Bevezetes a programozasba
8. Gyakorlat

Ismetlo feladatok Q

1. feladat - Kérjunk be harom pozitiv egész szamot a
konzolrdl

2. feladat - Vizsgaljuk meg, lehetnek-e ezek a
szamok egy haromszog oldalai

3. feladat — Keressuk meg a legnagyobbat kozuluk
4. feladat — Keressuk meg az els6 ket szam kozos
osztoit

5. feladat - Toltsunk fel egy 10 hosszu tombot paros
szamokkal, majd irassuk ki a konzolra

6. feladat - irassuk ki a tombot visszafelé

C++ beolvasasok (konzol)
S =

o lostream
o cin // egyszerl tipus fuggod beolvasas
o getling() // sorvégeig tartd beolvasas

0 cstdio
o getchar() // karakter beolvasas

O Cin.ignore(255,'\n'); Il a kdvetkezb 255 karakter ignoralasa
vagy ENTER leultésig ignoralas

O Cin.sync(); // a még beolvasatlan karakterek eldobasa
o Hiba tipus:
cin >>vali; // => Enter-t a konzol bemeneti buffer-ében hagyja
getline(cin, valt2); // => Ures értéket olvas be, hisz Enter-ig olvas

ezért a cin utan érdemes takaritani (cin.sync();)

Szoveg szamma konvertalasa

A fajlbol az adatokat getline() fuggveny
segitsegevel olvassuk be, akkor a szam értéekeket

szovegbdl kell atalakitanunk

Ehhez hasznalt eszkoz: stringstream
Hasznalata: #include <sstream>

Karakterlancot (string) tarol

Hasonléan mikodik mint a ifstream és a ofstream,
azaz << €s >> operatorok segitségevel lehet belble
olvasni

Ha egy szam éertéeknek megfeleld karakterlancot
teszunk bele, akkor kiolvashato belGle szamkeént

Szoveg szamma konvertalasa
S =

Példa I: (sziikséges hozzd a: #include <sstream>)
string szam = ,,25”;
stringstream ss;

int i;
SS << szam;
ss >> 1i; // Ennek hatasara az 1 egész
valtozdo értéeke 25 lesz
Példa ll: (sziikséges hozzd a: #include <stdlib.h>)

string number = ,,34”;
int result = atoi(number.c_str());

vagy
char someChars[] = ,,47";

int result2 = atoi(someChars);

vagy
int result3 = atoi(,,84”);

Veletlen szamok generalasa

A C++ is ad lehetb6séget véletlen szamok el6allitasara, ahogy
azt a PlLanG-ban lattuk, ehhez két utasitasra
(fuggveényhivasra) van szuksegunk:

Srand(<kezdberték>) . egy adott kezddértékkel inicializalja a

véletlen szam generatort

rand() : megad egy egész értékl pozitiv véletlen szamot

A generalas mindig a kezddértékhez viszonyitva torténik,
ezert olyan kezdGértéket kell megadnunk, amely biztositja a
folyamatos valtozatossagot a generalt szamok kozott

ezért altalaban az aktualis iddpillanatot szokas megadni, amit

lekérdezhetunk a time(0) fuggvénnyel (ehhez hasznalnunk kell a
time.h fajlt)

A generalt értékkel utana barmit tehetunk, mint aszokvanyos
értekeinkkel

Veletlen szamok generalasa

. #include <time.h>

Az aktualis id6 lekéréséhez szukseéges library

. #ihClUde <CStdllb> (ez is jo: #include <algorithm>)

Az srand ebben a library-ban talalhaté

void srand(unsigned int seed);

Majd az ‘aktualis idOpillanat’ seedertékkel inicializaljuk
a veletlen szam generatort

int rand(void);
Megad egy egesz erteku pozitiv véletlen szamot

Programozasi feladat Q

Szamkitalalos jaték
Irjuk egy olyan interaktiv jatekprogramot, amely gondol egy

szamra 1 és 100 kozott és a felhasznalonak kell kitalalni,
hogy melyik ez a szam!

