
Néhány STL függvény

v0.000021

2010. november 2.

Tartalomjegyzék

1. Vector

#include <vector>

A vector könyvtár definiálja a vector t́ıpust. A klasszikus C tömbökhöz képest
a vektor előnye, hogy könnyű és kényelmes dinamikusan átméretezni.

1.1. Deklaráció és kezdőérték

Vektor t́ıpusú változót ı́gy deklarálunk:

vector<T> x;

ahol T bármilyen t́ıpus lehet, pl. int, string, double, stb. Az általunk definiált
t́ıpusokat is rendezhetjük vektorba.

Vektort létrehozhatunk úgy is, hogy megadjuk, hány elemből álljon:

vector<T> x(10);

A fenti kód létrehoz egy 10 darab, T t́ıpusú elemből álló vektort.

A második paraméterben megadhatjuk az elemek kezdőértékét, pl:

vector<int> x(10,56);

A fenti kód létrehoz egy 10 darab, integer t́ıpusú elemből álló vektort, melynek
minden elemének értéke ’56’. Ügyeljünk rá, hogy a kezdőérték t́ıpusa azonos legyen
a vektor t́ıpusával.

Egy vektor tartalmát könnyen átmásolhatjuk egy másik vektorba az = operátorral:

vector<int> x(10,56);

vector<int> y(5,10);

x=y;

A kód futása után x egy öt darab, integer t́ıpusú elemet tartalmazó vektor lesz,
melynek minden eleme ’10’. A vektorok t́ıpusának azonosnak kell lennie; méretük
különbözhet.

2

1. Vector

1.2. Elemek elérése

1.2.1. T x[int i]

Paraméterek
i unsigned int A lekérni ḱıvánt elem indexszáma. Ne feledjük,

hogy az első elem indexe 0, nem pedig 1.

Visszatérési érték
T A vektor i indexű eleme.

Egy vektor elemeit a legkönnyebben az [] operátorral érhetjük el:

vector<int> x(10,2)

int y=x[0];

A kód futása után y értéke ’2’ lesz.

VIGYÁZAT!
Ha olyan elemet próbálunk az [] operátorral lekérni, ami nem létezik,
a programunk jó eséllyel meg fog halni. Ezért nagyon fontos, hogy sose
próbáljunk olyan elemet lekérni, ami nem létezik! Mindig tartsuk észben
azt is, hogy az elemek számozása 0-val kezdődik: az első elem indexe 0.
Vagyis egy t́ızelemű vektor elemei 0-tól 9-ig számozódnak:

vector<int> x(10,56);

int y=x[10];

A fenti kód nagy eséllyel ’segmentation fault’-ot fog okozni, vagyis le fog
állni; de ha nem is, komoly működési zavarokat okozhatunk.
Szóval: csak óvatosan.

A [] operátort értékadásra is használhatjuk (x[0]=25;, x első elemének értéke
25 lesz). Ha olyan indexű tagnak akarunk értéket adni, ami nem létezik, akkor a
vektor előzékenyen megnyúlik:

vector<int> x(10,56);

x[50]=12;

A fenti kód eredményeként lesz egy 51 tagú vektorunk, melynek az első t́ız eleme
’56’, az utolsó eleme 12, a többi pedig nulla.

Ugyan ez egy nagyon hasznos tulajdonsága a vektor osztálynak, ne éljünk vissza
vele, rossz szokásokhoz vezet.

3

1. Vector

1.2.2. T x.at(int i)

Paraméterek
i unsigned int A lekérni ḱıvánt elem indexszáma. Ne feledjük,

hogy az első elem indexe 0, nem pedig 1. Ha i

indexű elem nem létezik, exceptiont lök.

Visszatérési érték
T A vektor i indexű eleme.

Általában ugyanúgy működik, mint az x[i] operátor, azzal a különbséggel, hogy
exceptiont lök ha i indexszámú elem nem létezik. Exception handlinget, azaz
kivételkezelést még nem tanultunk, és kivételkezelés nélkül a programunk ugyanúgy
meghal, de ı́gy is sokszor többre jutunk egy exceptionös hibaüzenettel, mint azzal,
ha a program benyögi, hogy ’Segmentation fault’.

Merészebbeknek itt egy példa a használatára:

vector<int> x(10,5);

try {

int i=x.at(664);

}

catch (exception& e) {

cout << "Hiba: " << e.what() << endl;

}

cout << "... de a program fut!";

1.2.3. T x.front()

Visszatérési érték
T A vektor első, azaz 0. indexszámú eleme.

Visszaadja a vektor első elemét. Ugyanazt jelenti, mintha azt mondanánk, hogy
x[0].

1.2.4. T x.back()

Visszatérési érték
T A vektor utolsó eleme.

Visszaadja a vektor utolsó elemét. Ugyanazt jelenti, mintha azt mondanánk, hogy
x[x.size()-1].

