Diszkrét Matematika I. feladatok:

 bázistranszformáció, diagonalizálás 

Összeállította: Juhász János, Molekuláris bionika 2. évfolyam (2010/2011 1. félév)
Bázistranszformáció

1.a: eredeti bázis: 
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[a]=v, x=?, y=?
b:  eredeti bázis: 
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[a]=v, a=?, b=?
2. a: Mi a b1=
[image: image13.wmf]]
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  , b2=
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 bázisban felírt koordinátás alakból az i, j bázisban felírt koordinátás alakba a bázistranszformáció mátrixa? 

b: Az i, j- s koordinátás alakból a b1 b2-ős koordinátás alakba áttérés mátrixa?

c: 
[image: image15.wmf]]
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képe [b]-ben?  

3.a: Milyen bázistranszformációs mátrix segítségével adjuk meg a  c1= 
[image: image16.wmf]]
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 c2= 
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 bázisban felírt koordinátás alakot a [b]-ben felírt koordinátás alakból (az előző feladat  [b]-je )?  ([e]:=[b])

b:   
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képe [c]-ben? 

c: Mi a b1=
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  , b2=
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 bázisban felírt koordinátás alakból az a1=
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, a2=
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 bázisban felírt koordinátás alakba a bázistranszformáció mátrixa?

4. Mi a transzformáció mátrixa, ha  A= [image: image24.png]


  B=[image: image26.png]
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    ha:
a:  x[a]  alakból szeretnénk megkapni az  x[b]  alakot ?
b:  x[b]  alakból szeretnénk megkapni az  x[a]  alakot ?

5.a:  Mi lesz az 
[image: image29.wmf]]
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vektor képe a kanonikus bázisban, ha a j, k síkra vetítjük és 3-szorosára nyújtjuk j és k irányban is? s1=
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  s2=
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  s3=
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b: Mi lesz az előbbi vektor képe, ha a képtérben a  t[1]= 
[image: image33.wmf]]
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  t[2]= 
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  t[3]= 
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 bázisra térünk át?
6.a:  A max másodfokú polinomokra adott egy  leképezés, melynek mátrixa A=
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.  A kiindulási térben a kanonikus bázis érvényes (k1=x2, k2=x, k3=1), a képtérben pedig s1=6, s2=2x+3,  s3=-5x2+x-1. Mi lesz a 3x2-5x+7 polinom képe?

b:  Mi lesz az x[s]-ből (A) x[s]-be történő transzformáció mátrixa, ha a kiindulási térben is áttérünk az [s]-re?
7.:  Mi a  transzformáció mátrixa x[s]-ből (A) x[t]-be?

S[e]=[s]   S= 
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 ,  A[e]=(A)[e]     A= 
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8.a:  Mi a transzformáció mátrixa x[s]-ből (A) x[s]-be?

S[e]=[s]     S=
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ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

2

1

1

1

1

1

0

0

1

         ,  A[e]=(A)[e]     A= 
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b: Ha x koordinátái az [a]-ra vonatkoztatva [image: image43.png]


 , akkor mik lesznek (A)x koordinátái az [e]-re vonatkoztatva?
c: Ha y[e]=[image: image45.png]


[image: image47.png]B



, akkor (A) y[a]=?
források: PPKE wiki:

1.b, 4., 7., 8.: konzultáció 2009 ;

 1.a, 2., 3., 5., 6.: konzultáció 2010, Juhász János.

Diagonalizálás
1. Diagonalizáld az alábbi mátrixokat (ha lehet őket egyáltalán)!
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2. Adja meg az alábbi mátrixok sajátértékeit, sajátvektorait,és diagonalizálja őket.

a:

[image: image54.png]


 

b:

[image: image55.png]_ {14 -15
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c: 
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3.Diagonalizáld: 
a: 

        [image: image57.png]= 7l




b:
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4.a: Diagonalizáld:

A=
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b:  Diagonalizálható-e az alábbi mátrix? Ha igen, adja meg a hozzá hasonló diagonális mátrixot!

A=
[image: image60.wmf]ú
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c: Diagonalizálja a következő mátrixot: 



d:  

[image: image61.png]



e: 
[image: image62.png]



5.: 

a:  A3= 
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A3=?
b:  B5= 
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B5=?
c: 
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 B3=A ,  B=?
d: Diagonalizálás segítségével  számítsa ki az A mátrix harmadik hatványát! 
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források:  PPKE wiki:
1. : szigorlati példafeladatok 2010. Juhász János
2.: konzultáció, Andrási Zoltán

3.:  2008. Gáspár Nándor 

4.: 2008. Bércesné Novák Ágnes

5.a: konzultáció 2010. Juhász János, b: konzultáció 2009. Lakatos Eszter, c, d: 2008. Bércesné Novák Ágnes
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