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1. Lineáris algebra

A diszkrét matematika [discrete mathematics] tárgy első témaköre a lineáris algebra [linear
algebra]. Mivel foglalkozik a lineáris algebra? A lineáris szó a latin linearis-ból származik, ami
azt jelenti: vonalakból alkotott. Kezdetben elég is ennyi magyarázat. Mit jelent az algebra?
A középiskolai tanulmányok során a valós számok rengeteg érdekes tulajdonságára derült már
fény. Más szóval ezek a számhalmazok nem pusztán elemek összessége, hanem erős kapcsolat
van közöttük: a valós számok valamilyen rendszert alkotnak: a valós számhalmaznak van valam-
ilyen struktúrája. Az algebra ilyen strukturális tulajdonságok együttese. A számokon kívül sok
más matematikai elemből alkotott halmaz strukturális tulajdonságát fogjuk vizsgálni: Milyen
kapcsolat van az elemeik között? Milyen tulajdonságúak ezek a halmazok?

A félév során a lineáris és a struktúra fogalom köré csoportosítható megközelítőleg az egész
tananyag. Pontosan, precízen definiálni fogjuk őket.

2. Lineáris egyenletrendszerek

Lineáris egyenletnek [linear equation] nevezzük azt az egyenletet, ami a következő alakú:

a1x1 + a2x2 + · · · + anxn = b

ahol xi, i = 1, . . . , n az egyenlet ismeretlenei, ai az xi ismeretlen együtthatója. Továbbá ai és
b adottak, és n véges, pozitív (nem nulla) egész szám (n ∈ N

+), azaz az egyenlet véges számú
ismeretlent (és együtthatót) tartalmaz. Kezdetben xi, ai, b valós számok.

Lineáris egyenletrendszernek [system of linear equations] nevezzük m (m ∈ N
+) darab

lineáris egyenlet együttesét:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

2.1. Lineáris egyenletrendszerek megoldása

Egy lineáris egyenlet(rendszer) tehát meghatározott kapcsolatot ad meg a benne szereplő is-
meretlenek között. Azt is mondhatjuk, hogy egy megoldás olyan számok együttese, amiket a
megfelelő(!) ismeretlenek helyébe behelyettesítve az egyenlőség teljesül.
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A továbbiakban amikor egyenlet(rendszer)ek megoldásáról beszélünk, az összes lehetséges
megoldás megkeresését értjük alatta.

2.2. A megoldások száma

2.2.1. Két ismeretlenes lineáris egyenletek megoldásainak száma

Egy két ismeretlenes lineáris egyenlet a1x1+a2x2 = b alakú és ábrázolható a síkon. Ha legfeljebb
az egyik együttható (a1 vagy a2) értéke 0, akkor egy ilyen egyenlet egy egyenest ad meg. Más
szavakkal az ilyen típusú lineáris egyenlet megoldásai egy egyenesen helyezkednek el, és ebből
adódóan végtelen sok megoldása van.

Ha mindkét együttható nulla (a1 = a2 = 0), akkor az egyenlet 0 = b alakú, ami ha b értéke
nulla, akkor a teljes síkot adja megoldásként (mivel ekkor egyik ismeretlenre sincs semmilyen
megkötés), azaz végtelen megoldás létezik. A b nem nulla esetben viszont nyilvánvalóan nincs
megoldás.

Két ismeretlenes lineáris egyenletek ábrázolása Az a1x1+a2x2 = b alak helyett használjuk
az y = mx + c alakot (könnyen ellenőrizhető, hogy x = x1 és y = x2 behelyettesítésével az áta-
lakítás a következő módon végezhető el: m = −a1/a2 illetve c = b/a2). Ebből az alakból már
könnyen látható, hogy az ábrázolandó egyenes az y = c pontban metszi az y tengelyt (x = 0
eset) és egy m meredekségű egyenesről van szó. Ha a2 = 0 az átalakítás nem végezhető el
(nullával nem oszthatunk), de ekkor nem is szükséges átalakítnai, mivel ha a2 = 0, akkor az
egyenlet a következőre egyszerűsödik: a1x1 = b vagy másképpen x1 = b/a1, ami egy y tengellyel
párhuzamos, az x tengelyt a b/a1 pontban metsző egyenes. (A mindkét együttható nulla esetet
az előző bekezdésben már megtárgyaltuk.)