4

1. Vector

1.3. Értékek módośıtása

1.3.1. void x.assign(int n, T)

Paraméterek
n unsigned int Ennyi eleme legyen a vektornak
T T Ezt az értéket adja a vektor összes elemének.

T́ıpusának értelemszerűen azonosnak kell lennie a
vektor t́ıpusával.

Értékadó funkció.

vector<int> x(10,56);

x.assign(5,20);

A fenti kód eredményeként a vektornak 5 eleme lesz, mindegyik értéke 20. A vektor
eredeti tartalma elvész.

1.3.2. void x.push back(T)

Paraméterek
T T A vektor t́ıpusának megfelelő t́ıpusú érték, amit

szeretnénk betenni.

A T elemet beteszi a vektorba, az utolsó elem után. A vektor mérete értelemszerűen
eggyel nő.

vector<int> x(5,56);

x.push_back(84);

A fenti kód eredményeként a vektornak 6 eleme lesz, az első öt eleme ’56’, az utolsó
’84’.

1.3.3. void x.pop back(T)

Törli a vektor utolsó elemét.

vector<int> x(5,56);

x.pop_back();

A fenti kód eredményeként a vektornak 4 eleme lesz, mindegyik ’56’.

5

1. Vector

1.3.4. void x.swap(vector<T> y)

Paraméterek
y vector<T> Egy másik, ugyanolyan t́ıpusú vektor.

Két vektor tartalmának cseréje. A vektorok t́ıpusának azonosnak kell lennie, de
méretük eltérhet.

vector<int> x(5,56);

vector<int> y(10,84);

x.swap(y); //’cseréld ki x-et és y-t’

A kód eredményeként x-nek 10 eleme lesz, mind ’84’; y-nak pedig 5 eleme lesz,
mind ’56’.

1.4. Méret

1.4.1. int x.size()

Visszatérési érték
unsigned int A vektor mérete.

Megadja a vektor méretét.

VIGYÁZAT!
Sose feledjük, hogy a vektor elemei nullától számozódnak! ’For’ ciklusban
tehát mindig legyen <, és nem ≤ a ciklusfeltételben:

vector<int> x(5,56);

for(unsigned int i=0; i < x.size(); i++)

{

x[i]=x[i]+1;

}

A fenti kód eredményeként az öt elemből álló vektor minden eleme 57 lesz.

1.4.2. void x.resize(i, T)

Paraméterek
i unsigned int A vektor új mérete
T T, opcionális Kezdőérték. Ha a vektor méretét növeljük, ezzel

az elemmel tölti fel az új helyeket. A t́ıpusa legyen
ugyanaz, mint a vektor t́ıpusa. Ha nem adjuk meg,
a t́ıpus alapértelmezett konstruktora h́ıvódik meg.

6

1. Vector

Átméretezi a vektort. Ha a vektor méretét csökkentjük, akkor az első i elem
változatlan marad, a többi elvész; ha a vektor méretét növeljük, akkor az eredeti
elemek változatlanul megmaradnak, a maradék helyekre pedig adott T objektumok
kerülnek. Ha nem adjuk meg T-t, a t́ıpus alapértelmezett konstruktora h́ıvódik
meg.

vector<int> x(5,56);

x.resize(10);

x.resize(2);

x.resize(4,84)

A fenti kódban x-et először deklaráltuk, lett öt eleme, mindegyik ’56’; majd méretét
10-re növeltük (az első öt ’56’, a többi ’0’ - az alapértelmezett konstruktor h́ıvódott
meg); majd lecsökkentettük a méretét kettőre, mindkét megmaradt eleme ’56’ volt;
végezetül megnöveltük a méretét 4-re, az első kettő eleme ’56’, az utolsó kettő eleme
pedig ’84’ lett.

1.4.3. void x.clear()

Kiüŕıt egy vektort. A vektor mérete nullára csökken, tartalma elvész.

vector<int> x(5,56);

x.clear();

1.4.4. bool x.empty()

Visszatérési érték
bool true ha a vektor üres, különben false

Megadja, hogy üres-e az adott vektor, azaz elemeinek száma kisebb-e egynél.

7

2. String

#include <string>

A string könyvtár definiálja a string t́ıpust. A stringre, azaz a szöveg t́ıpusú
változóra szeretünk úgy gondolni, mint elemi t́ıpusra, de ha jobban belegondolunk,
rájövünk, hogy egyáltalán nem az: a string nem más, mint karakterek, azaz
char t́ıpusú változók sorozata, láncolata. Régen, a C nyelvben, bizony még char

változókból álló tömbök voltak a szöveg t́ıpusú változók. A stringek ugyan sokkal
kényelmesebben kezelhetők (ezért használjuk), mégis célszerű észben tartani, hogy
itt tulajdonképpen tömbökről van szó, és ennek megfelelően sok olyan tagfüggvény
van rájuk definiálva, mint amilyeneket a vektorokra használunk.

