é

,   ( inverz= (1/Det  A)*Adj A.  Adjungált: minden elemhez hozzárendelem a megfelelő előjeles aldeterminánst és aztán transzponálom.  Speciálisan 2x2-es esetén: 
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az inverz nem létezik ha a determináns 0, ekkor a mátrix által meghatározott egyenletrendszer LÖF, így nem is alkotnak bázist a „bázisvektorok” az adott dimenziós vektortérben.)
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Ellenőrzésül: v=
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[e] 
b: Fordítva is gondolkodhatunk: ha arra vagyunk kíváncsiak, hogy az [a] bázisban megadott vektor koordinátái mik az [e] bázisban, akkor így számolunk: 
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[e] .

Általánosan is elmondható:  E*x[e]= A*x[a]  → x[e]=A*x[a]     → A-1* x[e]= x[a]
(Ha nem az egyik bázisban van megadva a másik (Pl.:mint fentebb a kanonikusban), hanem egy közös 3. bázisban:
B*x[b]= A*x[a]  → x[b]=B-1 *  A*x[a]   ha az x[a] ismert,

                                       A-1*B * x[b]= x[a]  ha az x[b] ismert,)
(Emlékeztetőül: lineáris leképezés (n dimenziós vektortérből k dimenziósba) mátrixa k*n-es típusú és:
A(x)=A*x     A a leképezés mátrixa, A(x) a x képe.

Lineáris transzformációnál a kiindulási és a képtér azonos dimenziójú.)
A leképezés/transzformáció mátrixa a kiindulási tér bázisvektorainak képeit tartalmazza a képtér bázisában felírva.






Bázis: Mint amikor lineáris

csinálunk

Ezek alapján:
 2. a: Mi a b1=
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 bázisban felírt koordinátás alakból az i, j bázisban felírt koordinátás alakba a bázistranszformáció mátrixa? 
x[e]=B*x[b]     (ahogy az ábrán is látszik)  B=
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b: Az i, j- s koordinátás alakból a b1 b2-ős koordinátás alakba áttérés mátrixa?

B-1* x[e]= x[b]  (ábra)  B-1=
[image: image55.wmf]ú

û

ù

ê

ë

é

-

-

-

-

=

ú

û

ù

ê

ë

é

-

-

3

5

2

1

13

1

1

5

2

3

1

.
c: 
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képe [b]-ben?  B-1* x[e]= x[b]  (ábra)  
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3.a: Milyen bázistranszformációs mátrix segítségével adjuk meg a  c1= 
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 bázisban felírt koordinátás alakot a [b]-ben felírt koordinátás alakból (az előző feladat  [b]-je )?  ([e]:=[b])

  C-1=
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b:   
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  C-1*B-1*x[e]=
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c: Mi a b1=
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 bázisban felírt koordinátás alakból az a1=
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 bázisban felírt koordinátás alakba a bázistranszformáció mátrixa?

                                                                     T x=A-1Bx     
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Ábrák:    T-1AS ésS-1AS
(és egyéb lineáris leképezést tartalmazó feladatok) számításának szemléltetésére:
                                  
                                                   

