Mihez:

Mi:

Megjegyzes:

alap tipusok int egész
string szoveg
bool logikai
operatorok = értékadas
== egyenldség vizsgalat
< kisebb
> nagyobb
(+,-%)) trivialis
cin #include <iostream> iostream sosem art ha benn van
cout using namespace std; mindenhez amit a CodeBlocks zdldel jeldl
endl nem kotelezé, ha nincs a hasznalt parancsok elé std::irand6 pl: std::cin
string
ifstream
ofstream
ciklusok for(futdéindex=kezdb&érték;feltétel;futdindex_ndvelés) |Addig futnak amig a feltétel igaz
{/lciklusmag } Hasznaljuk: ha fontos hogy éppen hanyadiknal jarunk a futdsokban
while(feltétel) { //ciklusmag } Hasznaljuk: ha nem tudjuk meddig kell fusson, tipikusan varunk valami térténést
do {/lciklusmag } while(feltétel); Hasznaljuk: ha egyszer mindenképpen szeretnénk hogy lefusson a ciklusmag, tipikusan eléreolvasas
elagazas if(feltétel){ //lefut ha igaz } else { //lefut ha hamis }

random szam generalasa

#include <cstdlib>
#include <ctime>

srand(time(0)); kell a main elején
utana rand()%(intervallum_hossza)+eltolas pl:[-50,50] rand()%101-50

beolvasas cin >> valtozé; valtozé:
getline(honnan,hova); - ha szdveg tipusu akkor az elsd sz6kdzig olvas bele, ha nincs benne akkor a végéig
- ha szam egy szamot olvas be
honnan: cin vagy ifstream neve
hova: szbveg tipusu valtozé
fajlkezelés #include <fstream> olvasas: ifstream v_neve(,fajineve”); szavanként olvasas: v_neve >> string_tipusu_valtozo;

iras: ofstream v_neve(,fajlneve”); sor beolvasasa: getline(v_neve, string_tipusu_valtozo);

n.hatvanyra emelés
négyzetgyokvonas

#include <cmath>
pow(kitevd,alap);
sqrt(szam);

négyzetre emelést érdemesebb dnmagaval megszorozva szamolni ;) alap*alap;

szbvegkezelés
string szovegl = ,kre a tiv”;
string szoveg?2 =, vagyok”;

szovegl.length();
szovegl+szoveg?2;
szoveg2[szam]; (szam = 3)

Mivelet: Eredmeny:
tarolt széveg hosszanak lekérdezése 9
Osszeflizés kre a tiv vagyok

szamadik index(karaktere a tarolt szévegnek |y

int és string konvertalas
stringstream ss;

int szam = 0;

string sz = "25";

#include <sstream>

szambol szoveget:
Ss << szam;
sz = ss.str();

szbvegbdl szamot: (csak ha szamot tartalmaz)
Ss << szoveg;
Ss >> szam;

fuggvényiras visszatérés_tipusa fv_neve(bemeneti_paraméterek){ |visszatérés_tipusa: int,string,bool,void Flggvényhivas:

/lamit akarsz bemeneti_pm: fv_neve(bemenetil,bemeneti2,...);
return visszatérés_tipusu_valtozo; nem kotelezd, tipus és valtozénév paros fontos a bemeneti valtozok
} [lamit akarsz: sorrendje,szama és tipusa
vigyazz mas fuggvények valtozoit nem latod
return;

létezik visszatérési érték nélkdli fv (void)
ekkor nem kell

tomb tarolt_tipus tomb_neve [merete] 0 -> (meret-1) indexelhetd
vector #include <vector> Leiras: 0 -> (size()-1) indexelhetd
(méretét valtoztaté tomb) |vector <tarolt tipus> vektor_neve; Ures vektor létrehozasa
vektor_neve.size(); visszaadja a vektor méretét
vektor_neve.push_back(érték); elsé Ures eleme lesz az 'érték’ (tarolt_tipusu)
vektor_neve.pop_back(); torli az utolso elemet
vektor_neve.erase(vektor_neve.begin()+n); torli az n. indexl elemet a begin() a kezdeti helyét adja meg fontos: INDEXEDIK
vektor_neve.erase(vektor_neve.begin()+a, [a -> b) indexek kdzdtt torél minden elemet
vektor_neve.begin()+b); ebben a is benne van