2.1. Operátorok

A string t́ıpusú változókra minden szokásos operátor definiálva van. Csak futólag,
és a teljesség igénye nélkül:

1. Az = operátor az értékadás jele.

2. Az == operátor az egyenlőségvizsgálat jele. Két string akkor egyenlő, ha
egymásnak megfelelő karaktereik egyenlőek.

3. A relációs operátorok (vagyis <, >, <= és >=) úgy működnek, mint a szótári
rendezés: ami előbb szerepelne a szótárban, az a kisebb. A ”macska” >

”macsek” > ”egérfeldeŕıtési bizottmány a közös jólétért”; vagyis két string
relációját nem a hosszuk befolyásolja.

4. A + operátor összekapcsol két stringet; vagy egy string és egy char t́ıpusú
változót.

5. A += operátor hozzácsatolja a stringhez az utána következő string vagy
char t́ıpusú változót.

2.2. Karakterek elérése

2.2.1. char x[i]

Paraméterek
i unsigned int A lekérni ḱıvánt karakter indexszáma. Ne feledjük,

hogy az első karakter indexe 0, nem pedig 1.

Visszatérési érték
char A string i indexű karaktere.

8

2. String

string x="Macska";

for(unsigned int i=0; i < x.length(); i++)

{

cout << "Az " << i << ". karakter:" << x[i] << "\n";

}

VIGYÁZAT!
Itt még fokozottabban érvényes, amit a vektoroknál elmondtunk:
próbáljunk SOHA nem hivatkozni olyan elemre, ami nem létezik.

Az [] operátor persze értékadásra is használható:

string x="Macska";

x[0]=’k’;

A fenti kód eredményeképp a string tartalma ”kacska” lesz.

VIGYÁZAT!
Ha nem létező elemnek próbálunk értéket adni, a programunk látványosan
meg fog halni. A vektor ilyen esetben megpróbálja átméretezni magát, de
a string már nem ilyen előzékeny.

VIGYÁZAT!
Amikor a string egyes karaktereinek új értéket adunk, a char t́ıpusú
változót mindig aposztrófok (’), és ne idézőjelek (") közé tegyük! Az
aposztrófok közé tett karakterek karakterek, vagy C-stringek; az idézőjelek
közé tett karakterek C++ st́ılusú stringek. A két t́ıpus között van átjárás
ugyan, de nem felcserélhetőek.

2.2.2. char x.at(i)

Paraméterek
i unsigned int A lekérni ḱıvánt karakter indexszáma. Ha i in-

dexszámú karakter nem létezik, exceptiont lök.

Visszatérési érték
char A vektor i indexszámú karaktere.

9

2. String

2.3. Beolvasás

2.3.1. istream& getline(istream& is, string str, char delim)

Paraméterek
is istream& Referencia szerint átadott istream objektum (pl

ifstream, cin), amelyből ki akarjuk szedni az
adatot.

str string A string, amelybe bepakolja a streamből kiszedett
adatot.

delim char Opcionális. A ’delimiter’, az a karakter, amed-
dig ki akarunk szedni adatot. Opcionális,
alapértelmezetten ’\n’.

Visszatérési érték
istream& A referencia szerint átadott objektum. Nyugodtan elvethető, ke-

zelhető voidként.

Fogja is stream objektumot, és kiszed belőle minden adatot egészen a delim

karakterig. Ha a delim karakter nem található, a beolvasás a stream végéig tart.
A delim karakter maga is beolvasásra kerül, de nem kerül bele a stringbe, elvetjük.

10

2. String

VIGYÁZAT!

A sorvégjellel nem lehet viccelni.

Ha streamből olvasunk be, nagyon vigyázzunk a sorvégjellel, és vagy a
getline()-t használjuk, vagy a >> operátort, de ne keverjük a két technikát.

string x, y;

cin >> x;

getline(cin,y);

A fenti kis kódtól azt várnánk, hogy előbb beolvas egy stringet a konzolról,
majd ismét user inputot kér, és beolvas egy egész sort. A valóságban
viszont csak egyszer fog user inputot kérni, beolvas egy stringet, majd
y-ba bekerül a user input maradéka – a >> operátor ugyanis otthagyja a
sorvégjelet! Persze meg lehet próbálni kikerülni a csapdát:

string x, y;

cin >> x >> ws;

getline(cin,y);

A fenti kód a vártnak megfelelően fog működni, mert a >> ws operátor
beolvassa és elveti a sorvégjelet. De ha a user az első inputban egynél
több szót ı́rt be, a >> csak az első szóközig fog beolvasni, a getline pedig
beolvassa a maradékot...
Kétségḱıvül meg lehet oldani a dolgot, de a hibalehetőségek száma nagyon
magas. Válasszuk ki a feladathoz illő technikát, és csak azt használjuk.