A jatékos tippelhet egy szamot, melyrdl a program
megmondja, hogy kisebb vagy nagyobb a gondolt szamnal
lletve sikerult-e kitalalni a helyes szamot.

A program szamolja azt is, hogy hanyadik tippre sikerult
meghatarozni a helyes szamot!

A profibbaknak
irjal ujrajatszasi lehetéséget a jatékhoz!
A program jegyezze meg az aktualis futas legjobb
meneteét!

Legyen tartés ,,HighScore”-ja a programnak!

Megoldas 1. feladat

#include <iostream> while(ljatek){
#include <cstdlib> if(num!=rand_num){
#include <time.h> counter++;
using namespace std; if(num<rand_num){
cout<<"A szam tul kicsi!Kerek egy masik szamot\n";
int num; szam_be();
void szam_be() lelse{
{ cout<<"A szam tul nagy!Kerek egy masik szamot\n";
while(!(cin >> num)) szam_be();
{ }
cout<<"HIBA, ez nem szam! Kerek egy masik szamot!\n"; }else{
cin.clear(); cout<<"A valasz helyes. A tippelasek szama: " <<counter<<"\n";
cin.ignore(); talalat=1;
} cout<<"Szertnel meg jatszani, igen vagy nem?\n";
} string valasz;
cin>>valasz;
int main() if(valasz=="nem"){
{ jatek=1;
srand(time(0)); }else{
int rand_num=rand()%100; rand_num=rand()%100;
cout<<"Kerek egy szamot?\n"; cout<<"Kerek egy szamot\n";
szam_be(); counter=0;
szam_be();
int counter=0; }
bool talalat; }
bool jatek; }

return O;

}

C++ fajlkezelés

A fajlkezelés moddjaval mar megismerkedtink PlanG-ban,
C++-ban teljesen hasonl6

fizikai fajlnevek reprezentaljak a tényleges fajlokat a tarolokon

logikai fajlnevek a programban hasznalt valtozok, amelyeket
tarsitanunk kell a fizikai fajlnévhez

vannak kualon kimeneti és bemeneti fajlok, egyszerre egy fajl
csak egy csatornan lehet

az adatokat sorban olvassuk ki és irjuk ki a fajlokba, ugralni nem
lehet az adatok kozott

az elbreolvasasi technika hasznalhato
De C++-ban mar tényleges fizikai fajlokat kezelunk, nem csak

szimulalt fajlokat, ezért még ovatosabbnak kell lennink a
kezelésukkel! (feluliras, torlés...)

Fajltipusok

A fajlmQveletek hasznalatahoz az fstream definicios fajlra
lesz szUksegunk: #include <fstream>

A fajl tipusok az std névtérben talalhatéak:
using namespace std;

Két logikai fajltipust hasznalhatunk, mindegyikben barmilyen
adat talalhato, amelyet barmilyen sorrendben kezelhetunk:

bemeneti fajl: ifstream
kimeneti fajl: ofstream

a fajl a deklaralastol a programblokk vegeéig él, de csak
akkor hasznalhatjuk, ha tarsitjuk fizikai fajlnoz (kulonben
futasi ideju hibat kapunk)

egy logikai fajlt tobb fizikai fajlhoz is tarsithatunk egymas
utan

Fajlok megnyitasa

A logikal és fizikai fajl tarsitasat ketféleképpen
vegezhetjuk:

a logikai fajinév deklaraciojat kovetéen:

<logikal fajlnév>.open(<fizikai fajinev>)

parancs segitségeével, pl.:

ifstream f; /II't nevl logikai fajl
f.open(”adatok.txt”); //f-t az ‘adatok.txt’ fajlhoz
tarsitjuk

a logikai fajl definiciojaval egyutt megadott parameéterben,

pl.:
ifstream f(”adatok.txt”);

