Néhany STL fuggvény

v(0.000021

2010. november 2.

Tartalomjegyzék

1. Vector

#include <vector>

A vector konyvtar definidlja a vector tipust. A klasszikus C témbokhoz képest
a vektor elonye, hogy konnyt és kényelmes dinamikusan atméretezni.

1.1. Deklaracid és kezdoérték

Vektor tipusu valtozot igy deklardlunk:

vector<T> x;

ahol T barmilyen tipus lehet, pl. int, string, double, stb. Az altalunk definidlt
tipusokat is rendezhetjiik vektorba.

Vektort 1étrehozhatunk ugy is, hogy megadjuk, hany elembdl élljon:

vector<T> x(10);

A fenti kéd létrehoz egy 10 darab, T tipusu elembdl allo vektort.

A masodik paraméterben megadhatjuk az elemek kezdoértékét, pl:

vector<int> x(10,56);

A fenti kéd létrehoz egy 10 darab, integer tipusi elembdl 4ll6 vektort, melynek
minden elemének értéke '56’. Ugyeljlink réd, hogy a kezd6érték tipusa azonos legyen
a vektor tipusaval.

Egy vektor tartalmat konnyen atmasolhatjuk egy masik vektorba az = operatorral:

vector<int> x(10,56);
vector<int> y(5,10);

X=y;

A kéd futdsa utan x egy 6t darab, integer tipusi elemet tartalmazo vektor lesz,
melynek minden eleme ’10’. A vektorok tipusanak azonosnak kell lennie; méretiik
kiilonbozhet.

1. VECTOR

1.2. Elemek elérése
1.2.1. T x[int i

Paraméterek
unsigned int

i A lekérni kivant elem indexszdama. Ne feledjiik,

hogy az els6 elem indexe 0, nem pedig 1.

Visszatérési érték
T ‘ A vektor i index1i eleme.

Egy vektor elemeit a legkonnyebben az [] operatorral érhetjiik el:

‘ vector<int> x(10,2)
‘ int y=x[0];

A kod futasa utan y értéke 2’ lesz.

VIGYAZAT!
Ha olyan elemet prébalunk az [] operatorral lekérni, ami nem létezik,
a programunk jé eséllyel meg fog halni. Ezért nagyon fontos, hogy sose
probaljunk olyan elemet lekérni, ami nem létezik! Mindig tartsuk észben
azt is, hogy az elemek szdmozasa 0-val kezdddik: az elsé elem indexe 0.
Vagyis egy tizelemi vektor elemei 0-t6l 9-ig szamozodnak:

vector<int> x(10,56);
int y=x[10];

A fenti kéd nagy eséllyel 'segmentation fault’-ot fog okozni, vagyis le fog
allni; de ha nem is, komoly miikodési zavarokat okozhatunk.
Széval: csak ovatosan.

A [] operétort értékaddsra is hasznalhatjuk (x[0]=25;, x elsé elemének értéke
25 lesz). Ha olyan indexii tagnak akarunk értéket adni, ami nem létezik, akkor a
vektor elozékenyen megnylik:

‘ vector<int> x(10,56);
‘ x[50]=12;

A fenti kéd eredményeként lesz egy 51 tagt vektorunk, melynek az els6 tiz eleme
567, az utolsé eleme 12, a tobbi pedig nulla.

Ugyan ez egy nagyon hasznos tulajdonsaga a vektor osztdlynak, ne éljink vissza
vele, rossz szokasokhoz vezet.

1. VECTOR

1.2.2. T x.at(int i)

Paraméterek

i | unsigned int | A lekérni kivant elem indexszdama. Ne feledjiik,
hogy az elsé elem indexe 0, nem pedig 1. Ha i
indext elem nem létezik, exceptiont lok.

Visszatérési érték
T ‘ A vektor i indexii eleme.

Altaldban ugyanigy miikodik, mint az x[1] operator, azzal a kiilonbséggel, hogy
exceptiont 10k ha i indexszdmu elem nem létezik. FEzception handlinget, azaz
kivételkezelést még nem tanultunk, és kivételkezelés nélkiil a programunk ugyanigy
meghal, de igy is sokszor tobbre jutunk egy exceptionds hibatizenettel, mint azzal,
ha a program benyd6gi, hogy 'Segmentation fault’.

Merészebbeknek itt egy példa a hasznélatara:

vector<int> x(10,5);

try {
int i=x.at(664);
}
catch (exception& e) {
cout << "Hiba: " << e.what() << endl;
}
cout << "... de a program fut!";

1.2.3. T x.front()

Visszatérési érték
T ‘ A vektor elsO, azaz 0. indexszamu eleme.

Visszaadja a vektor els6 elemét. Ugyanazt jelenti, mintha azt mondanank, hogy
x[0].

1.2.4. T x.back()

Visszatérési érték
T ‘ A vektor utolsé eleme.

Visszaadja a vektor utolsé elemét. Ugyanazt jelenti, mintha azt mondanank, hogy
x[x.size()-1].

1. VECTOR

1.3. Ertékek médositasa

1.3.1. void x.assign(int n, T)

Paraméterek
n | unsigned int | Ennyi eleme legyen a vektornak
T T Ezt az értéket adja a vektor Osszes elemének.