2.4. Méret

2.4.1. int x.size()

Visszatérési érték
unsigned int A string hossza.

Megadja a string hosszát. Azonos a x.length()-szel.

2.4.2. int x.length()

Visszatérési érték
unsigned int A string hossza.

Megadja a string hosszát. Azonos a x.size()-zal.

11

2. String

VIGYÁZAT!
Nem lehet elégszer hangsúlyozni, hogy az elemek nullától számozódnak,
és hogy nagy szarba kerülhetünk, ha nem létező elemre hivatkozunk.

2.4.3. void x.resize(int i, char c)

Paraméterek
i unsigned int A string új mérete
c char Kezdőérték. Ha a string méretét növeljük, ezzel a

karakterrel töltődik fel.

Átméretezi a stringet. Ha a string mérete csökken, a levágott karakterek elvesznek;
ha a string mérete nő, az adott char karakterrel töltődik fel.

string x="Csacska macska";

x.resize(8);

x.resize(14,’*’);

A fenti kód eredményeként a string először ”Csacska ”-ra változik, majd ”Csacska
******”-ra.

2.4.4. void x.clear()

Kiüŕıti a stringet. A string mérete nullára csökken, tartalma elvész.

2.4.5. bool x.empty()

Visszatérési érték
bool true ha a string hossza nulla, különben false

Megadja, hogy ’üres’-e az adott string, azaz hossza kisebb-e egynél.

2.5. Módośıtás

2.5.1. string& x.append(string& str)

Paraméterek
str string A string, amit hozzácsatolunk a stringhez.

Az append első verziója: hozzácsatol egy stringet a stringhez. Megegyezik a +=

operátorral.

12

2. String

2.5.2. string& x.append(string& str, int pos1, int pos2)

Paraméterek
str string A string, aminek egy részét hozzácsatoljuk a

stringhez.
pos1 unsigned int A kezdőindex.
pos2 unsigned int A végzőindex.

Az append második, izgalmasabb változata: str pos1 és pos2 közötti darabját
csatolja a stringhez.

string x="kicsi";

string str="kicsi macska mocska";

x.append(str,5,11)

A fenti kód eredménye ”kicsi macska”.

2.5.3. string& x.append(int n, char c)

Paraméterek
n unsgined int Ennyiszer illesztjük hozzá a karaktert a stringhez.
c char A karakter, amit n-szer hozzáillesztünk a string-

hez.

Az append harmadik változata: n darab c karaktert illeszt hozzá a stringhez.

string x="Hurrá";

char c=’!’

x.append(c,3)

A kód eredménye ”Hurrá!!!”.

2.6. Stringmanipuláció

2.6.1. char* x.c str()

Visszatérési érték
char* (C-string) A string C-string változata.

Átalaḱıtja a ”modern” stringet régimódi C-stringgé. Több C függvényhez szükséges.

string x="myfile.txt";

istream f;

f.open(x.c_str());

Az f.open(x); nem fordulna.

13

2. String

2.6.2. int x.find(string& str, int pos)

Paraméterek
str string& Ezt a stringet keressük a stringben.
pos unsigned int Ennyiedik karaktertől keresünk. Opcionális, alap-

esetben 0.

Visszatérési érték
unsigned int A keresett szövegrész elejének indexszáma a stringben. Ha nincs

meg a string, a visszatérési érték string::npos.

Megkeresi a stringben str szövegrész első előfordulását.

string x="Kedves, kicsi csacska macska.";

string str="macska";

if(x.find(str)!=string::npos)

{

cout << "Megvan a macska!!!";

}

else

{

cout << "Nincs benne macska :/";

}

2.6.3. int x.find(char c, int pos)

Paraméterek
c char Ezt a karaktert keressük a stringben.
pos unsigned int Ennyiedik karaktertől keresünk. Opcionális, alap-

esetben 0.

Visszatérési érték
unsigned int A keresett karakter indexszáma a stringben. Ha nincs meg a ka-

rakter, a visszatérési érték string::npos.

Megkeresi a stringben c karakter első előfordulását.

string x="Kedves, kicsi csacska macska.";

if(x.find(’,’, 9)!=string::npos)

{

cout << "Az elso vesszo a ";

cout << x.find(’,’, 9) << ". helyen van.";

}

else

{

14

2. String

cout << "Nincsen benne vesszo egy sem.";

}

2.6.4. int x.rfind(string& str, int pos)

Paraméterek
str string& Ezt a stringet keressük a stringben.
pos unsigned int Ennyiedik karakterig keresünk. Opcionális, alap-

esetben x.size().

Visszatérési érték
unsigned int A keresett szövegrész elejének indexszáma a stringben. Ha nincs

meg a string, a visszatérési érték string::npos.