/[If mar a létrenozasatol az adatok.txt fajlhoz van tarsitva

Fajlok megnyitasa

Fizikai fajlnévként karaktertomb (char[]) tipusu adatokat
adhatunk meg, amit lehet valtozé segitségével is, ezért a
program futasa kozben is bekérhetjuk a fajlnevet

Ha string tipusu valtozoba szeretnénk bekérni a fajlnevet,
akkor azt at kell alakitanunk

a string tipusban talalhato egy olyan faggvény, amely
karaktertombbé alakita a szOveget, ezt hasznaljuk:
<valtozénev>.c_str() pl.:

ifstream f; // logikai fajl
string fnev; // egy string (a fizikai fajl neve)
cin >> fnev; // beolvassuk a stringet

f.open(fnev.c_str()); // abeolvasottfajlnevet
probaljuk megnyitni

Megjegyzés: A C++11-es szabvanytol kezdve nem sziukséges a
string karaktertombbé alakitasa, felismeri az open() fuggvény.

Fajlok megnyitasa

Nem garantalt, hogy a megadott elérési uton van is egy fajl,
amit a program megnyithat, ezert mieldtt barmilyen
tevékenyseget végzunk rajta, célszerl ellenGrizni a fajl
helyesséegeét
A megnyitas sikerességét a <logikai fajlnév>.fail()
fuggvennyel kérdezhetjuk le, ha ez igaz, akkor nem sikerult
megnyitni a fajinevet, pl.:

ifstream f;

f.open(”data/bemenet.dat”); //megnyitas

if(f.fail()) // ha nem sikerult megnyitni
cout<< ”Nem sikerult megnyitni a fajlt!”;
else { .. } // ha sikerult megnyitni ebben

az agban dolgozhatunk a
fajlon

Fajlok megnyitasa

_
Ha a fajlnevet a felhasznalotol kérjuk be, célszerli a
megnyitast ciklusba foglalni, addig kérjunk be uj fajlnevet a
felhasznal6tol, amig nem sikertl megnyitni az adott fajlt, pl.:
ifstream f;
string fnev;
cin >> fnev;

f.open(fnev.c_str()); //fajl megnyitasa
while(f.fail()){ //ha nem sikerult megnyitni
f.clear(); //fajl Ujrainicializalas

cout<< ”Hibas fajlnév!”<< endl;

cin >> fnev;

f.open(fnev.c_str()); //megnyitas az uj névvel
} //addig kéri be ujra fajlnevet, amig nem sikertl megnyitni

Fizikai fajlok zarasa, valtasa

Fizikai fajlt hasznalat utan be kell zarni

a bezaras automatikusan megtortenik a program vegen, de
azert ceélszerlt mindenképpen kulon bezarast vegezni,
amint befejeztuk a programban a fajl hasznalatat

bezarni a <logikai fajlnév>.close()
fuggvénnyel lehet, pl.: f.close();

bezarast kovetben a logikal fajlnevet ujra hasznalhatjuk
masik fizikai fajl kezelésére, pl.:
ifstream input(”adat.txt”); // adat.ixt megnyitasa
input.close(); // adat.txt bezarasa
input.clear(); // input flage-ek kitdrlése
input.open(”adat2.txt”); // adat2.txt megnyitasa

Adatok olvasasa, irasa

A fajlmUveletek kimeneti fajlnal az olvasas (>>
operator), bemeneti fajlnal az iras (<< operator)

a logikai tipustdl fuggbéen csak az adott muivelet
hasznalhato

irhatunk sortorést az endl utasitassal

az operatorokat ugyanugy hasznaljuk, mintha a
képernylre irnank, azzal a kulonbséggel, hogy a fajlt adjuk
meg ceélként/forraskent a kepernyd helyett

pl.:
ofstream f(’kimenet.txt”);
f << PFile elsd sora” << endl << ”Masodik sor”;

// tetsz6legesen kiirhatunk dolgokat a fajlba
f.close();

Adatok olvasasa, irasa

Egy fajlba barmilyen adat lehet barmilyen sorrendben, olvasasnal
ezert ugyelni kell arra, hogy mindig a megfeleld tlpusu adatot
olvassuk ki.

