Lineáris egyenletrendszerek megoldási módjai
lineáris= elsőfokú, az ismeretlenek (xi-k) elsőfokon, szerepelnek (vagy nem szerepelnek). 

a11x1+a12x2+…a1nxn=b1

a21x1+a22x2+…a2nxn=b2

…

am1x1+am2x2+…amnxn=b3

Ugyanezen egyenletrendszer másfajta leírási módjai: 

1. MÁTRIX-os alak (Inverz mátrixos megoldáshoz, Cramer-szabályhoz)
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(m(n)(n(1)=m(1

Ax=b

A: együttható mátrix

INVERZ MÁTRIXOS MEGOLDÁS, CRAMER SZABÁLY  CSAK AKKOR, HA N=M

2. Kibővített mátrixos alak (Gauss-, Gauss-Jordan eliminációhoz)
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3. Vektorok lineáris kombinációja

Az ak (oszlop)vektorok mely lineáris kombinációja állítja elő a b vektort? Mindig van-e ilyen?

x1a1+x2a2+…xnan=b,  ahol  ak=
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4.  „Mintaillesztési” gyakorlatok (Cramer szabályhoz, ferde kifejtési tételhez)
Cél: bármilyen betűkkel felírt determinánsra a kifejtési tételt fel tudjuk írni, és „oda-vissza” alkalmazni. 

Tudjuk, hogy az alábbi determinánsra az 

első sor szerinti kifejtés:
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Rövidebben az első sor szerinti kifejtés: c1D11+c2D12+c3D13
Szumma jelet használva a fenti összeg:

Második sor szerinti kifejtés, (*) mintájára:
Rövidebben: a1D11+a2D12+a3D13

Irja fel szumma jelet használva a fenti összeget!

Harmadik sor szerinti kifejtés, (*) mintájára:

Rövidebben:

Irja fel szumma jelet használva a fenti összeget!

„Mintaillesztési” gyakorlatok (folytatás)

Tudjuk, hogy az alábbi determinánsra az 

első oszlop szerinti kifejtés:

(**) EMBED Equation.3 
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Rövidebben az első oszlop szerinti kifejtés: c1D11+c2D21+c3D31
Szumma jelet használva a fenti összeg:

Második oszlop szerinti kifejtés, (**) mintájára:
Rövidebben: a1D12+a2D22+a3D32

Irja fel szumma jelet használva a fenti összeget!

Harmadik oszlop szerinti kifejtés, (**) mintájára:

Rövidebben:

Irja fel szumma jelet használva a fenti összeget!

Írja fel az alábbi determináns 3. oszlopa szerinti kifejtését, kiírva a megfelelő 2 x 2-es aldeterminánsokat:
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A fenti kifejtés rövidebben: a13D13+a23D23+a33D33

Írja fel szumma jellel a fenti összeget:

Írja fel a fenti determináns 2. oszlopa szerinti kifejtését, kiírva a megfelelő 2 x 2-es aldeterminánsokat is:

A fenti kifejtés rövidebben: 
Írja fel szumma jellel a fenti összeget:

A kifejtési tételre és a ferde kifejtésre vonatkozó ismeretek alapján állapítsa meg, mivel egyenlők az alábbi összegek, ahol a kifejtési tétel felismerhető, ott adja meg, melyik sor vagy oszlop szerinti a kifejtés. Ahol ferde kifejtés ismerhető fel, adja meg, mely sor/oszlop elemei vannak szorozva mely (másik) sor/oszlop elemeivel. Írja le azt is, hogy a determinánsnak hány sora (és hány oszlopa() van:

Minta:

a11 D11+a21D21+a31D31= det(A), 

első oszlop szerinti kifejtés, a determináns harmadrendű (3 sor, 3 oszlop)

a11 D12+a21D22+a31D32= 0,

az első oszlop elemeit a második oszlophoz tartozó aldeterminánsokkal szoroztuk, ferde kifejtés 

a11 D11+a21D22+a31D31…+ a31D34= egyik sem ismerhető fel

Feladatok:

a11 D11+a21D21+a31D31+…. an1Dn1=

a11 D11+a12D12+a13D13=
a11 D11+a12D12+a13D13+…+ a1mD1m=

a11 D21+a12D22+a13D23+…+ a1mD2m=

a1k D1k+a2kD2k+a3kD3k=
a1k D1k+a2kD2k+a3kD3k… ankDnk =
a12 D13+a22D23+a32D33… an2Dn3 =
Lineáris egyenletrendszer mátrix alakban felírva:


a11x1+a12x2+…a1nxn=b1

a21x1+a22x2+…a2nxn=b2




…

am1x1+am2x2+…amnxn=b3


Együttható mátrix: 

b.) Tétel (Cramer-szabály): Ha A(Tn(n és D=det(A) (0, akkor az Ax=b egyenletrendszernek pontosan egy megoldása van. A megoldásban xj=D j/D, ahol D j determinánst úgy kapjuk,hogy D-ben a j-edik oszlop helyére a jobb oldali konstansokat (azaz a b vektor komponenseit) írjuk.