Megkeresi a stringben str szövegrész utolsó előfordulását.

2.6.5. int x.rfind(char c, int pos)

Paraméterek
c char Ezt a karaktert keressük a stringben.
pos unsigned int Ennyiedik karakterig keresünk. Opcionális, alap-

esetben x.size().

Visszatérési érték
unsigned int A keresett karakter indexszáma a stringben. Ha nincs meg a ka-

rakter, a visszatérési érték string::npos.

Megkeresi a stringben c karakter utolsó előfordulását.

2.6.6. int x.find first of(string str, int pos)

Paraméterek
string str Az ebben a stringben lévő karakterek valamelyikét

keressük.
pos unsigned int Ennyiedik karaktertől keresünk. Opcionális, alap-

esetben 0.

Visszatérési érték
unsigned int A keresett karakterek valamelyikének indexszáma a stringben. Ha

nincs meg a karakter, a visszatérési érték string::npos.

Megkeresi a stringben az str stringben lévő karakterek bármelyikét.

15

2. String

string x="Analı́zist tanulgat az én babám.";

if(x.find_first_of("0123456789")!=string::npos)

{

cout << "Van benne szamjegy."

}

else

{

cout << "Nincsen benne szamjegy.";

}

2.6.7. int x.find last of(string str, int pos)

Paraméterek
string str Az ebben a stringben lévő karakterek valamelyikét

keressük.
pos unsigned int Ennyiedik karakterig keresünk. Opcionális, alap-

esetben x.size().

Visszatérési érték
unsigned int A keresett karakterek valamelyikének indexszáma a stringben. Ha

nincs meg a karakter, a visszatérési érték string::npos.

Megkeresi a stringben az str stringben lévő karakterek bármelyikének utolsó
előfordulását.

2.6.8. string x.substr(int pos, int n)

Paraméterek
pos unsigned int Az ennyidik karaktertől vágjuk ki a szövegrészt.
n unsigned int Ennyi karaktert vágunk ki a szövegből. Op-

cionális.

Visszatérési érték
string A ḱıvánt szövegrész.

Kiszedi a stringből a pos indexszámú karaktertől n karakter hosszúságú szövegrészt,
és visszaadja. Ha n nincs megadva, pos-tól a string végéig vágja ki a szövegrészt,
és azt adja vissza.

16

3. Stringstream

#include <sstream>

A sstream könyvtár definiálja a stringstream t́ıpust. A stringstream lényege,
hogy tetszőleges stringet streamként kezelhessünk, ugyanúgy, ahogy a konzolin-
putot (cin) vagy egy beolvasott file-t, stb, ezzel lényegesen leegyszerűśıtve az
adatfeldolgozást. Én kedvelem.

Így deklaráljuk:

stringstream x;

3.1. Értékadás

3.1.1. void x.str(string s)

Paraméterek
s string A szöveg, amit bele akarunk tenni a stringstre-

ambe.

A x.str() első változata, értékadó függvény. Használata egyszerű:

stringstream x;

string t="Macska";

x.str(t);

3.1.2. void x << string s

Paraméterek
s string A szöveg, amit bele akarunk tenni a stringstre-

ambe.

A standard << operátor, amit minden ostream objektumra (pl cout vagy ofstream)
használunk:

stringstream x;

string s="Macska";

x << s;

Az << operátorral használhatjuk az iomanip könyvtárban definiált formázó függvényeket,
melyek léırása egyszer talán bekerül ebbe a dokumentumba is.

17

3. Stringstream

3.2. Adatok kinyerése

3.2.1. Öröklött függvények és operátorok

A stringstreamből ugyanúgy nyerhetünk ki adatokat, mint bármely istream ob-
jektumból. Használhatjuk a getline() függvényt (ld. ??) és az >> operátort is,
a megszokott módon.

stringstream x;

x.str("1986 kemény telén sok hó esett.");

int num;

string word, line;

x >> num >> word;

getline(x, line);

A kód futása után num tartalma ”1986”, word tartalma ”kemény”, mı́g line tar-
talma ” telén sok hó esett.”.

3.2.2. string x.str()

Visszatérési érték
string A stringstream tartalma.

A x.str() második változata, egyszerűen stringgé alaḱıtja és visszaadja a stringstream
teljes tartalmát.

stringstream x;

string t="Macskám";

int i=1986;

x << t << " fázott " << i << "-ban."

string res=x.str();

A kód futása után res tartalma ”Macskám fázott 1986-ban.” lesz.

Láthatjuk, hogy a stringstream kiválóan alkalmas stringek és számok összefűzűsére,
ami különben problémás lehet.