A fajl végén most is ott van az EOF jel, amit a <logikai fajlnév>.eof()
fuggvennyel tudunk lekerdezni, ez igaz erteket ad vissza, ha a
végere értunk, pl.:

ifstream f;

int data;

f.open(”adatok.txt”);

f >> data;

while(!f.eof()){ //amig nincs vége a fajlnak
f >> data; //addig olvasunk

}

Beolvasasnal ugyanugy beveszi az EOF jelet, ezért célszerd
el6reolvasasi technikaval feldolgozni a fajlokat

C++ fajlkezelés

Amire érdemes odafigyelni:
miel6tt elkezdunk beolvasni egy fajlbdl, nézzik meg, hogy
sikerult-e megnyitni
a megnyitott fajlt mindig zarjuk be, ha mar nincs
szuksegunk ra
bemeneti fajlba ne irjunk, kimeneti fajlbol ne olvassunk

ne olvassunk tovabb, ha mar elértuk az EOF jelet, ha nem
el6reolvasast hasznalunk és nem vagyunk biztosak a fajl
tartalmaban, akkor ellendrizzik le, nem értunk-e a fajl
végere, mielbtt felhasznalnank az utolsé beolvasott adatot
kulonosen figyeljunk arra, hogy ne irjunk végtelen ciklusba
fajl kiirast

ha egy fajlt ujra megnyitunk irasra, akkor (alapbdl) korabbi
tartalma torlédni fog a megnyitaskor

Sorok beolvasasa

Alkalmazhatjuk a teljes sor Dbeolvasasara szolgalo
getline(<logikal fajlnév>, <szévegq valtoz6>) utasitast, amely a
teljes sor tartalmat kiolvassa - a sortorés kivételével - egy
szoveg valtozoba

PI.:
ifstream bemenet(”valami.x”);
string s;
getline(bemenet, s); (eléreolvasas)
while(!bemenet.eof() (amig nincs vege a fajlnak)
)
{ (maveletek s-sel)

(kovetkezd sor beolvasasa)
getline(bemenet, s);

¥

Sorok beolvasasa

A sorbeolvasas egy specialis valtozata, amikor nem a teljes sort
olvassuk be, csak egy részeét

Lehet6segunk van egy adott karakterig olvasni a sort:
getline(<fajlnév>, <valtoz6>, <karakter>)

ekkor a harmadik helyen megadjuk azt a karaktert, aminek elsé
el6fordulasanal megall az olvasas

a karakter lehet vezérlGkarakter is (pl. tabulator, \t)

kiegészitve az el6z6 valtozattal, tobb Iépésben olvashatjuk be a teljes
sort

Pl. egy (legalabb két O0-t tartalmazd) sor beolvasasa harom
lépesben:

getline(f, s1, ’0’); (beolvasas az els6 0-ig)
getline(f, s2, ’0°); (beolvasas a masodik 0-ig)
getline(f, s3); (a maradék beolvasasa)

Programozasi feladat II. Q

-
1 Osszeg szamolas fajlbol

o irjuk ki a kepernyOre a ,szamok.txt” fajlban tarolt
szamok 0sszeget

o Eszrevétel:

0 A cin whitespace-ig olvas, ha az eof az utolso abrazolhato
karakter utan van, akkor azt is hozza olvassa a cin a tobbihez és
a beolvasasi csatorna fajl vége flag-e aktivalodik. Emiatt lehet
az, hogy utoljara beolvasott adatot mar nem dolgozza fel a
ciklus. (Egyszerld megoldas: enter Utése az utolso adat utan)