Tipusdnak értelemszertien azonosnak kell lennie a
vektor tipusaval.

Ertékads funkcié.

‘ vector<int> x(10,56); ‘
| x.assign(5,20); |

A fenti kod eredményeként a vektornak 5 eleme lesz, mindegyik értéke 20. A vektor
eredeti tartalma elvész.

1.3.2. void x.push_back(T)

Paraméterek
T | T| A vektor tipusanak megfelel6 tipusu érték, amit
szeretnénk betenni.

A T elemet beteszi a vektorba, az utolsé elem utan. A vektor mérete értelemszeriien
eggyel no.

‘ vector<int> x(5,56);
| x.push_back(84) ;

A fenti kéd eredményeként a vektornak 6 eleme lesz, az els6 6t eleme "56’, az utolséd
84,

1.3.3. void x.pop_back(T)

Torli a vektor utolsd elemét.

‘ vector<int> x(5,56);
‘ x.pop_back();

A fenti kod eredményeként a vektornak 4 eleme lesz, mindegyik ’56’.

1. VECTOR

1.3.4. void x.swap(vector<T> y)

Paraméterek
y ‘ vector<T> ‘ Egy masik, ugyanolyan tipusu vektor.

Két vektor tartalménak cseréje. A vektorok tipusanak azonosnak kell lennie, de
méretiik eltérhet.

‘ vector<int> x(5,56);
| vector<int> y(10,84);
‘ x.swap(y); //’cseréld ki x-et és y-t’

A kéd eredményeként x-nek 10 eleme lesz, mind '84’; y-nak pedig 5 eleme lesz,
mind ’56’.

1.4. Méret
1.4.1. int x.size()

Visszatérési érték

unsigned int ‘ A vektor mérete.

Megadja a vektor méretét.

VIGYAZAT!
Sose feledjiik, hogy a vektor elemei nullatél szamozodnak! "For’ ciklusban
tehat mindig legyen <, és nem < a ciklusfeltételben:

vector<int> x(5,56);
for(unsigned int i=0; i < x.size(); i++)

{
x[i]=x[1]+1;

¥

A fenti kod eredményeként az 6t elembdl allo vektor minden eleme 57 lesz.

1.4.2. void x.resize(i, T)

Paraméterek

i | unsigned int | A vektor Uj mérete

T | T, opciondlis | Kezdoérték. Ha a vektor méretét novelyik, ezzel
az elemmel tolti fel az 1) helyeket. A tipusa legyen
ugyanaz, mint a vektor tipusa. Ha nem adjuk meg,
a tipus alapértelmezett konstruktora hivodik meg.

1. VECTOR

Atméretezi a vektort. Ha a vektor méretét csokkentjuk, akkor az els6 i elem
valtozatlan marad, a tobbi elvész; ha a vektor méretét noveljik, akkor az eredeti
elemek valtozatlanul megmaradnak, a maradék helyekre pedig adott T objektumok
keriilnek. Ha nem adjuk meg T-t, a tipus alapértelmezett konstruktora hivédik
meg.

‘ vector<int> x(5,56);
‘ x.resize(10);

‘ x.resize(2);

‘ x.resize(4,84)

A fenti kédban x-et el6szor deklaraltuk, lett 6t eleme, mindegyik '567; majd méretét
10-re noveltiik (az elsé 6t ’56’, a tobbi "0’ - az alapértelmezett konstruktor hivédott
meg); majd lecsokkentettiik a méretét kettére, mindkét megmaradt eleme *56’ volt;
végezetiil megnoveltiik a méretét 4-re, az els6 ketto eleme "56°; az utolsé ketto eleme
pedig "84’ lett.

1.4.3. void x.clear()

Kiiirit egy vektort. A vektor mérete nullara csokken, tartalma elvész.

‘ vector<int> x(5,56);
‘ x.clear();

1.4.4. bool x.empty()

Visszatérési érték
bool ‘ true ha a vektor tires, kiilonben false

Megadja, hogy tires-e az adott vektor, azaz elemeinek szama kisebb-e egynél.

2. String

#include <string>

A string konyvtar definidlja a string tipust. A stringre, azaz a szoveg tipusu
valtozora szeretiink ugy gondolni, mint elemi tipusra, de ha jobban belegondolunk,
rajoviink, hogy egyaltalan nem az: a string nem mas, mint karakterek, azaz
char tipusu valtozok sorozata, lancolata. Régen, a C nyelvben, bizony még char
valtozokbol allo tombok voltak a szoveg tipusu valtozok. A stringek ugyan sokkal
kényelmesebben kezelhetdk (ezért hasznédljuk), mégis célszerii észben tartani, hogy
itt tulajdonképpen tombokrdl van szd, és ennek megfeleléen sok olyan tagfiiggvény
van rajuk definialva, mint amilyeneket a vektorokra hasznélunk.

2.1. Operatorok

A string tipusi véltozdkra minden szokésos operator definialva van. Csak futélag,
és a teljesség igénye nélkiil:
1. Az = operator az értékadas jele.