18

3. Stringstream

VIGYÁZAT!
Fontos mindig emlékezni rá, hogy bár azt mondjuk ”adatot szedünk ki a
streamből”, sem az >> operátor, sem a getline() függvény nem távoĺıt
el adatot a streamből! Például

stringstream x;

x.str("1986 kemény telén sok hó esett.");

int num;

string word, line;

x >> num >> word;

line=x.str();

line tartalma ”1986 kemény telén sok hó esett.” lesz, annak ellenére, hogy
”kiszedtünk” már a stringstreamből adatot. Ha a stringstreamet üŕıteni,
resetálni akarjuk, csináljuk ı́gy:

x.str("");

Vagyis egyszerűen tegyünk bele egy üres stringet.

19

4. C Character Type

#include <cctype>

A cctype könyvtárban található funkciók a char, azaz karakter t́ıpusú változók
jellegével foglalkoznak. Szerintem nagyon hasznos kis cuccok.

4.1. Karakter jellegének vizsgálata

4.1.1. bool isalnum(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter alfanumerikus, vagyis vagy számjegy,

vagy az ábécé betűinek egyike (tehát nem kontrollkarakter, ı́rásjel,
stb), különben false.

4.1.2. bool isalpha(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter alfabetikus, vagyis az ábécé betűje (nem

szám, nem kontrollkarakter, ı́rásjel, stb), különben false.

4.1.3. bool iscntrl(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter kontrollkarakter (pl \n, \a, \t stb),

különben false.

20

4. C Character Type

4.1.4. bool isdigit(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter számjegy (0, 1, 2, 3, 4, 5, 6, 7, 8 vagy

9), különben false.

4.1.5. bool islower(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter az ábécé kisbetűje, különben false.

4.1.6. bool ispunct(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter ı́rásjel (a függvény szempontjából min-

den olyan karakter, ami nem kontrollkarakter, nem alfanumerikus,
és nem whitespace), különben false.

4.1.7. bool isspace(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter whitespace (’ ’, ’\n’, ’\t’, ’\v’, ’\f’ vagy

’\r’), különben false.

21

4. C Character Type

4.1.8. bool islower(char c)

Paraméterek
c char A vizsgált karakter. A függvény akármilyen

számot is elfogad, amit karakterré alaḱıt.

Visszatérési érték
bool true ha a vizsgált karakter az ábécé nagybetűje, különben false.

4.2. Karakterek átalaḱıtása

4.2.1. char tolower(char c)

Paraméterek
c char Az átalaḱıtani ḱıvánt karakter. A függvény

akármilyen számot is elfogad, amit karakterré
alaḱıt.

Visszatérési érték
char A karakter kisbetűs változata, ha ilyen létezik; ha nem létezik,

változatlanul visszaadja a karaktert.

4.2.2. char toupper(char c)

Paraméterek
c char Az átalaḱıtani ḱıvánt karakter. A függvény

akármilyen számot is elfogad, amit karakterré
alaḱıt.

Visszatérési érték
char A karakter nagybetűs változata, ha ilyen létezik; ha nem létezik,

változatlanul visszaadja a karaktert.

string x="Kicsi Macska";

for(unsigned int i=0; i<x.length(); i++)

{

if(islower(x[i]))

{

x[i]=toupper(x[i]);

}

else if(isupper(x[i]))

{

x[i]=tolower(x[i]);

22

4. C Character Type

}

}

cout << x;

// kICSI mACSKA

23

5. C Math

#include <cmath>

Matematikai műveletek.

5.1. Trigonometria

5.1.1. double cos(double x)

Paraméterek
x double A szög radiánban.

Visszatérési érték
double A szög koszinusza.

5.1.2. double sin(double x)

Paraméterek
x double A szög radiánban.

Visszatérési érték
double A szög szinusza.

5.1.3. double tan(double x)

Paraméterek
x double A szög radiánban.

Visszatérési érték
double A szög tangense.

5.1.4. double acos(double x)

Paraméterek
x double Egy szög koszinusza, lebegőpontos szám a [-1, 1]

intervallumban.

Visszatérési érték
double A szám arkusz koszinusza radiánban. Ha a szám nem esik bele a

[-1, 1] intervallumba, az eredmény ”Not a number” lesz.

24

5. C Math

5.1.5. double asin(double x)

Paraméterek
x double Egy szög szinusza, lebegőpontos szám a [-1, 1] in-

tervallumban.

Visszatérési érték
double A szám arkusz szinusza radiánban. Ha a szám nem esik bele a [-1,

1] intervallumba, az eredmény ”Not a number” lesz.

5.1.6. double atan(double x)

Paraméterek
x double Egy szög tangense.

Visszatérési érték
double A szám arkusz tangense. Az előjelek kiesése miatt a függvény nem

tudja megállaṕıtani, melyik śıknegyedbe esik a szög, ami gondokat
okozhat pl komplex számok átalaḱıtásakor.