4.a: Mi lesz az 
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vektor képe a kanonikus bázisban, ha a j, k síkra vetítjük és 3-szorosára nyújtjuk j és k irányban is? s1=
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A leképezés mátrixa: A=
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b: Mi lesz az előbbi vektor képe, ha a képtérben a  t[1]= 
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  t[2]= 
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  t[3]= 
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 bázisra térünk át? (T-1AS)
Mivel a képtér legfeljebb 2 dimenziós (a vetítés miatt (T-1AS -nál változhatnak a dimenziószámok, mert nem feltétlenül transzformáció van)), ezért elég a képtérben egy a jk-t kifeszítő 2 elemű 2D-s bázist (nem párhuzamos vektorok) választani és azzal számolni (2db 3 elemű bázis már nem biztos, hogy a jk síkra vetít!). Ilyen az 
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 EMBED Equation.3 [image: image85.wmf]]
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c: Az a, feladat végeredményét megkaphatjuk a TA’x[s]=(A)x[e] képlettel is.  (A’= T-1AS)
5. a: A max másodfokú polinomokra adott egy  leképezés, melynek mátrixa A=
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.  A kiindulási térben a kanonikus bázis érvényes (k1=x2, k2=x, k3=1), a képtérben pedig s1=6, s2=2x+3,  s3=-5x2+x-1. Mi lesz a 3x2-5x+7 polinom képe?
Fontos megvizsgálni, hogy [s] valóban bázis-e, mert ha az egyenletek LÖF rendszert alkotnak akkor a determináns 0, ekkor nem lehet invertálni.  (A)x[s]=S-1Ax[e]
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b: Mi lesz az x[s]-ből (A) x[s]-be történő transzformáció mátrixa, ha a kiindulási térben is áttérünk az [s]-re?  (S-1AS)
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c: Az a, feladat végeredményét megkaphatjuk a S-1A’x[e]=(A)x[s] képlettel is.  (A’= S-1AS)

6. (T-1AS)   Mi a  transzformáció mátrixa x[s]-ből (A) x[t]-be?
S[e]=[s]   S= 
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 ,  A[e]=(A)[e]     A= 
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  A’= T-1AS  
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7. (S-1AS) Mi a transzformáció mátrixa x[s]-ből (A) x[s]-be?
S[e]=[s]     S=
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         ,  A[e]=(A)[e]     A= 
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A’= S-1AS  
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Diagonalizálás

Egy mátrix diagonalizálható ha hasonló egy diagonális mátrixhoz.
A S-1AS jelentősége: Ha a kiindulási és a képtérben egyaránt a sajátvektorok alkotta bázisra térünk át (S) akkor a transzformáció mátrixa (A) diagonális lesz ebben a bázisban (a főátlón kívül minden elem 0), és a főátló elemei a megfelelő sajátértékek (feltéve, hogy a sajátvektorok bázist alkotnak).

Ekkor: D=diag(A)= S-1AS,   tehát  A= SDS-1
A sajátvektorok alkotta bázisban könnyen lehet mátrixot hatványozni:
An =AAA…= SDS-1 SDS-1 SDS-1…= SDnS-1            (S-1S=E)
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 EMBED Equation.3 [image: image99.wmf]ú

û

ù

ê

ë

é

2

1

0

0

sv

sv

…=
[image: image100.wmf]ú

û

ù

ê

ë

é

2

1

0

0

n

n

sv

sv


Számítsuk ki (okosan): 1. A3= 
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Sajátértékek meghatározása: 
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  x1=2/3p  ,x2=p   
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  x1=-1/2q  ,x2=q   
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Ha p=q=6, akkor S=[sv1  sv2]= 
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D=diag(A)= S-1AS =  
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A3 = SD3S-1   =
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(Természetesen A-t 3-szor összeszorozva is ezt az eredményt kapjuk.  
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2. A5= 
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Sajátértékek meghatározása: 
[image: image124.wmf]0

1

0

3

2

=

-

-

l

l

 , 
[image: image125.wmf]l

1=2, 
[image: image126.wmf]l

2=1,


[image: image127.wmf]l

1=2,   
[image: image128.wmf]ú

û

ù

ê

ë

é

®

ú

û

ù

ê

ë

é

-

0

0

0

0

1

0

0

0

1

0

3

0

  x1=p  ,x2=0   
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Ha p=q=1, akkor S=[sv1  sv2]= 
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D=diag(A)= S-1AS =  
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A5 = SD5S-1   =
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Bázis: Mint amikor lineáris transzformációt csinálunk








vektorok: koordinátás alak pont fordítva, mivel : 


 E*x[e]= B*x[b]  →  x[e]=B*x[b]     → B-1* x[e]= x[b]


(B a bázistranszformáció mátrixa b bázisból a kanonikusba, a  B-1 a másik irányba történő bázistranszformáció mátrixa.)
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