2. Az == operétor az egyenl6ségvizsgdlat jele. Két string akkor egyenld, ha
egymasnak megfelel6 karaktereik egyenloek.

3. A reldcids operdtorok (vagyis <, >, <= és >=) gy miikodnek, mint a szétari
rendezés: ami el0bb szerepelne a szétarban, az a kisebb. A “macska” >
"macsek” > "egérfelderitési bizottmany a kozos jolétért”; vagyis két string
relaciéjat nem a hosszuk befolyasolja.

4. A + operator Osszekapcsol két stringet; vagy egy string és egy char tipusu
valtozot.

5. A += operator hozzacsatolja a stringhez az utana koévetkez6 string vagy
char tipusu valtozot.

2.2. Karakterek elérése
2.2.1. char x]i

Paraméterek
i

A lekérni kivant karakter indexszama. Ne feledjiik,
hogy az elso karakter indexe 0, nem pedig 1.

unsigned int

Visszatérési érték
char ‘ A string i indext karaktere.

2. STRING

string x="Macska";
for(unsigned int i=0; i < x.length(); i++)
{
cout << "Az " << i << ", karakter:" << x[i] << "\n";

}

VIGYAZAT!
Itt még fokozottabban érvényes, amit a vektoroknal elmondtunk:
probéaljunk SOHA nem hivatkozni olyan elemre, ami nem létezik.

Az [] operator persze értékadasra is hasznalhato:

string x="Macska";
x[01="k’;

A fenti kod eredményeképp a string tartalma ”kacska” lesz.

VIGYAZAT!
Ha nem 1étez6 elemnek prébéalunk értéket adni, a programunk latvanyosan
meg fog halni. A vektor ilyen esetben megprébélja atméretezni magat, de
a string mar nem ilyen el6zékeny.

VIGYAZAT!
Amikor a string egyes karaktereinek 1j értéket adunk, a char tipusu
véaltozét mindig aposztréfok (?), és ne idézéjelek (") kozé tegytk! Az
aposztrofok kozé tett karakterek karakterek, vagy C-stringek; az idéz6jelek
kozé tett karakterek C++ stilusu stringek. A két tipus kozott van atjaras

ugyan, de nem felcserélhetéek.

2.2.2. char x.at(i)

Paraméterek

i

unsigned int | A lekérni kivant karakter indexszdama. Ha i in-
dexszamu karakter nem létezik, exceptiont lok.

Visszatérési érték

char ‘ A vektor i indexszdmu karaktere.

2. STRING

2.3. Beolvasas

2.3.1. istreamé& getline(istream& is, string str, char delim)

Paraméterek

is istream& | Referencia szerint dtadott istream objektum (pl
ifstream, cin), amelybdl ki akarjuk szedni az
adatot.

str string A string, amelybe bepakolja a streambol kiszedett
adatot.

delim char Opcionalis. A ’delimiter’, az a karakter, amed-
dig ki akarunk szedni adatot. Opcionélis,
alapértelmezetten "\n’.

Visszatérési érték
istream& | A referencia szerint atadott objektum. Nyugodtan elvethetd, ke-
zelhet6 voidként.

Fogja is stream objektumot, és kiszed beldle minden adatot egészen a delim
karakterig. Ha a delim karakter nem taldlhato, a beolvasas a stream végéig tart.
A delim karakter maga is beolvasasra keriil, de nem keriil bele a stringbe, elvetjiik.

10

2. STRING

VIGYAZAT!
A sorvégjellel nem lehet viccelni.

Ha streambdl olvasunk be, nagyon vigyazzunk a sorvégjellel, és vagy a
getline()-t haszndljuk, vagy a >> operétort, de ne keverjiik a két technikét.

string x, y;
cin >> x;
getline(cin,y);

A fenti kis kodtdl azt varnank, hogy elobb beolvas egy stringet a konzolrdl,
majd ismét user inputot kér, és beolvas egy egész sort. A valdsagban
viszont csak egyszer fog user inputot kérni, beolvas egy stringet, majd
y-ba bekeriil a user input maradéka — a >> operator ugyanis otthagyja a
sorvégjelet! Persze meg lehet probalni kikeriilni a csapdat:

string x, y;
cin >> x >> ws;
getline(cin,y);

A fenti kéd a vartnak megfeleléen fog miikodni, mert a >> ws operator
beolvassa és elveti a sorvégjelet. De ha a user az elsé inputban egynél
tobb szdt irt be, a >> csak az elsd szokozig fog beolvasni, a getline pedig
beolvassa a maradékot...

Kétségkiviil meg lehet oldani a dolgot, de a hibalehetdségek szama nagyon
magas. Valasszuk ki a feladathoz ill6 technikat, és csak azt hasznéljuk.

2.4. Meéret
2.4.1. int x.size()

Visszatérési érték

unsigned int ‘ A string hossza.

Megadja a string hosszat. Azonos a x.length()-szel.

2.4.2. int x.length()

Visszatérési érték

unsigned int ‘ A string hossza.

Megadja a string hosszat. Azonos a x.size()-zal.