5.1.7. double atan2(double y, double x)

Paraméterek
y double A tangens y koordinátája.
x double A tangens x koordinátája.

Visszatérési érték
double Az y/x szám arkusz tangense. Az atan() függvénnyel ellentétben

sikeresen megállaṕıtja azt is, mely śıknegyedbe esik a szög.

5.2. Hiperbolikus függvények

5.2.1. double cosh(double x)

Paraméterek
x double Lebegőpontos szám.

Visszatérési érték
double x koszinusz hiperbolikusza.

25

5. C Math

5.2.2. double sinh(double x)

Paraméterek
x double Lebegőpontos szám.

Visszatérési érték
double x szinusz hiperbolikusza.

5.2.3. double tanh(double x)

Paraméterek
x double Lebegőpontos szám.

Visszatérési érték
double x tangens hiperbolikusza.

5.3. Exponenciális és logaritmusfüggvények

5.3.1. double exp(double x)

Paraméterek
x double Lebegőpontos szám.

Visszatérési érték
double ex - e az x-edik hatványra emelve.

5.3.2. double log(double x)

Paraméterek
x double Lebegőpontos szám, legyen pozit́ıv!

Visszatérési érték
double ln x - x természetes alapú logaritmusa.

5.3.3. double log10(double x)

Paraméterek
x double Lebegőpontos szám.

Visszatérési érték
double log10 x - x tizes alapú logaritmusa.

26

5. C Math

5.3.4. double modf(double x, double* egeszresz)

Paraméterek
x double Lebegőpontos szám, aminek az egész- és törtrésze

érdekel.
egeszresz double* Mutató ahhoz a double t́ıpusú változóhoz, ahová

az egészrészt szeretnénk betenni.

Visszatérési érték
double x törtrésze.

Előjeles maradékos osztás: a visszatérési érték a szám törtrésze; az egészrész pedig
bekerül az egeszresz változóba. Így használjuk:

double x, egeszresz, tortresz;

x=2.71828;

tortresz=modf(x, &egeszresz);

A kód futása után egeszresz változó értéke 2.000000 lesz, a tortresz változóé
pedig 0.71828.

Fontos a & jel az egeszresz változó neve előtt! Ezzel a jellel az egeszresz

változóra mutató mutatót adjuk át a funkciónak, nem magát a változót.

5.4. Hatványfüggvények

5.4.1. double pow(double a, double x)

Paraméterek
a double Az alap.
x double A kitevő.

Visszatérési érték
double ax - az alap a kitevő hatványára emelve.

5.4.2. double sqrt(double x)

Paraméterek
x double A szám, amiből gyököt szeretnénk vonni.

Visszatérési érték
double

√
x - x négyzetgyöke.

27

5. C Math

5.5. Kereḱıtés és abszolútérték

5.5.1. double abs(double x)

Paraméterek
x double Lebegőpontos szám.

Visszatérési érték
double x abszolútértéke.

5.5.2. double ceil(double x)

Paraméterek
x double A kereḱıtendő tört.

Visszatérési érték
double A legkisebb, x-nél nagyobb egész szám (x felfele kereḱıtve).

5.5.3. double floor(double x)

Paraméterek
x double A kereḱıtendő tört.

Visszatérési érték
double A legnagyobb, x-nél kisebb egész szám (x lefele kereḱıtve).

28

6. C Standard General Utilities Library

#include <cstdlib>

”C Standard Általános Eszközök Könyvtár”

6.1. String átalaḱıtása számmá

6.1.1. double atof(char* str)

Paraméterek
str char* (C-string) A C-string, amit számmá akarunk átalaḱıtani.

Visszatérési érték
double A szöveg számértéke.

Ha a string whitespace-ekkel kezdődik, a függvény ezeket átugorja, ezután kezdődik
a konverzió. Ezután beolvas minden olyan karaktert, amelyek együtt emlékeztetnek
egy lebegőpontos számra, vagyis illeszkednek a következő mintába:

• opcionálisan egy darab + vagy - jel;

• számjegyek sorozata, ami tartalmazhat egy pontot (’.’);

• opcionálisan az exponenciális rész, vagyis egy e vagy E karakter, amit egy +

vagy - jel és számjegyek sorozata követ.

Amint a függvény olyan karakterre bukkan, ami ebbe a mintába nem illeszkedik,
a függvény abbahagyja a konverziót. Ha a konverzió vége előtt nem talál érvényes
mintát, nullát ad vissza.

Ha ’modern’, c++ stringet szeretnénk átalaḱıtani, konvertáljuk a c str() függvénnyel.

double res;

string x="1984ad";

res=atof(x.c_str());

cout << res << "\n";

//’1984’

string y="kr.u.1984";

res=atof(y.c_str());

cout << res << "\n";

//’0’

29

6. C Standard General Utilities Library

6.1.2. int atoi(char* str)

Paraméterek
str char* (C-string) A C-string, amit számmá akarunk átalaḱıtani.