a11x1+a12x2+…a1nxn=b1

a21x1+a22x2+…a2nxn=b2

…

am1x1+am2x2+…amnxn=b3
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Pl:
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Bizonyítás: 

Tfh. xi-t szeretnénk kiszámítani. A módszer lényege, hogy az összes egyenletből kiküszöböljük egyszerre az ismeretleneket, kivéve xi-t. 

a11x1+a12x2+…+a1ixi…+ a1nxn =b1     
 /D1i
a21x1+a22x2+…+ a2ixi …+ anxn =b2
/D2i
…

an1x1+am2x2+…+ anixi …+ annxn =bn/Dni

ahol Dik az A együtthatómátrixban az aik elemhez tartozó előjeles aldetermináns.

Összeadva az összes egyenletet és kiemelve az ismeretleneket a következő adódik:

BALOLDAL:

x1(a11 D1i+a21D2i+…an1Dni)+
/ (1. oszlop) * (i. oszlophoz tartozó aldeterminánsok)

+ x2(a12 D1i+a22D2i+…an2Dni)+ 
/ (2. oszlop) * (i. oszlophoz tartozó aldeterminánsok)

+ x3(a13 D1i+a23D2i+…an3Dni)+
/ (3. oszlop) * (i. oszlophoz tartozó aldeterminánsok)

…
+xi(a1i D1i+a2iD2i+…an1Dni)+

/ (i. oszlop) * (i. oszlophoz tartozó aldeterminánsok)
…

+ xn(a1n Dni+a2nD2i+…annDni)=
/ (n. oszlop) * (i. oszlophoz tartozó aldeterminánsok)
=xi det(A), 

a kifejtési tétel, illetve a ferde kifejtés miatt
JOBBOLDAL: 

b1D1i+b2D2i+b3D3i+…biDii+…+bnDni= 
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BALOLDAL=JOBBOLDAL

xi det(A) = 
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Lineáris egyenletrendszerek

lineáris= elsőfokú, az ismeretlenek (xi-k) elsőfokon szerepelnek. 

a11x1+a12x2+…a1nxn=b1

a21x1+a22x2+…a2nxn=b2

…

am1x1+am2x2+…amnxn=b3
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(m(n)(n(1)=m(1

Ax=b

A: együttható mátrix

1. Speciális eset:
HA

· n=m, és az egyenletek függetlenek egymástól (egyiket sem lehet a többiből algebrai átalakításokkal levezetni-ezt nehéz látni,de a következő feltétel biztosítja) 

· det(A)(0 

akkor  

a.) inverz mátrix 

b.) Cramer szabály 

segítségével megkaphatjuk  meg az egyetlen megoldást

2. Általános eset: Gauss elimináció

1. a.) Egyenletrendszer megoldása inverz mátrix segítségével
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b.) Tétel (Cramer-szabály): Ha A(Tn(n és D=det(A) (0, akkor az Ax=b egyenletrendszernek pontosan egy megoldása van. A megoldásban xj=D j/D, ahol D j determinánst úgy kapjuk,hogy D-ben a j-edik oszlop helyére a jobb oldali konstansokat (azaz a b vektor komponenseit) írjuk.

a11x1+a12x2+…a1nxn=b1

a21x1+a22x2+…a2nxn=b2

…

am1x1+am2x2+…amnxn=b3
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Bizonyítás: 

Tfh. xi-t szeretnénk kiszámítani. A módszer lényege, hogy az összes egyenletből kiküszöböljük egyszerre az ismeretleneket, kivéve xi-t. 

a11x1+a12x2+…+a1ixi…+ a1nxn =b1     
 /D1i
a21x1+a22x2+…+ a2ixi …+ anxn =b2
/D2i
…

an1x1+am2x2+…+ anixi …+ annxn =bn/Dni

ahol Dik az A együtthatómátrixban az aik elemhez tartozó előjeles aldetermináns.