2.2.2. Két ismeretlenes lineáris egyenletrendszerek megoldásainak száma

Két egyenlet esete Hány megoldása lehet egy két egyenletből álló, két ismeretlenes egyenle-
trendszernek? Ha meggondoljuk, hogy két egyenes milyen helyzetben lehet egymáshoz képest a
síkon, akkor a következő lehetséges eseteket kapjuk:

1. egybe esnek: végtelen megoldás van: a teljes egyenes

2. párhuzamosak: nincs megoldás

3. metszők: egyetlen megoldás van: a metszési pont

Honnét tudjuk eldönteni, hogy mikor melyik eset áll fenn?

1. Két egyenes mikor párhuzamos?
Kizárólag akkor, ha meredekségük megegyezik, ami azt jelenti, hogy létezik olyan szám,
amivel az egyik egyenletet megszorozva a két egyenlet együtthatói azonosak lesznek. (Az
előzőekben látható volt, hogy az egyenes meredeksége −a1/a2 ami nyilván nem változik,
ha az egyenletet egy d számmal megszorozzuk: a1x1 + a2x2 = b → da1x1 + da2x2 = db és
ekkor (−da1)/(da2) = −a1/a2)

2. Két egyenes mikor esik egybe?
Kizárólag akkor, ha egyenleteik egymásból átalakíthatóak. Más szavakkal, ha az egyenletek
egymásnak számszorosai. Ez speciális esete az előző pontnak, hiszen egybe eső egyenesek
tekinthetők 0 távolságra lévő párhuzamos egyeneseknek. Algebrai szempontból is jól látható
ez a speciális eset: itt már nem csak a meredekség egyezését követeljük meg, hanem az
y tengely metszéspontjának is, azaz a c konstansoknak is meg kell egyezni a megfelelő
számmal való megszorzás után. (Számmal való szorzás nyilván nem változtatja meg az
y tengellyel való metszéspontot: a1x1 + a2x2 = b → da1x1 + da2x2 = db és ekkor c =
(db)/(da2) = b/a2)

3. Két egyenes mikor metszi egymást?
Két egyenes a síkon pontosan akkor metszi egymást, ha nem esnek egybe és nem párhuzamosak.
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Az előzőekből adódóan ez azt jelenti, hogy nem létezik olyan szám, amivel az egyik egyen-
letet megszorozva a két egyenlet együtthatói azonosak lesznek.

Ne felejtsük el a két ismeretlenes egyenleteknél tárgyalt másik két esetet sem, tehát amikor
mindkét együttható és b is nulla illetve amikor mindkét együttható 0 és b nem nulla. Ha bármelyik
egyenletre az első eset áll fenn, akkor azt az egyenletet el is hagyhatjuk, hiszen a megoldások
számát nem befolyásolja. Ha bármelyik egyenletre a második eset áll fenn, akkor eleve nincs
megoldás, tehát teljesen mindegy, hogy a másik egyenlet milyen.

Több, mint két egyenlet esete Ha kettőnél több egyenletből álló egyenletrendszert vizs-
gálunk, akkor eljárhatunk úgy, hogy két egyenletet kiválasztva megvizsgáljuk a megoldásokat,
majd egy újabb egyenlet hozzávételével újra elvégezzük a kiértékelést.

2.2.3. Általános eset

A két ismeretlenes esetben is láthattuk, hogy sok szempontot kell figyelembe venni már ahhoz
is, hogy a megoldások számát meghatározzuk. Magukról a megoldásokat pedig még meg sem
kerestük. Három és több ismeretlen esetében a helyzet még tovább bonyolódik, szükséges tehát
egy egyszerűbb módszert találnunk.