11

2. STRING

VIGYAZAT!
Nem lehet elégszer hangstilyozni, hogy az elemek nullatél szamozodnak,
és hogy nagy szarba kertilhetiink, ha nem létez6 elemre hivatkozunk.

2.4.3. void x.resize(int i, char c)

Paraméterek

i | unsigned int | A string Uj mérete

c char Kezdoérték. Ha a string méretét noveljik, ezzel a
karakterrel toltodik fel.

Atméretezi a stringet. Ha a string mérete csokken, a levagott karakterek elvesznek;
ha a string mérete no, az adott char karakterrel toltodik fel.

string x="Csacska macska";
x.resize(8);
x.resize(14,’%’);

A fenti kéd eredményeként a string eloszor ” Csacska ”-ra véltozik, majd ” Csacska
FAFFHAN 1o

2.4.4. void x.clear()

Kiiiriti a stringet. A string mérete nullara csokken, tartalma elvész.

2.4.5. bool x.empty()

Visszatérési érték
bool ‘ true ha a string hossza nulla, kiillonben false

Megadja, hogy ’tires’-e az adott string, azaz hossza kisebb-e egynél.

2.5. Moddositas

2.5.1. string& x.append(string& str)

Paraméterek
str ‘ string ‘ A string, amit hozzacsatolunk a stringhez.

Az append els6 verzidja: hozzéacsatol egy stringet a stringhez. Megegyezik a +=
operatorral.

12

2. STRING

2.5.2. string& x.append(string& str, int posl, int pos2)

Paraméterek

str string A string, aminek egy részét hozzacsatoljuk a
stringhez.

posl | unsigned int | A kezdGindex.

pos2 | unsigned int | A végzdindex.

Az append masodik, izgalmasabb valtozata: str posl és pos2 kozotti darabjét
csatolja a stringhez.

string x="kicsi";
string str="kicsi macska mocska";
x.append(str,5,11)

A fenti kéd eredménye ”kicsi macska”.

2.5.3. string& x.append(int n, char c)

Paraméterek

n | unsgined int | Ennyiszer illesztjiikk hozza a karaktert a stringhez.

c char A karakter, amit n-szer hozzaillesztiink a string-
hez.

Az append harmadik véaltozata: n darab c karaktert illeszt hozza a stringhez.
string x="Hurra";

char c=’1"
x.append(c,3)

A kod eredménye ”Hurral!l”.
2.6. Stringmanipulacio

2.6.1. char* x.c_str()

Visszatérési érték

charx (C-string) | A string C-string véltozata.

Atalakitja a”’modern” stringet régimédi C-stringgé. Tobb C fiiggvényhez sziikséges.
string x="myfile.txt";

istream f;
f.open(x.c_str());

Az f.open(x); nem fordulna.

13

2. STRING

2.6.2. int x.find(string& str, int pos)

Paraméterek

str string& Ezt a stringet keressiik a stringben.

pos | unsigned int | Ennyiedik karaktertol keresiink. Opcionalis, alap-

esetben 0.

Visszatérési érték

unsigned int | A keresett szovegrész elejének indexszama a stringben. Ha nincs

meg a string, a visszatérési érték string: :npos.

Megkeresi a stringben str szovegrész elsé eléfordulasat.

string x="Kedves, kicsi csacska macska.";
string str="macska";
if (x.find(str) !=string: :npos)
{
cout << "Megvan a macska!!!";
}
else
{
cout << "Nincs benne macska :/";
}

2.6.3. int x.find(char c, int pos)

Paraméterek
Cc char ‘ Ezt a karaktert keressiik a stringben.
pos | unsigned int | Ennyiedik karaktertol kerestink. Opciondlis, alap-

esetben 0.

Visszatérési érték

unsigned int
rakter, a visszatérési érték string: :npos.

Megkeresi a stringben c karakter elso elofordulasat.

A keresett karakter indexszama a stringben. Ha nincs meg a ka-

string x="Kedves, kicsi csacska macska.";
if(x.find(’,’, 9)!=string: :npos)
{
cout << "Az elso vesszo a ",;
cout << x.find(’,’, 9) << ". helyen van.";
}
else
{

14

2. STRING

cout << "Nincsen benne vesszo egy sem.";

3

2.6.4. int x.rfind(string& str, int pos)

Paraméterek

str string& Ezt a stringet keressiik a stringben.

pos | unsigned int | Ennyiedik karakterig kerestink. Opcionalis, alap-
esetben x.size().

Visszatérési érték

unsigned int | A keresett szovegrész elejének indexszama a stringben. Ha nincs
meg a string, a visszatérési érték string: :npos.

Megkeresi a stringben str szovegrész utolso el6fordulasat.

2.6.5. int x.rfind(char c, int pos)

Paraméterek

c char Ezt a karaktert keressiik a stringben.

pos | unsigned int | Ennyiedik karakterig kerestink. Opcionalis, alap-
esetben x.size().

Visszatérési érték

unsigned int | A keresett karakter indexszama a stringben. Ha nincs meg a ka-
rakter, a visszatérési érték string: :npos.

Megkeresi a stringben c karakter utolso el6fordulasat.