Visszatérési érték
int A szöveg számértéke.

Az adott C-stringet integerré próbálja alaḱıtani. A stringkezdő whitespace-eket
átugorja, majd beolvas minden olyan karaktert, ami emlékeztet egy egész számra,
vagyis:

• opcionálisan egy darab + vagy - jel;

• számjegyek sorozata.

Amint olyan karakterre bukkan, ami ebbe az egyszerű mintába nem illik, a függvény
abbahagyja a konverziót. Ha egyáltalán nem talált a mintának megfelelő karakte-
reket, nullát ad vissza.

6.2. Véletlenszám

6.2.1. int rand()

Visszatérési érték
int Egy szám 0 és a RAND MAX konstans között.

Használata előtt mindig h́ıvjuk meg az srand() függvényt!

6.2.2. void srand(int seed)

Paraméterek
seed unsigned int Az a nullánál nagyobb egész szám, amit a

véletlenszám-generáló algoritmus magként fog
használni.

Inicializálja a véletlenszám-generáló algoritmust.

srand(time(NULL));

int res=rand() % 10 +1;

30

I. Függelék: adatt́ıpusok

A teljesség igénye nélkül.

Név Értékkészlet Méret (byte)
bool {true, false} 1
char [-128, 127] 1
unsigned char [0, 255] 1
int [-2147483648, 2147483647] 4
unsigned int [0, 4294967295] 4
short int [-32768, 32767] 2
unsigned short int [0, 65535] 2
long int [-2147483648, 2147483647] 4
unsigned long int [0, 4294967295] 4
float ±3.4 e±38 (kb. 7 tizedesjegy) 4
double ±1.7 e±308 (kb. 15 tizedesjegy) 8

A fentieken ḱıvül szót érdemel még a void: szó szerint ”üresség”. Azon funkciók
visszatérési értéke, amelyek nem adnak vissza értéket. Az ilyen funkciókat eljárásnak
nevezzük, és nem szükséges return parancsot tenni beléjük. void t́ıpusú változó
nincs. Matekosoknak: az üres halmaz.

i. T́ıpuskonverzió

Az elemi t́ıpusok között van átjárás. Még a bool t́ıpus is numerikus: a 0 szám
false-nak számı́t, és minden x > 0 érték true-nak (ha nincs jel, az hamis, ha
van jel, az igaz). Hasonlóképp, int-ek jelölhetnek kíıratható karaktereket is.
Amikor valahogy két t́ıpus között átjárunk, t́ıpuskonverziót hajtunk végre. A
t́ıpuskonverzió lehet implicit és explicit.

Implicit a t́ıpuskonverzió akkor, ha mi magunk nem ı́runk le semmit, és a ford́ıtót
kényszeŕıtjük rá, hogy végezze el nekünk a konverziót:

double d=5.524;

int i=7;

if(i>d)

{

i=d;

cout << i; //’5’

}

A fenti kódban kétszer történik konverzió: egyszer összehasonĺıtunk egy double

és egy int értéket, egyszer meg lebegőpontos értéket adunk egy int változónak.
A compiler hiba nélkül elvégzi a dolgot, de óhatatlanul adatvesztés történik.

Explicit konverzióról akkor beszélünk, ha egy paranccsal megkérjük a compilert,
hogy konvertáljon egyik adatt́ıpusból a másikba:

31

I. Függelék: adatt́ıpusok

int i=90;

cout << static_cast<char>(i); //’Z’

A fenti példában a static cast<>() funkció hatására a program char t́ıpusú
változóként értékeli i-t a kifejezésben.

A static cast<>() a legmodernebb és preferált módja a t́ıpuskonverziónak, de ha
nagyon sietünk, súlyosabb büntetés nélkül használhatjuk a C st́ılusú t́ıpuskonverziót:

int i=90;

cout << (char)i; //’Z’

ii. Pár szó az előjelről

Egy t́ıpus előjeles és előjel nélküli változata két külön t́ıpusnak számı́t! Ennek
megfelelően szigorúbb compilerek figyelmeztetést adnak, ha egy t́ıpus előjel nélküli
(unsigned) és előjeles (signed) változatát próbáljuk összehasonĺıtani.

vector<int> x{10,25}

for(int i=0; i<x.size(); i++)

{

x[i]+=5;

}

A fenti kód figyelmeztetést generál, mert az x.size() visszatérési értéke unsigned
int, mı́g az i signed int-ként van deklarálva.

A program ettől még fordulni fog, és az esetek nagy többségében soha semmiféle
galiba nem lesz belőle, a nagyon is létező hibalehetőségeket, a konzisztenciát és a,
hm, szépséget észben tartva mégis hasznos lehet odafigyelni.

32