3. Gauss elimináció

Az előző részben láthattuk, elegendő vizsgálni az egyenletekben szereplő együtthatókat és a b
konstansokat. Egyszerűsítsük az egyenletrendszer felírási módját:











a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

...
...

. . .
...

...
am1 am2 . . . amn bm











A továbbiakban a lineáris egyenletrendszer helyett ezt a felírási módot fogjuk alkalmazni, és ezen
fogjuk elvégezni a számításokat, módosításokat is, amit elemi ekvivalens sorműveleteknek
[elementary row operations] nevezünk és az előzőleg tárgyaltak alapján a következők lehetnek:

1. valamelyik sort egy nullától különböző számmal végigszorzunk

2. valamelyik sorhoz egy másik sor számszorosát hozzáadjuk

3. két sort felcserélünk

Ezekkel a számításokkal elvégezhetjük a megoldások számának vizsgálatát, ahogyan azt az előzőek-
ben tettük, ám a Gauss elimináció ezen kívül a megoldásokat is megadja. Az algoritmus az 1.
ábrán látható.

Az eredményben minden sorban a legbaloldalabbi oszlopban szereplő 1 számot vezére-
gyesnek [leading coefficient / pivot element] nevezzük. Minden sorban egyetlen vezéregyes talál-
ható, és egy vezéregyes az előző sorban lévőhöz képest jobbra lévő oszlopban van (nem biztos,
hogy a közvetlenül utána következő oszlopban!). Minden vezéregyes oszlopában a vezéregyes
alatt csak nullák találhatók.

Ha az eredményben (vagy a számolás során) olyan sort találunk, ami csak nullákból áll, akkor
azt nem kell figyelembe vennünk, hiszen az eredményt nem befolyásolja. Az algoritmus az ilyen
sorokat mindig az utolsó sorokba mozgatja.

Ha olyan sort találunk, aminek az utolsó elemén kívül minden eleme nulla, de az utolsó elem
nem nulla, akkor tiltott sort találtunk, ami az előzőekben tárgyaltaknak megfelelően azt jelenti,
hogy az egyenletrendszernek nincs megoldása (így nem is szükséges tovább számolnunk).

Az algoritmus eredményét lépcsős alaknak (LA) [row echelon form (REF)] nevezzük.
Feladatok: 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 16
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1. ábra. A Gauss elimináció algoritmusa

4. Gauss-Jordan elimináció

A Gauss eliminációt annyival bővíti ki, hogy az elemi ekvivalens sorműveletekkel minden vezér-
egyes oszlopában a vezéregyes felett is nullázza a számokat. Más szavakkal azt is mondhatnánk,
hogy a vezéregyes az egyetlen nem nulla elem a vezéregyes oszlopában. Fontos kiemelni, hogy
olyan oszlopokban, amelyekben nincs vezéregyes, továbbra is szerepelhetnek nem nulla elemek!
Az így kapott eredményt redukált lépcsős alaknak (RLA) [reduced row echelon form (RREF)]
nevezzük, és segítségével a megoldások könnyen leolvashatók.

Feladatok: 8, 11, 12, 13, 15, 17, 18, 19, 20

5. Egzisztencia és unicitás

5.1. tétel. Minden, lineáris egyenletrendszerből képezhető, tárgyalt felírási módnak pontosan egy
RLA formája van, amit elemi ekvivalens sor műveletekkel megkaphatunk.

5.2. definíció. Egy lineáris egyenletrendszert konzisztensnek nevezünk, ha (R)LA formájában
nincs tiltott sor.

5.3. tétel. Ha egy lineáris egyenletrendszer konzisztens, akkor van megoldása: ha az RLA for-
mában az utolsó oszlop kivételével kizárólag vezéregyesek találhatók, akkor egyetlen megoldása
van, az összes többi esetben végtelen sok.

5.4. tétel. Ha egy lineáris egyenletrendszernek végtelen megoldása van, akkor az RLA formában
a vezéregyessel nem rendelkező oszlopoknak megfelelő változók szabadon megválaszthatók.
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6. Feladatok

1. Az egyenleteknek megfelelő egyenesek állásából következtessünk a megoldások számára,
majd oldjuk meg Gauss eliminációval!