2.6.6. int x.find first_of(string str, int pos)

Paraméterek

string str Az ebben a stringben 1évo karakterek valamelyikét
keresstik.

pos unsigned int | Ennyiedik karaktertol keresiink. Opcionalis, alap-
esetben 0.

Visszatérési érték

unsigned int | A keresett karakterek valamelyikének indexszama a stringben. Ha
nincs meg a karakter, a visszatérési érték string: :npos.

Megkeresi a stringben az str stringben 1év6 karakterek bdrmelyikét.

15

2. STRING

string x="Analizist tanulgat az én babam.";
if(x.find_first_of("0123456789") !=string: :npos)

{

cout << "Van benne szamjegy."

3

else

{

cout << "Nincsen benne szamjegy.";

}

2.6.7. int x.find last_of(string str, int pos)

Paraméterek

string str Az ebben a stringben 1év6 karakterek valamelyikét
keressiik.

pos unsigned int | Ennyiedik karakterig keresiink. Opcionalis, alap-
esetben x.size().

Visszatérési érték

unsigned int | A keresett karakterek valamelyikének indexszama a stringben. Ha
nincs meg a karakter, a visszatérési érték string: :npos.

Megkeresi a stringben az str stringben 1évé karakterek barmelyikének utolsd

el6fordulasat.

2.6.8. string x.substr(int pos, int n)

Paraméterek

pos | unsigned int | Az ennyidik karaktertol vagjuk ki a szovegrészt.

n unsigned int | Ennyi karaktert vagunk ki a szovegbol. Op-
cionalis.

Visszatérési érték

string ‘ A kivant szovegrész.

Kiszedi a stringbhdl a pos indexszamu karaktertdl n karakter hosszisagu szovegrészt,
és visszaadja. Ha n nincs megadva, pos-tol a string végéig vagja ki a szovegrészt,

és azt adja vissza.

16

3. Stringstream

#include <sstream>

A sstream konyvtar definidlja a stringstream tipust. A stringstream lényege,
hogy tetszoleges stringet streamként kezelhessiink, ugyantugy, ahogy a konzolin-
putot (cin) vagy egy beolvasott file-t, stb, ezzel lényegesen leegyszeriisitve az
adatfeldolgozast. En kedvelem.

[gy deklardljuk:

stringstream x;

3.1. FErtékadas

3.1.1. void x.str(string s)

Paraméterek
s | string | A szoveg, amit bele akarunk tenni a stringstre-
ambe.

A x.str() elso valtozata, értékado fliggvény. Hasznalata egyszeri:

stringstream x;
string t="Macska";
x.str(t);

3.1.2. void x << string s

Paraméterek
s | string | A szoveg, amit bele akarunk tenni a stringstre-
ambe.

A standard << operator, amit minden ostream objektumra (pl cout vagy ofstream)
hasznalunk:

stringstream x;
string s="Macska";
X << s;

Az << operatorral hasznalhatjuk az iomanip konyvtarban definidlt formézo fliggvényeket,
melyek leirasa egyszer talan bekeriil ebbe a dokumentumba is.

17

3. STRINGSTREAM

3.2. Adatok kinyerése
3.2.1. Oroklott fuggvények és operatorok
A stringstreambdl ugyanugy nyerhetiink ki adatokat, mint barmely istream ob-

jektumbdl. Hasznalhatjuk a getline() fiiggvényt (Id. ??) és az >> operdtort is,
a megszokott modon.

stringstream x;

x.str("1986 kemény telén sok hé esett.");
int num;

string word, line;

X >> num >> word;
getline(x, line);

A kéd futdsa utan num tartalma ”1986”, word tartalma "kemény”, mig line tar-
talma ” telén sok ho esett.”.

3.2.2. string x.str()

Visszatérési érték
string ‘ A stringstream tartalma.

A x.str() masodik véltozata, egyszertien stringgé alakitja és visszaadja a stringstream
teljes tartalmat.

stringstream x;

string t="Macskam";

int 1=1986;

x << t <" fazott " << i << "-ban."
string res=x.str();

A koéd futdsa utédn res tartalma ”Macskdm fadzott 1986-ban.” lesz.

Lathatjuk, hogy a stringstream kivaloan alkalmas stringek és szamok osszeftiziisére,
ami kiilonben problémaés lehet.

18

3. STRINGSTREAM

VIGYAZAT!
Fontos mindig emlékezni ra, hogy bar azt mondjuk ”adatot szediink ki a
streamb6l”, sem az >> operator, sem a getline() fiiggvény nem tavolit
el adatot a streambdl! Példaul

stringstream x;

x.str("1986 kemény telén sok hé esett.");
int num;

string word, line;

X >> num >> word;

line=x.str();

line tartalma 71986 kemény telén sok ho esett.” lesz, annak ellenére, hogy
"kiszedtiink” mar a stringstreambol adatot. Ha a stringstreamet iiriteni,
resetalni akarjuk, csinaljuk igy:

x.str("");

Vagyis egyszertien tegyiink bele egy iires stringet.