Megoldas (1) 2. feladat

#include <iostream>
#include <fstream>
#include <string>

#include <stdlib.h> while(lbemenet.eof())

{
getline(bemenet, szam,'');

using namespace std; sum=sum+atoi(szam.c_str());

int main() }
{

ifstream bemenet("'szamok.txt");

ofstream kimenet("'szamok_kimenet.txt");

kimenet<<"A szamok osszege "<<sum<<"\n";

cout<<"A szamok osszeget a szamok_kimenet.txt kimeneti fajlban megatalalod”;
bemenet.close();

kimenet.close();

if(bemenet.fail()){
cout<< "Nem sikerult megnyitni a fajlt!";

| }

return O;

int sum=0;
string szam;

Megoldas (2) 2. feladat — haladdé

#include <iostream> while(!bemenet.eof())
#include <fstream> {
#include <stdlib.h> getline(bemenet, szam_sorozat);
)) const char * elvalaszt=" ,.-";
#!nclude <std|9.h> char * aktualis_bemente= const_cast<char*>(szam_sorozat.c_str());
#include <cstring> number = strtok (aktualis_bemente,elvalaszt);
using namespace std; while(number = NULL)
int main() {

sum=sum+atoi(humber);
number = strtok (NULL, elvalaszt);

{

ifstream bemenet("szamok.txt");

ofstream kimenet("szamok_kimenet.txt");) }
if(bemenet.fail()){)
cout<< "Nem sikerult megnyitni a fajlt!"; kimenet<<"A szamok osszege ("<<szam_sorozat<<"): "<<sum<<"\n";
} cout<<"A szamok osszege ("<<szam_sorozat<<"): "<<sum<<"\n";
cout<<"A szamok osszeget a szamok_kimenet.ixt kimeneti fajlban megatalalod”;
string szam_sorozat; bemenet.close();
int sum=0; kimenet.close();

char * number;
return O;

Megoldas (3) 2. feladat — halado++

ftinclude <iostream> while(!bemenet.eof())

#include <fstream> {

#include <string> getline(bemenet, szam_sorozat);

#include <stdlib.h> for (string::iterator it=szam_sorozat.begin(); it'=szam_sorozat.end(); ++it)

using hamespace std; if(tisdigit(*it)){

int main() sum=sum-+atoi(szam_sorozat.substr (index-length_of_number, length_of_number).c_str());

length_of _number=0;
lelsef

length_of_number++;
}

{
ifstream bemenet("szamok.txt");
ofstream kimenet("'szamok_kimenet.txt");

if(bemenet.fail()){ index++;
cout<< "Nem sikerult megnyitni a fajlt!"; | }
} kimenet<<"A szamok osszege ("<<szam_sorozat<<"): "<<sum<<"\n";
string szam_sorozat; cout<<"A szamok osszeget a szamok_kimenet.ixt kimeneti fajlban megatalalod";
int sum=0; bemenet.close();
int length_of_number=0; kimenet.close();
int index=0;
return O;

Hazi feladatok

0 2.32 Fésulj 0ssze ket monoton sorozatot fajlbodl és ird

Ki azt egy harmadik fajlba (egy elem innen, egy
onnan...)

Bemeneti fajlok nevei: sorozat be1, sorozat be2
Kimeneti fajl neve: sorozat ki

3.27 Add meg egy tetszbleges (fajlbol beolvastoti)
szoveg leghosszabb szavat és irasd ki azt egy
fajlba .

Bemeneti falj neve: leghosszabb szo be
Kimeneti falj neve: leghosszabb szo ki

5.1 Véletlen tomb: egy tomb elemeit toltsd fel véletlen
szamokkal.

5.3 Vektor szorasa (atlagtol valo eltérések atlaga)

;maSematikailag nem teljesen korrekt, de nekilink jo
esz