3x = 9

4y = 2

2. Az egyenleteknek megfelelő egyenesek állásából következtessünk a megoldások számára,
majd oldjuk meg Gauss eliminációval!

3x = 0

4y = 0

3. Az egyenleteknek megfelelő egyenesek állásából következtessünk a megoldások számára,
majd oldjuk meg Gauss eliminációval!

6y = 12

3x + 2y = 7

4. Az egyenleteknek megfelelő egyenesek állásából következtessünk a megoldások számára,
majd oldjuk meg Gauss eliminációval!

6y = 0

3x + 2y = 0

5. Az egyenleteknek megfelelő egyenesek állásából következtessünk a megoldások számára,
majd oldjuk meg Gauss eliminációval!

4.5x + 3y = 12

3x + 2y = 7

6. Az egyenleteknek megfelelő egyenesek állásából következtessünk a megoldások számára,
majd oldjuk meg Gauss eliminációval!

4.5x + 3y = 10.5

3x + 2y = 7

7. Oldjuk meg Gauss eliminációval a következő egyenletrendszert:

4.5x1 + 3x2 = 10.5

3x1 + 2x2 = 7

15x1 + 10x2 = 35
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8. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

x1 − 2x2 = −1

−x1 + 3x2 = 3

9. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

x1 − 2x2 = −1

−x1 + 2x2 = 3

10. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

x1 − 2x2 = −1

−x1 + 2x2 = 1

11. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

3y = 10

3x + 2y = 7

15x + 10y = 35

12. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

2x + 3y + z = 11

x − y − 2z = −7

3x + 2y − z = 4

13. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

x1 − 2x2 + x3 = 0

2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

14. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

x2 − 4x3 = 8

2x1 − 3x2 + 2x3 = 1

5x1 − 8x2 + 7x3 = 1

15. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

x1 + x2 − x3 = 9

−2x1 + x2 + x3 = 1

x1 − 3x2 + x3 = −17
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16. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

x1 − 5x3 = 1

x2 + x3 = 4

17. Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

3x2 − 6x3 + 6x4 + 4x5 = −5

3x1 − 7x2 + 8x3 − 5x4 = 9

3x1 − 9x2 + 12x3 − 9x4 = 15

18. A t paraméter mely értékeire nincs az egyenletrendszernek megoldása illetve 1 vagy végtelen
megoldása? Ha van megoldás, adjuk meg azokat!

3x1 + tx2 = −42

−2x1 + 8x2 = 28

19. A t paraméter mely értékeire nincs az egyenletrendszernek megoldása illetve 1 vagy végtelen
megoldása? Ha van megoldás, adjuk meg azokat!

3x1 + tx2 = 42

−2x1 + 8x2 = 28

20. A t paraméter mely értékeire nincs az egyenletrendszernek megoldása illetve 1 vagy végtelen
megoldása? Ha van megoldás, adjuk meg azokat!

x1 + x2 − x3 = 9

x1 + 2x2 + x3 = 12

−x1 − x2 + 4x3 = −12

−2x1 + x2 + x3 = t

7. Megoldások

1. Mivel a két egyenlet által megadott egyenesek nem párhuzamosak (nincs olyan szám, amivel
az egyik egyenletet megszorozva az két egyenlet megfelelő együtthatói egyenlőek lesznek),
egy pontban metszik egymást, azaz az egyenletrendszernek egyetlen megoldása van. Gauss-
eliminációval megoldva:

[

3 0 9
0 4 2

]

→

[

1 0 3
0 4 2

]

→

[

1 0 3
0 1 0.5

]

2. Mivel a két egyenlet által megadott egyenesek nem párhuzamosak (nincs olyan szám, amivel
az egyik egyenletet megszorozva az két egyenlet megfelelő együtthatói egyenlőek lesznek),
egy pontban metszik egymást, azaz az egyenletrendszernek egyetlen megoldása van. Gauss-
eliminációval megoldva:

[

3 0 0
0 4 0

]

→

[

1 0 0
0 4 0

]

→

[

1 0 0
0 1 0

]
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3. Mivel a két egyenlet által megadott egyenesek nem párhuzamosak (nincs olyan szám, amivel
az egyik egyenletet megszorozva az két egyenlet megfelelő együtthatói egyenlőek lesznek),
egy pontban metszik egymást, azaz az egyenletrendszernek egyetlen megoldása van. Gauss-
eliminációval megoldva:

[

0 6 12
3 2 7

]

→

[

3 2 7
0 6 12

]

→

[

1 2/3 7/3
0 6 12

]

→

[

1 2/3 7/3
0 1 2

]

→

[

1 0 1
0 1 2

]

4. Mivel a két egyenlet által megadott egyenesek nem párhuzamosak (nincs olyan szám, amivel
az egyik egyenletet megszorozva az két egyenlet megfelelő együtthatói egyenlőek lesznek),
egy pontban metszik egymást, azaz az egyenletrendszernek egyetlen megoldása van. Gauss-
eliminációval megoldva:

[

0 6 0
3 2 0

]

→

[

3 2 0
0 6 0

]

→

[

1 2/3 0
0 6 0

]

→

[

1 2/3 0
0 1 0

]

→

[

1 0 0
0 1 0

]

Az egyetlen megoldás tehát az x = 0, y = 0 pont.

5. Mivel a két egyenlet által megadott egyenesek párhuzamosak (a második egyenletet 1.5-
del megszorozva az két egyenlet megfelelő együtthatói egyenlőek lesznek), nem metszik
egymást, azaz az egyenletrendszernek nincs megoldása. Gauss-eliminációval megoldva:

[

4.5 3 12
3 2 7

]

→

[

1 2/3 8/3
3 2 7

]

→

[

1 2/3 8/3
0 0 −1

]

Mivel a második sor tiltott sor, az egyenletrendszernek nincs megoldása.

6. Mivel a két egyenlet által megadott egyenesek egybe esnek (a második egyenletet 1.5-del
megszorozva az első egyenletet kapjuk), az egyenletrendszernek végtelen sok megoldása
van. Gauss-eliminációval megoldva:

[

4.5 3 10.5
3 2 7

]

→

[

1 2/3 7/3
3 2 7

]

→

[

1 2/3 7/3
0 0 0

]

Mivel az utolsó sor csak nullákból áll, azt elhagyhatjuk, és a megmaradt sor megadja az x és
y közötti kapcsolatot: x = 7/3− 2/3y de y helyébe bármilyen számot behelyettesíthetünk,
azaz végtelen megoldás van.

7.




4.5 3 10.5
3 2 7
15 10 35



 →





1 2/3 7/3
3 2 7
15 10 35



 →





1 2/3 7/3
0 0 0
0 0 0





Mivel az utolsó két sor csak nullákból áll, azt elhagyhatjuk, és a megmaradt sor megadja
az x és y közötti kapcsolatot: x = 7/3− 2/3y de y helyébe bármilyen számot behelyettesí-
thetünk, azaz végtelen megoldás van.

8.
[

1 −2 −1
−1 3 3

]

→

[

1 −2 −1
0 1 2

]

→

[

1 0 3
0 1 −2

]

Egyetlen megoldás létezik: x1 = 3 és x2 = −2.

9.
[

1 −2 −1
−1 2 3

]

→

[

1 −2 −1
0 0 2

]

Mivel tiltott sort találtunk, nincs megoldás.

10.
[

1 −2 −1
−1 2 1

]

→

[

1 −2 −1
0 0 0

]

Végtelen sok megoldás van: a vezéregyes nélküli oszlopnak megfelelő változó (x2) szabadon
megválasztható, és vele a másik változó kifejezhető: x1 = 2x2 − 1.
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11.