19

4. C Character Type

#include <cctype>

A cctype konyvtarban taldlhaté funkcidk a char, azaz karakter tipusu véltozdk
jellegével foglalkoznak. Szerintem nagyon hasznos kis cuccok.
4.1. Karakter jellegének vizsgalata
4.1.1. Dbool isalnum(char c)
Paraméterek

c A vizsgalt karakter. A fliiggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

char

Visszatérési érték

bool | true ha a vizsgélt karakter alfanumerikus, vagyis vagy szamjegy,
vagy az dbécé betilinek egyike (tehat nem kontrollkarakter, irasjel,
stb), kiilénben false.

4.1.2. bool isalpha(char c)

Paraméterek
A vizsgalt karakter. A fliggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

c | char

Visszatérési érték
bool | true ha a vizsgélt karakter alfabetikus, vagyis az dbécé betiije (nem
szam, nem kontrollkarakter, irdsjel, stb), kiilonben false.

4.1.3. Dbool iscntrl(char c)

Paraméterek
A vizsgalt karakter. A fliggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

c | char

Visszatérési érték
bool | true ha a vizsgdlt karakter kontrollkarakter (pl \n, \a, \t stb),
kiilonben false.

20

4. C CHARACTER TYPE

4.1.4. Dbool isdigit(char c)

Paraméterek
c A vizsgalt karakter. A fliggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

char

Visszatérési érték

bool | true ha a vizsgalt karakter szamjegy (0, 1, 2, 3, 4, 5, 6, 7, 8 vagy
9), kiilénben false.

4.1.5. bool islower(char c)

Paraméterek
c A vizsgalt karakter. A fliggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

char

Visszatérési érték

bool ‘ true ha a vizsgalt karakter az abécé kisbetiije, kiilonben false.

4.1.6. Dbool ispunct(char c)

Paraméterek
c | char | A vizsgdlt karakter. A fiiggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

Visszatérési érték

bool | true ha a vizsgélt karakter irasjel (a fiiggvény szempontjabdl min-
den olyan karakter, ami nem kontrollkarakter, nem alfanumerikus,
és nem whitespace), kiilénben false.

4.1.7. Dbool isspace(char c)

Paraméterek
c | char | A vizsgalt karakter. A fliggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

Visszatérési érték

bool | true ha a vizsgélt karakter whitespace (77, "\n’, "\t’, "\v’, "\’ vagy
\r’), kiillénben false.

21

4. C CHARACTER TYPE

4.1.8. bool islower(char c)

Paraméterek
A vizsgdlt karakter. A fiiggvény akarmilyen
szamot is elfogad, amit karakterré alakit.

c | char

Visszatérési érték

bool ‘ true ha a vizsgdlt karakter az abécé nagybetiije, kiilonben false.

4.2. Karakterek atalakitasa

4.2.1. char tolower(char c)

Paraméterek

c | char | Az atalakitani kivant karakter. A fiiggvény
akarmilyen szamot is elfogad, amit karakterré
alakit.

Visszatérési érték

char | A karakter kisbetlis véaltozata, ha ilyen létezik; ha nem létezik,
valtozatlanul visszaadja a karaktert.

4.2.2. char toupper(char c)

Paraméterek

c | char | Az atalakitani kivant karakter. A fliggvény
akarmilyen szamot is elfogad, amit karakterré
alakit.

Visszatérési érték

char | A karakter nagybetiis valtozata, ha ilyen létezik; ha nem létezik,
valtozatlanul visszaadja a karaktert.

string x="Kicsi Macska";
for(unsigned int i=0; i<x.length(); i++)

{

if (islower (x[i]))
{
x[i]l=toupper(x[i]);
}

else if (isupper(x[i]))
{

x[i]=tolower(x[i]);

22

4. C CHARACTER TYPE

3

cout << x;
// kICSI mACSKA

23

5. C Math

#include <cmath>

Matematikai miiveletek.

5.1. Trigonometria
5.1.1. double cos(double x)

Paraméterek
X ‘ double ‘ A sz0g radianban.

Visszatérési érték

double ‘ A sz6g koszinusza.

5.1.2. double sin(double x)

Paraméterek
X ‘ double ‘ A szbg radianban.

Visszatérési érték

double ‘ A szbg szinusza.

5.1.3. double tan(double x)

Paraméterek
X ‘ double ‘ A szbg radianban.

Visszatérési érték

double ‘ A sz0g tangense.

5.1.4. double acos(double x)

Paraméterek
double | Egy szog koszinusza, lebegépontos szam a [-1, 1]
intervallumban.

X

Visszatérési érték

double | A szdm arkusz koszinusza radidnban. Ha a szdm nem esik bele a
[-1, 1] intervallumba, az eredmény ”Not a number” lesz.

24

5. C MATH

5.1.5. double asin(double x)

Paraméterek
double | Egy sz0g szinusza, lebegépontos szam a [-1, 1] in-
tervallumban.

X

Visszatérési érték

double | A szdm arkusz szinusza radidnban. Ha a szam nem esik bele a [-1,
1] intervallumba, az eredmény ”Not a number” lesz.

5.1.6. double atan(double x)

Paraméterek
X ‘ double ‘ Egy szog tangense.

Visszatérési érték

double | A szam arkusz tangense. Az elOjelek kiesése miatt a fliggvény nem
tudja megallapitani, melyik siknegyedbe esik a szog, ami gondokat
okozhat pl komplex szamok atalakitasakor.

