Kvadratikus alakok diagonalizálása: Főtengely tétel 

Definíció: Legyen a 
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vektortér a valós test felett. Az 
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 leképzést bilineáris függvénynek nevezzük, ha mindkét változójában lineáris. 
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 vektorpárhoz egyértelműen hozzárendel egy valós számot amit 
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 EMBED Equation.3  [image: image6.wmf])
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Példa: 

1. Tekintsük a V=R3 vektorteret. 
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, ahol 
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 a jól ismert skalárszorzat.

2. Legyen V=R, és 
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Feladat: Bizonyítsa be, hogy a fenti példákban definiált függvények valóban bilineárisak!

Mivel a bilineáris függvény vektorpárokhoz rendel valós számot, és a vektorok felírhatók a bázisvektorok lineáris kombinációjával, nem meglepő, hogy a bilineáris függvény is reprezentálható mátrix segítségével.  

Definíció: Az 
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bilineáris függvénynek a 
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 bázis szerinti 
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 mátrixán azt az  
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A bilineáris függvény mátrixa pontosan ugyanazt a szerepet játssza, mint a lineáris leképezéseké, segítségével a függvényérték egyszerű mátrix szorzással számítható.

Tétel: Ha 
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 bilineáris függvény, akkor 
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a bilineáris függvény mátrixa.

Bizonyítás:

Ha 


[image: image28.wmf]n

n

x

x

x

b

...

b

b

x

2

2

1

1

+

+

+

=

,  és 


[image: image29.wmf]n

n

y

y

y

b

...

b

b

y

2

2

1

1

+

+

+

=

, ezeket a behelyettesítve és alkalmazva a bilináris tulajdonságokat:
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Tétel: Rögzített bázis mellett kölcsönösen egyértelmű megfeleltetés áll fenn a 
[image: image31.wmf]V

 n dimenziós vektortéren értelmezett bilineáris függvények és az 
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-es valós mátrixok között. 
A szimmetrikus bilineáris függvények igen fontos szerepet játszanak, ugyanis ezek mátrixai ortogonálisan diagonalizálhatók. 

Definíció: Az 
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 bilineáris függvény szimmetrikus, ha a
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Az Olvasóra bízzuk a következő tétel bizonyítását.

Tétel: Az 
[image: image35.wmf]2
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 bilineáris függvény akkor és csak akkor szimmetrikus, ha a mátrixa szimmetrikus.
Definíció: Az 
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 bilineáris függvényhez tartozó 
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  függvényt az 
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kvadratikus alakjának nevezzük.

Mivel a bilineáris függvények és mátrixaik között rögzített bázis esetén egy-egy értelmű megfeleltetés van, a szimmetrikus mátrixok és a kvadratikus alakok közt is egy-egyértelmű a megfeleltetés.  Ezért a kvadratikus alakot a következőképpen is fel lehet írni:
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 szimmetrikus mátrix az L2  bilineáris függvény mátrixa  a megfelelő helyettesítési értékekkel.

Bebizonyítható, hogy minden 
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 szimmetrikus mátrixnak létezik sajátvektorokból álló bázisa. Ezért e mátrixok diagonalizálhatók. Bizonyítani fogjuk majd azt is, hogy szimmetrikus mátrix különböző sajátértékekhez tartozó  sajátvektorai merőlegesek. Ezért az egységnyi sajátvektorokból álló bázis 
[image: image43.wmf]S

áttérési mátrixa, melynek oszlopai ezek a sajátvektorok, ortogonális. 

Emlékeztető: A G mátrix ortogonális, ha G.GT=E, ahol E a megfelelő típusú egységmátrix. Másképpen: A G mátrix ortogonális, ha GT=G-1. ( G transzponáltja az inverze G-nek)

Definíció: Az 
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 mátrix  ortogonálisan diagonalizálható, ha 
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ortogonális, 
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 diagonális mátrix.

Kvadratikus alak diagonalizálása

A kvadratikus alak diagonalizálásához az eredeti 
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 mátrixot fejezzük ki a fenti képletből.
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, pontosabban a kvadratikus alak mátrixát 
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-val jelölve: 
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. A bázistranszformáció képletét alkalmazva (
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 helyett most u-t használunk, ugyanis 
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 koordinátáit szokatlanul két alsó index segítségével tudnánk csak jelölni. ): 
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Ezzel a kvadratikus alak a következő formát ölti (a jegyzetben ez sajtóhibás!):
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ahol 
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-k a 
[image: image58.wmf]Q

szimmetrikus mátrix sajátértékei, az áttérési S mátrix oszlopai pedig a sajátvektorai, 
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az u i. koordinátája.  