0 3 10
3 2 7
15 10 35



 →





3 2 7
0 3 10
15 10 35



 →





1 2/3 7/3
0 3 10
15 10 35



 →

→





1 2/3 7/3
0 3 10
0 0 0



 →





1 2/3 7/3
0 1 10/3
0 0 0



 →





1 0 1/9
0 1 10/3
0 0 0





A csak nullákból álló sort elhagytuk, a megmaradt sorok megadják a megoldástt: x = 1/9
és y = 10/3, azaz egy megoldás van.

12.




2 3 1 11
1 −1 −2 −7
3 2 −1 4



 →





1 3/2 1/2 11/2
1 −1 −2 −7
3 2 −1 4



 →





1 3/2 1/2 11/2
0 −5/2 −5/2 −25/2
0 −5/2 −5/2 −25/2



 →

→





1 3/2 1/2 11/2
0 1 1 5
0 −5/2 −5/2 −3/2



 →





1 3/2 1/2 11/2
0 1 1 5
0 0 0 0



 →





1 0 −1 −2
0 1 1 5
0 0 0 0





A csak nullákból álló sort elhagyhatjuk, a vezéregyest nem tartalmazó oszlopnak megfelelő
változó (x3) értéke szabadon megválasztható, a többi változó segítségével kifejezhető: x2 =
−x3 + 5 illetve x1 = x3 − 2

13.




1 −2 1 0
0 2 −8 8
−4 5 9 −9



 →





1 −2 1 0
0 2 −8 8
0 −3 13 −9



 →





1 −2 1 0
0 1 −4 4
0 −3 13 −9



 →

→





1 −2 1 0
0 1 −4 4
0 0 1 3



 →





1 −2 0 −3
0 1 0 16
0 0 1 3



 →





1 0 0 29
0 1 0 16
0 0 1 3





Egyetlen megoldás létezik: x1 = 29, x2 = 16, x3 = 3.

14.




0 1 −4 8
2 −3 2 1
5 −8 7 1



 →





2 −3 2 1
0 1 −4 8
5 −8 7 1



 →





1 −3/2 1 1/2
0 1 −4 8
5 −8 7 1



 →

→





1 −3/2 1 1/2
0 1 −4 8
0 −1/2 2 −3/2



 →





1 −3/2 1 1/2
0 1 −4 8
0 0 0 5/2





Tilos sort találtunk, így az egyenletrendszernek nincs megoldása.

15.




1 1 −1 9
−2 1 1 1
1 −3 1 −17



 →





1 1 −1 9
0 3 −1 19
0 −4 2 −26



 →





1 1 −1 9
0 1 −1/3 19/3
0 −4 2 −26



 →

→





1 1 −1 9
0 1 −1/3 19/3
0 0 2/3 −2/3



 →





1 1 −1 9
0 1 −1/3 19/3
0 0 1 −1



 →





1 1 0 8
0 1 0 6
0 0 1 −1



 →

→





1 0 0 2
0 1 0 6
0 0 1 −1





Egyetlen megoldása létezik: x1 = 2, x2 = 6, x3 = −1.
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16.
[

1 0 −5 1
0 1 1 4

]

A felírásból közvetlenül látszik, hogy a vezéregyes nélküli oszlopnak megfelelő ismeretlen
(x3) szabadon megválasztható, és a többi ismeretlen segítségével kifejezhető: x2 = −x3 +4
és x1 = 5x3 + 1

17.