5.1.7. double atan2(double y, double x)

Paraméterek
y | double | A tangens y koordinatéja.
x | double | A tangens x koordinatdja.

Visszatérési érték

double | Az y/x szdm arkusz tangense. Az atan() fiiggvénnyel ellentétben
sikeresen megallapitja azt is, mely siknegyedbe esik a szog.

5.2. Hiperbolikus fiiggvények
5.2.1. double cosh(double x)

Paraméterek
X ‘ double ‘ Lebegopontos szam.

Visszatérési érték

double ‘ x koszinusz hiperbolikusza.

25

5. C MATH

5.2.2. double sinh(double x)

Paraméterek

X ‘ double ‘ Lebegbpontos szam.

Visszatérési érték

double ‘ x szinusz hiperbolikusza.

5.2.3. double tanh(double x)

Paraméterek

X ‘ double ‘ Lebegbpontos szam.

Visszatérési érték

double ‘ x tangens hiperbolikusza.

5.3. Exponencialis és logaritmusfiiggvények
5.3.1. double exp(double x)

Paraméterek

X ‘ double ‘ Lebegopontos szam.

Visszatérési érték

double ‘ eX - e az x-edik hatvanyra emelve.

5.3.2. double log(double x)

Paraméterek

X ‘ double ‘ Lebegbpontos szam, legyen pozitiv!

Visszatérési érték

double ‘ Inx - x természetes alapu logaritmusa.

5.3.3. double log10(double x)

Paraméterek

X ‘ double ‘ Lebegépontos szam.

Visszatérési érték

double ‘ log,, x - x tizes alapu logaritmusa.

26

5. C MATH

5.3.4. double modf(double x, double* egeszresz)

Paraméterek

X double | Lebegopontos szam, aminek az egész- és tortrésze
érdekel.

egeszresz | doublex | Mutaté ahhoz a double tipusd valtozéhoz, ahova
az egészrészt szeretnénk betenni.

Visszatérési érték
double ‘ x tortrésze.

ElGjeles maradékos osztas: a visszatérési érték a szam tortrésze; az egészrész pedig
bekeriill az egeszresz valtozdba. Igy hasznaljuk:

double x, egeszresz, tortresz;
x=2.71828;

tortresz=modf (x, &egeszresz);

A kéd futdsa utan egeszresz valtozd értéke 2.000000 lesz, a tortresz valtozdé
pedig 0.71828.

Fontos a & jel az egeszresz valtozé neve elott! FEzzel a jellel az egeszresz
valtozéra mutaté mutatot adjuk at a funkcionak, nem magat a valtozot.

5.4. Hatvanyfiiggvények

5.4.1. double pow(double a, double x)

Paraméterek
a | double | Az alap.
x | double | A kitevd.

Visszatérési érték
double ‘ a* - az alap a kitevd hatvanyara emelve.

5.4.2. double sqrt(double x)

Paraméterek
X ‘ double ‘ A szadm, amibol gyokot szeretnénk vonni.

Visszatérési érték
double ‘ VX - x négyzetgyoke.

27

5. C MATH

5.5. Kerekités és abszolutérték
5.5.1. double abs(double x)

Paraméterek

X ‘ double ‘ Lebegopontos szam.

Visszatérési érték

double ‘ x abszolutértéke.

5.5.2. double ceil(double x)

Paraméterek

X ‘ double ‘ A kerekitendd tort.

Visszatérési érték

double ‘ A legkisebb, x-nél nagyobb egész szam (x felfele kerekitve).

5.5.3. double floor(double x)

Paraméterek

x ‘ double ‘ A kerekitendd tort.

Visszatérési érték

double ‘ A legnagyobb, x-nél kisebb egész szam (x lefele kerekitve).

28

6. C Standard General Utilities Library

#include <cstdlib>

”(C Standard Altalanos Eszkozok Konyvtar”

6.1. String atalakitasa szamma
6.1.1. double atof(char* str)

Paraméterek
str | char* (C-string) | A C-string, amit szdmm4 akarunk dtalakitani.

Visszatérési érték
double ‘ A szoveg szamértéke.

Ha a string whitespace-ekkel kezdddik, a fliggvény ezeket atugorja, ezutan kezdodik
a konverzié. Ezutan beolvas minden olyan karaktert, amelyek egytitt emlékeztetnek
egy lebegépontos szamra, vagyis illeszkednek a kovetkezé mintdba:

e opcionalisan egy darab + vagy - jel;
e szdmjegyek sorozata, ami tartalmazhat egy pontot (*.’);

e opciondlisan az exponencialis rész, vagyis egy e vagy E karakter, amit egy +
vagy - jel és szamjegyek sorozata kovet.

Amint a fliggvény olyan karakterre bukkan, ami ebbe a mintdba nem illeszkedik,
a fliggvény abbahagyja a konverziét. Ha a konverzié vége elott nem taldl érvényes
mintat, nullat ad vissza.