Összeadva az összes egyenletet és kiemelve az ismeretleneket a következő adódik:

BALOLDAL:

    x1(a11 D1i+a21D2i+…an1Dni)+
/ (1. oszlop) * (i. oszlophoz tartozó aldeterminánsok)

+ x2(a12 D1i+a22D2i+…an2Dni)+ 
/ (2. oszlop) * (i. oszlophoz tartozó aldeterminánsok)

+ x3(a13 D1i+a23D2i+…an3Dni)+
/ (3. oszlop) * (i. oszlophoz tartozó aldeterminánsok)

…
+xi(a1i D1i+a2iD2i+…an1Dni)+

/ (i. oszlop) * (i. oszlophoz tartozó aldeterminánsok)
…

+ xn(a1n Dni+a2nD2i+…annDni)=
/ (n. oszlop) * (i. oszlophoz tartozó aldeterminánsok)
=xi det(A), 

a kifejtési tétel, illetve a ferde kifejtés miatt
JOBBOLDAL: 

b1D1i+b2D2i+b3D3i+…biDii+…+bnDni= 
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BALOLDAL=JOBBOLDAL

xi det(A) = 
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2. Általános eset, n egyenlet, m ismeretlen

Gauss elimináció (kiküszöbölés) n x n-es független egyenletekből álló lineáris egyenletrendszerre:
Elve: Alsó (vagy felső) háromszög mátrixban 0 elemek létrehozása  (lépcsős alak) után az ismeretlenek fokozatos közelítéssel (szukcesszív approximáció) kaphatók: 

Az egyenletrendszeren megengedett műveletek:

1.((R, ((0 –val szorozni az egyenletet.

2. Valamely egyenlethez egy másik egyenlet számszorosát hozzáadni.

3. Egyenleteket felcserélni.

4. Az olyan egyenletet, amelyben minden együttható és jobboldali konstans 0, elhagyni (ez független egyenletekből álló rendszer esetén nem fordul elő).

1-4. ún. elemi ekvivalens átalakítások.

Az egyenletekből csak az együtthatókat és a jobboldali konstansokat írjuk sorrendhelyesen egy mátrixba, amelynek soraira ugyanezek a „műveletek” alkalmazhatók. Ezt a mátrixot kibővített mátrixnak nevezzük. 

Példa:

x-2y+3z=1

2x+y+z=-3

-x+2y-2z=0

Rövidített jelölés - kibővített mátrix:

Első sor –2-szeresét hozzáadjuk a második sorhoz, első sort hozzáadjuk a harmadik sorhoz: 
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A főátló alatti elemek nullák, létrejött az alsó 0 háromszömátrix. Ebből már az ismeretlenek könnyen kaphatók:

1z=1, z=1

5y+-5z=-5, z-t behelyettesítve, y=0

x + 0 +3=1, (y-t és z-t már behelyettesítettük), x=-2

Gauss elimináció „algoritmusa”:

A  k. lépésben akk segítségével „nullázzuk” az akk alatti elemeket, k:=1,…,m (m  az  ismeretlenek száma). Ha akk nulla, akkor felcseréljük egy alkalmas, alk helyén nem nulla elemet tartalmazó sorra.

Kérdés: Mi a helyzet, ha nem találunk alk helyén nemnulla elemet?

Gauss-Jordan elimináció n x n-es, független egyenletekből álló lineáris egyenletrendszerre:

Az előzőhöz hasonló módszerrel a főátló feletti elemek is kinullázhatók. Az utolsó sor 5-szörösét  hozzáadjuk a második sorhoz, az utolsó sor kétszeresét hozzáadjuk az első sorhoz, igy nullázzuk a 3. oszlop felső elemeit:
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A második sort osztjuk 5-tel, hogy a főátlóban 1 legyen, majd a második sor kéteszresét hozzáadjuk az első sorhoz :
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Igy a főátló fölött is csupa nulla áll, az ismeretlenek értékei rögtön kiolvashatók:

1x=-2 , 1y=0, 1z=1 

Gauss-Jordan elimináció „algoritmusa”:

1. Gauss elimináció

2. Mivel a főátló alatti elemek nullák, az együttható mátrix utolsó sorának csak az utolsó eleme nem nulla, így osztással könnyen egyest hozhatunk létre. Ezután ezzel az egyessel nullázzuk a felette levő számokat. A következő lépésben az előtte levő oszlop főátlóbeli elemét redukáljuk 1-re, majd ennek sgítségével nullázzuk a felette levő elemeket, és így tovább. Röviden:

A  k. lépésben an-k,n-k-t osztjuk önmagával, így 1-t kapunk, és ennek  segítségével „nullázzuk” az akk feletti elemeket, az utolsó sorból indulva. K:=0,1…,m (m  az  ismeretlenek száma)

Az így kapott lépcsős alakot, amikor a főátló felett is nullák állnak, redukált lépcsős alaknak nevezzük. A fenti leírás szerint létrhozott lépcsős alakban szerplő egyeseket, amlyek tehát különböző sorokban és oszlopokban, a föátlóban helyezkednek el, vezéregyeseknek nevezzük.
Független rendszer esetén nincsenek csupa nullából álló sorok. De ún. tilos sorok előfordulhatnak, amennyiben az egyenletrendszer ellentmondó egyneleteket tartalmaz-ekkor nincsen megoldás.

Tilos sor : az adott sorban az együttható mátrix elemei mind nullák, de a kibővített mátrixban a b-nek megfelelő elem nem. 

Példa: tilos sor a 3.:
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Tétel: 

I. Az egyenletrendszer akkor és csak akkor oldható meg, ha nincs a lépcsős alakban tilos sor.

II. Egyértelmű a megoldás, ha nincs tilos sor, és a vezéregyesek száma egyenlő az ismeretlenek számával.

Homogén lineáris egyenletrendszer
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Triviális megoldás: 

Homogén lineáris egyenletrendszernek mindig van ún. triviális megoldása:

 x1= x2=…= xn=0. 

Ha det(A)=0, ahol A – együtthatókból képezett mátrix. akkor van triviálistól különböző megoldás, amit Gauss eliminációval találhatunk meg. DE ha det(A)(0, akkor csak a triviális megoldás van.

Tétel: 

Ha az egyenletrendszernek egyértelmű a megoldása, akkor az ismeretlenek száma(n) <= egyenletek száma (k).

Biz.: egyértelmű( n db „vezéregyes”, n= ismeretlenek száma

mivel ezek különböző sorokban vannak, (n<=k, hiszen felesleges sor lehetséges, ez „nem rontja el” az egyenletrendszer egyértelmű megoldását.

Tétel: Ha a homogén lineáris egyenletrendszerben k<n, akkor létezik a triviálistól különböző megoldás.

Biz.: Indirekt: Tfh, hogy csak a triviális megoldás létezik(egyértelmű(n<=k, de ez nem igaz, mert k>n.

Megjegyzések: 

1. A megoldásokszáma NEM függ az egyenletek számának és az ismeretlenek számának viszonyától. 

2. Több (végtelen elemszámú test esetén végtelen) megoldás esetében nem tetszőleges az ismeretlenek választása. Azok az ismeretlenek választhatók szabadon, amelyekkel, és csak azokkal a több ismeretlen kifejezhető. Ez a lépcsős alakból könnyen következtethető: azok  az ismeretlenek választhatók szabadon, amelyeknek oszlopában nincsen vezéregyes.

Példa:  
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Mivel a 2. és 5. oszlopban nincsen vezéregyes, ezért ezen helyeken álló ismeretlenek szabadon választhatók:

x1+3x2+0+0-2x5=-4
( x1=-3x2+2x5
x3-x5=-2

( x3=-2+x5
x4+x5=3

( x4=3-x5
Ennek  az egyenletrendszernek tehát a valós számok körében végtelen sok megoldása van; ha x2, és x5 értékét rögzítjük, akkor minden olyan számötös, amelyeket úgy kapunk, hogy a rögzített x2, x5 értékekkel kiszámítjuk a velük kifejezett x1, x3, x4 ismeretleneket, az egyenletrendszer egy megoldását kapjuk.

TANULJUK MEG A GAUSS (-JORDAN) ELIMINÁCIÓT AZ  ALÁBBI PROGRAMOK  SEGTÍSÉGÉVEL!

http://wims.unice.fr/wims/wims.cgi
A search for ablakba írja be:  Gauss elimination – az új lapon klikkeljen a Visual Gauss linkre. 

Itt interaktív gyakorlatokat talál a Gauss eliminációra és sok más lineáris algebrai feladatra. Jó szórakozást! (merthogy a jó munka is az :)

Másik  elemi sorműveleteket elvégző kalkulátor: 

http://www.math.ncsu.edu/ma114/tools/row_ops.html
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