0 3 −6 6 4 −5
3 −7 8 −5 0 9
3 −9 12 −9 0 15



 →





3 −7 8 −5 0 9
0 3 −6 6 4 −5
3 −9 12 −9 0 15



 →

→





1 −7/3 8/3 −5/3 0 3
0 3 −6 6 4 −5
3 −9 12 −9 0 15



 →





1 −7/3 8/3 −5/3 0 3
0 3 −6 6 4 −5
0 −2 4 −4 0 6



 →

→





1 −7/3 8/3 −5/3 0 3
0 1 −2 2 4/3 −5/3
0 −2 4 −4 0 6



 →





1 −7/3 8/3 −5/3 0 3
0 1 −2 2 4/3 −5/3
0 0 0 0 8/3 8/3



 →

→





1 −7/3 8/3 −5/3 0 3
0 1 −2 2 4/3 −5/3
0 0 0 0 1 1



 →





1 −7/3 8/3 −5/3 0 3
0 1 −2 2 0 −3
0 0 0 0 1 1



 →

→





1 0 −2 3 0 −4
0 1 −2 2 0 −3
0 0 0 0 1 1





A vezéregyesek nélküli oszlopoknak megfelelő változók (x3, x4) szabadon megválaszthatók,
és a többi ismeretlen segítségével kifejezhető: x5 = 1, x2 = 2x3−2x4−3, x1 = 2x3−3x4−4.

18.
[

3 t −42
−2 8 28

]

→

[

1 t

3 −14
−2 8 28

]

→

[

1 t

3 −14
0 2

3 t + 8 0

]

→

[

1 t

3 −14
0 2t+24

3 0

]

→ (∗)

Ebből látszik, hogy akkor van végtelen megoldás, ha t = −12. Ekkor

(∗) →

[

1 −4 −14
0 0 0

]

Azaz x1 = 4x2 − 14, és x2 értéke szabadon megválasztható.
Ha t 6= −12, akkor elvégezhetjük az osztást:

(∗) →

[

1 t

3 −14
0 1 0

]

→

[

1 0 −14
0 1 0

]

Azaz x1 = −14, x2 = 0.
Összefoglalva:
t = −12 esetén x1 = 4x2 − 14, és x2 értéke szabadon megválasztható,
t bármely más értékére: x1 = −14, x2 = 0,
t-nem választható meg úgy, hogy az egyenletrendszernek ne legyen megoldása.

19.
[

3 t 42
−2 8 28

]

→

[

1 t

3 14
−2 8 28

]

→

[

1 t

3 14
0 2

3 t + 8 56

]

→

[

1 t

3 14
0 2t+24

3 56

]

→ (∗)

Ebből látszik, hogy ha t = −12, akkor nincs megoldás, mivel tiltott sort kapunk:

(∗) →

[

1 −4 14
0 0 56

]
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Ha t 6= −12, akkor elvégezhető az osztás:

(∗) →

[

1 t

3 14
0 1 84

t+12

]

→

[

1 0 − 84t

3(t+12) + 14

0 1 84
t+12

]

→

[

1 0 −14 t−12
t+12

0 1 84
t+12

]

Összefoglalva:
Ha t = 12, akkor nincs megoldás,
ha t 6= 12, akkor x1 = −14 t−12

t+12 , x2 = 84
t+12 ,

t nem választható meg úgy, hogy az egyenletrendszernek végtelen megoldása legyen.

20.








1 1 −1 9
1 2 1 12
−1 −1 4 −12
−2 1 1 c









→









1 1 −1 9
0 1 2 3
0 0 3 −3
0 3 −1 c + 18









→









1 1 −1 9
0 1 2 3
0 0 3 −3
0 0 −7 c + 9









→

→









1 1 −1 9
0 1 2 3
0 0 1 −1
0 0 −7 c + 9









→









1 1 −1 9
0 1 2 3
0 0 1 −1
0 0 0 t + 2









→ (∗)

Azaz az egyenletrendszernek csak akkor van megoldása, ha t = −2. Ebben az esetben:

(∗) →









1 1 −1 9
0 1 2 3
0 0 1 −1
0 0 0 0









→









1 1 0 8
0 1 0 5
0 0 1 −1
0 0 0 0









→









1 0 0 3
0 1 0 5
0 0 1 −1
0 0 0 0









Azaz a megoldás: x1 = 3, x2 = 5, x3 = −1
Összefoglalva:
Ha t 6= −2, akkor az egyenletrendszernek nincs megoldása,
ha t = −2, akkor a megoldás: x1 = 3, x2 = 5, x3 = −1,
t értéke nem választható meg úgy, hogy végtelen megoldás legyen.
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