Ha 'modern’, c++ stringet szeretnénk atalakitani, konvertaljuk a c_str () fiiggvénnyel.

double res;

string x="1984ad";
res=atof (x.c_str());
cout << res << "\n";
//°1984°

string y="kr.u.1984";
res=atof (y.c_str());
cout << res << "\n";

//;O;

29

6. C STANDARD GENERAL UTILITIES LIBRARY

6.1.2. int atoi(char* str)

Paraméterek
str ‘ char* (C-string) ‘ A C-string, amit szamma akarunk dtalakitani.

Visszatérési érték
int ‘ A szoveg szamértéke.

Az adott C-stringet integerré prébalja alakitani. A stringkezdd whitespace-eket
atugorja, majd beolvas minden olyan karaktert, ami emlékeztet egy egész szamra,
vagyis:

e opcionalisan egy darab + vagy - jel;

e szamjegyek sorozata.

Amint olyan karakterre bukkan, ami ebbe az egyszeri mintdba nem illik, a fiiggvény
abbahagyja a konverziot. Ha egyaltalan nem talalt a mintanak megfelel6 karakte-
reket, nullat ad vissza.

6.2. Véletlenszam

6.2.1. int rand()

Visszatérési érték
int ‘ Egy szam 0 és a RAND MAX konstans kozott.

Hasznalata el6tt mindig hivjuk meg az srand () fiiggvényt!

6.2.2. void srand(int seed)

Paraméterek

seed | unsigned int | Az a nullandl nagyobb egész szam, amit a
véletlenszam-generalé algoritmus magként fog
hasznalni.

Inicializalja a véletlenszam-general6 algoritmust.

srand(time(NULL));
int res=rand() % 10 +1;

30

I. Fuggelék: adattipusok

A teljesség igénye nélkiil.

Név Ertékkészlet Méret (byte)
bool {true, false} 1
char [-128, 127] 1
unsigned char [0, 255] 1
int [-2147483648, 2147483647] 4
unsigned int [0, 4294967295] 4
short int [-32768, 32767] 2
unsigned short int [0, 65535] 2
long int [-2147483648, 2147483647] 4
unsigned long int [0, 4294967295 4
float +3.4 e+38 (kb. 7 tizedesjegy) 4
double +1.7 e+308 (kb. 15 tizedesjegy) 8

A fentieken kiviil szot érdemel még a void: szé szerint "iiresség”. Azon funkcidk
visszatérési értéke, amelyek nem adnak vissza értéket. Az ilyen funkcidkat eljardsnak
nevezziik, és nem sziikséges return parancsot tenni beléjiikk. void tipusu valtozé
nincs. Matekosoknak: az iires halmaz.

i. Tipuskonverzié

Az elemi tipusok kozott van atjards. Még a bool tipus is numerikus: a 0 szam
false-nak szdmit, és minden z > 0 érték true-nak (ha nincs jel, az hamis, ha
van jel, az igaz). Hasonl6képp, int-ek jelolhetnek kifrathaté karaktereket is.
Amikor valahogy két tipus kozott atjarunk, tipuskonverziét hajtunk végre. A
tipuskonverzio lehet implicit és explicit.

Implicit a tipuskonverzié akkor, ha mi magunk nem frunk le semmit, és a forditot
kényszeritjik rd, hogy végezze el nekiink a konverziét:

double d=5.524;
int i=7;

if (i>d)
{
i=d;
cout << i; //’5’

3

A fenti kédban kétszer torténik konverzié: egyszer osszehasonlitunk egy double
és egy int értéket, egyszer meg lebegépontos értéket adunk egy int valtozonak.
A compiler hiba nélkiil elvégzi a dolgot, de éhatatlanul adatvesztés torténik.

Explicit konverziérél akkor beszéliink, ha egy paranccsal megkérjiik a compilert,
hogy konvertaljon egyik adattipusbol a masikba:

31

1. FUGGELEK: ADATTIPUSOK

‘ int i=90;
‘ cout << static_cast<char>(i); //’Z’

A fenti példaban a static_cast<>() funkcié hatdsdra a program char tipusu
valtozéként értékeli i-t a kifejezésben.

A static_cast<>() alegmodernebb és preferdlt modja a tipuskonverziénak, de ha
nagyon sietiink, silyosabb biintetés nélkiil hasznalhatjuk a C stilusu tipuskonverziot:

| int 1=90;
‘ cout << (char)i; //’Z’

ii. Par szd az eldjelrol

Egy tipus eldjeles és eldjel nélkiili valtozata két kiilon tipusnak szamit! Ennek
megfeleloen szigoribb compilerek figyelmeztetést adnak, ha egy tipus eléjel nélkiili
(unsigned) és el6jeles (signed) véltozatat probéljuk dsszehasonlitani.

vector<int> x{10,25}

for(int i=0; i<x.size(); i++)
{
x[i]+=5;
}

A fenti kéd figyelmeztetést general, mert az x.size () visszatérési értéke unsigned
int, mig az i signed int-ként van deklaralva.

A program ettol még fordulni fog, és az esetek nagy tobbségében soha semmiféle
galiba nem lesz beldle, a nagyon is 1étez6 hibalehetdségeket, a konzisztenciat és a,
hm, szépséget észben tartva mégis hasznos lehet odafigyelni.

32