E fenti meggondolással bizonyítottuk a mérnöki alkalmazásokban (mechanika, adatok elemzése) elkerülhetetlen ún. Főtengely tételt.

FŐTENGELY tétel: A 
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 kvadratikus alakhoz tekintsük az S ortogonális transzformációt, amelynek 
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   mátrixában az oszlopok a Q szimmetrikus mátrix ortonormált sajátvektorai.  Áttérve ezen ortonormált sajátvektorok bázisára, vagyis alkalmazva az 

  x=
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u koordináta transzformációt, a Q kvadratikus alak a következőképpen írható:  
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,  ahol 
[image: image64.wmf]i

l

-k az A mátrix sajátértékei. Ezt a transzformációt főtengely transzformációnak nevezzük. 

Két dimenziós esetben ez a 
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 egyenlet egy ellipszist vagy egy hiperbolát határoz meg, egy olyan koordináta rendszerben, melynek origója a fókuszokat összekötő szakasz felezőpontja és a tengelyeik valamekkora szöget zárnak be. Ezek a tengelyek az alakzat szimmetria tengelyei, amelyeket főtengelyeknek is szokás nevezni. Ez a tétel elnevezésének oka.  

Megjegyzés: A főtengely transzformációval a sajátvektorok bázisába térünk át. A főtengelyek ezek szerint ezek a sajátvektorok. 

Definíció: A 
[image: image66.wmf]Ax
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 kvadratikus alak A (Tn x nszimmetrikus mátrixának n különböző sajátértékéhez tartozó (saját)altereit a Q kvadratikus alak főtengelyeinek nevezzük. Két dimenzióban a megfelelő kúpszelet szimmetria tengelyei  a főtengelyek.  

 A kúpszeletek definíciói, osztályozásuk és fontosabb tulajdonságai a 

http://digitus.itk.ppke.hu/~b_novak/dmat/kupszeletek.doc
kiegészítő fejezetben találhatók.

Az ábrán egy ellipszis kis, és nagy tengelyei láthatók. Az ortogonális transzformációval a sajátvektorok koordináta rendszerére térünk át (jobboldali ábra).  


[image: image67]
A következőkben a matematikai analízisben is fontos fogalmakat vezetünk be. a kvadratikus alakok pl. a többváltozós függvények szélsőérték számításban alkalmazhatók. 
Definíció:

A Q kvadratikus alak pozitív definit, ha minden x(0  helyettesítésre Q>0.

A Q kvadratikus alak pozitív szemidefinit, ha minden x-re Q(0.

A  Q  kvadratikus alak indefinit, ha mind pozitív, mind negatív értékeket is felvesz.

Feladat: Fogalmazza meg a fenti definíció mintájára, mikor mondjuk, hogy a Q kvadratikus alak negatív definit, illetve negatív szemidefinit? 

Az n x n -es Q mátrix pozitív definit, ha az általa meghatározott kvadratikus alak pozitív definit.
Feladat: Fogalmazza meg, mikor mondjuk, hogy a Q mátrix  negatív definit, illetve negatív szemidefinit? 

Tétel: 

Az n x n es Q mátrix akkor és a csak akkor  pozitív definit, ha minden sajátértéke pozitív.

Az n x n es Q mátrix akkor és a csak akkor  pozitív szemidefinit, ha minden sajátértéke pozitív vagy nulla.

Bizonyítás: A 
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=

=

=

i

i

i

T

T

u

u

D

u

x

Q

x

Q

2

l

 összefüggésből az állítás következik. 
Feladat: 

Fogalmazzon meg a fentivel analóg tételt négyzetes mátrix negatív definitségére vonatkozóan!

Tétel: 

Q akkor és csak akkor pozitív definit, ha a bal felső négyzetes mátrixok aldeterminánsai mind pozitívak. (bizonyítás nélkül)

Spektrál tétel: Valamely négyzetes mátrix akkor és csak akkor diagonalizálható ortogonálisan, ha szimmetrikus.
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