
Mihez: Mi: Megjegyzés:
alap típusok int

string
bool

egész
szöveg
logikai

operátorok

=
==
<
>
(+,-,*,/)

értékadás
egyenlőség vizsgálat
kisebb
nagyobb
triviális

cin
cout
endl
string
ifstream
ofstream

#include <iostream>
using namespace std;

iostream sosem árt ha benn van
mindenhez amit a CodeBlocks zöldel jelöl
nem kötelező, ha nincs a használt parancsok elé std::irandó pl: std::cin

ciklusok for(futóindex=kezdőérték;feltétel;futóindex_növelés)
{ //ciklusmag }

while(feltétel) { //ciklusmag }

do { //ciklusmag } while(feltétel);

Addig futnak amíg a feltétel igaz
Használjuk: ha fontos hogy éppen hányadiknál járunk a futásokban

Használjuk: ha nem tudjuk meddig kell fusson, tipikusan várunk valami történést

Használjuk: ha egyszer mindenképpen szeretnénk hogy lefusson a ciklusmag, tipikusan előreolvasás

elágazás if(feltétel){ //lefut ha igaz } else { //lefut ha hamis }

random szám generálása #include <cstdlib>
#include <ctime>

srand(time(0)); kell a main elején
utána rand()%(intervallum_hossza)+eltolás pl:[-50,50] rand()%101-50

beolvasás cin >> valtozó;
getline(honnan,hova);

változó:
· ha szöveg típusú akkor az első szóközig olvas bele, ha nincs benne akkor a végéig
· ha szám egy számot olvas be
honnan: cin vagy ifstream neve
hova: szöveg típusú változó

fájlkezelés #include <fstream> olvasás: ifstream v_neve(„fájlneve”);
írás: ofstream v_neve(„fájlneve”);

szavanként olvasás: v_neve >> string_tipusu_valtozo;
sor beolvasása: getline(v_neve, string_tipusu_valtozo);

n.hatványra emelés
négyzetgyökvonás

#include <cmath>
pow(kitevő,alap);
sqrt(szam);

négyzetre emelést érdemesebb önmagával megszorozva számolni ;) alap*alap;

szövegkezelés
string szoveg1 = „kre a tiv”;
string szoveg2 = „ vagyok”;

szoveg1.length();
szoveg1+szoveg2;
szoveg2[szam]; (szam = 3)

Művelet:
tárolt szöveg hosszának lekérdezése
összefűzés
számadik indexű karaktere a tárolt szövegnek

Eredmeny:
9
kre a tiv vagyok
y

int és string konvertálás
stringstream ss;
int szam = 0;
string sz = "25";

#include <sstream> számból szöveget:
ss << szam;
sz = ss.str();

szövegből számot: (csak ha számot tartalmaz)
ss << szoveg;
ss >> szam;

függvényírás visszatérés_típusa fv_neve(bemeneti_paraméterek){
 //amit akarsz
 return visszatérés_tipusú_változó;
}

visszatérés_típusa: int,string,bool,void
bemeneti_pm:
 nem kötelező, típus és változónév páros
//amit akarsz:
 vigyázz más függvények változóit nem látod
return:
 létezik visszatérési érték nélküli fv (void)
ekkor nem kell

Függvényhívás:
fv_neve(bemeneti1,bemeneti2,...);
fontos a bemeneti változók
 sorrendje,száma és típusa

tömb tárolt_tipus tomb_neve [merete] 0 -> (meret-1) indexelhető

vector
(méretét változtató tömb)

#include <vector>
vector <tárolt_típus> vektor_neve;
vektor_neve.size();
vektor_neve.push_back(érték);
vektor_neve.pop_back();
vektor_neve.erase(vektor_neve.begin()+n);
vektor_neve.erase(vektor_neve.begin()+a,
 vektor_neve.begin()+b);

Leírás:
üres vektor létrehozása
visszaadja a vektor méretét
első üres eleme lesz az ’érték’ (tárolt_típusú)
törli az utolsó elemet
törli az n. indexű elemet
[a -> b) indexek között töröl minden elemet
 ebben a is benne van

0 -> (size()-1) indexelhető

a begin() a kezdeti helyét adja meg fontos: INDEXEDIK

