
Bevezetés a programozásba

8. Gyakorlat

Ismétlés, fájlkezelés

Ismétlő feladatok

1. feladat - Kérjünk be három pozitív egész számot a
konzolról
2. feladat - Vizsgáljuk meg, lehetnek-e ezek a
számok egy háromszög oldalai

3. feladat – Keressük meg a legnagyobbat közülük

4. feladat – Keressük meg az első két szám közös
osztóit
5. feladat - Töltsünk fel egy 10 hosszú tömböt páros
számokkal, majd írassuk ki a konzolra

6. feladat - Írassuk ki a tömböt visszafelé

C++ beolvasások (konzol)

 iostream
 cin

 getline()
// egyszerű típus függő beolvasás

// sorvégéig tartó beolvasás

 cstdio
 getchar() // karakter beolvasás

 cin.ignore(255,'\n');

 cin.sync();

// a következő 255 karakter ignorálása
vagy ENTER leütésig ignorálás

// a még beolvasatlan karakterek eldobása

 Hiba típus:
cin >> val1;
getline(cin, valt2);

// => Enter-t a konzol bemeneti buffer-ében hagyja
// => üres értéket olvas be, hisz Enter-ig olvas
ezért a cin után érdemes takarítani (cin.sync();)

Szöveg számmá konvertálása

• A fájlból az adatokat getline() függvény
segítségével olvassuk be, akkor a szám értékeket
szövegből kell átalakítanunk

• Ehhez használt eszköz: stringstream

 Használata: #include <sstream>

 Karakterláncot (string) tárol
 Hasonlóan működik mint a ifstream és a ofstream,

azaz << és >> operátorok segítségével lehet belőle
olvasni

 Ha egy szám értéknek megfelelő karakterláncot
teszünk bele, akkor kiolvasható belőle számként

Szöveg számmá konvertálása

 Példa I: (szükséges hozzá a: #include <sstream>)
string szam = „ɩɬ”;
stringstream ss;

int i;

ss << szam;

ss >> i; // Ennek hatására az i egész
változó értéke ɩɬ lesz

 Példa II: (szükséges hozzá a: #include <stdlib.h>)
string number = „ɪɫ”;
int result = atoi(number.c_str());

vagy

char someChars[] = „ɫɮ";
int result2 = atoi(someChars);

vagy
int result3 = atoiſ „ɯɫ”);

Véletlen számok generálása

• A C++ is ad lehetőséget véletlen számok előállítására, ahogy
azt a PLanG-ban láttuk, ehhez két utasításra
(függvényhívásra) van szükségünk:
• srand(<kezdőérték>) : egy adott kezdőértékkel inicializálja a

véletlen szám generátort
• rand() : megad egy egész értékű pozitív véletlen számot

• A generálás mindig a kezdőértékhez viszonyítva történik,
ezért olyan kezdőértéket kell megadnunk, amely biztosítja a
folyamatos változatosságot a generált számok között
• ezért általában az aktuális időpillanatot szokás megadni, amit

lekérdezhetünk a time(0) függvénnyel (ehhez használnunk kell a
time.h fájlt)

• A generált értékkel utána bármit tehetünk, mint a szokványos
értékeinkkel

Véletlen számok generálása

• #include <time.h>

• Az aktuális idő lekéréséhez szükséges library

• #include <cstdlib> (ez is jó: #include <algorithm>)

• Az srand ebben a library-ban található

• void srand(unsigned int seed);

• Majd az ‘aktuális időpillanat’ seedértékkel inicializáljuk
a véletlen szám generátort

• int rand(void);

• Megad egy egész értékű pozitív véletlen számot

Programozási feladat

• Számkitalálós játék
 Írjuk egy olyan interaktív játékprogramot, amely gondol egy

számra 1 és 100 között és a felhasználónak kell kitalálni,
hogy melyik ez a szám!

 A játékos tippelhet egy számot, melyről a program
megmondja, hogy kisebb vagy nagyobb a gondolt számnál
illetve sikerült-e kitalálni a helyes számot.

 A program számolja azt is, hogy hányadik tippre sikerült
meghatározni a helyes számot!

 A profibbaknak
 Írjál újrajátszási lehetőséget a játékhoz!
 A program jegyezze meg az aktuális futás legjobb

menetét!
 Legyen tartós „HighScore”-ja a programnak!

Megoldás 1. feladat
#include <iostream>
#include <cstdlib>
#include <time.h>
using namespace std;

int num;
void szam_be()
{
 while(!(cin >> num))
 {
 cout<<"HIBA, ez nem szam! Kerek egy masik szamot!\n";
 cin.clear();
 cin.ignore();
 }
}

int main()
{
 srand(time(0));
 int rand_num=rand()%100;
 cout<<"Kerek egy szamot?\n";
 szam_be();

 int counter=0;
 bool talalat;
 bool jatek;

 while(!jatek){
 if(num!=rand_num){
 counter++;
 if(num<rand_num){
 cout<<"A szam tul kicsi!Kerek egy masik szamot!\n";
 szam_be();
 }else{
 cout<<"A szam tul nagy!Kerek egy masik szamot!\n";
 szam_be();
 }
 }else{
 cout<<"A valasz helyes. A tippelasek szama: " <<counter<<"\n";
 talalat=1;
 cout<<"Szertnel meg jatszani, igen vagy nem?\n";
 string valasz;
 cin>>valasz;
 if(valasz=="nem"){
 jatek=1;
 }else{
 rand_num=rand()%100;
 cout<<"Kerek egy szamot!\n";
 counter=0;
 szam_be();
 }
 }
 }

 return 0;
}

C++ fájlkezelés

• A fájlkezelés módjával már megismerkedtünk PlanG-ban,
C++-ban teljesen hasonló
 fizikai fájlnevek reprezentálják a tényleges fájlokat a tárolókon

 logikai fájlnevek a programban használt változók, amelyeket
társítanunk kell a fizikai fájlnévhez

 vannak külön kimeneti és bemeneti fájlok, egyszerre egy fájl
csak egy csatornán lehet

 az adatokat sorban olvassuk ki és írjuk ki a fájlokba, ugrálni nem
lehet az adatok között

 az előreolvasási technika használható

• De C++-ban már tényleges fizikai fájlokat kezelünk, nem csak
szimulált fájlokat, ezért még óvatosabbnak kell lennünk a
kezelésükkel! (felülírás, törlés…)

Fájltípusok

• A fájlműveletek használatához az fstream definíciós fájlra
lesz szükségünk: #include <fstream>

• A fájl típusok az std névtérben találhatóak:
using namespace std;

• Két logikai fájltípust használhatunk, mindegyikben bármilyen
adat található, amelyet bármilyen sorrendben kezelhetünk:
 bemeneti fájl: ifstream

 kimeneti fájl: ofstream

 a fájl a deklarálástól a programblokk végéig él, de csak
akkor használhatjuk, ha társítjuk fizikai fájlhoz (különben
futási idejű hibát kapunk)

 egy logikai fájlt több fizikai fájlhoz is társíthatunk egymás
után

Fájlok megnyitása

• A logikai és fizikai fájl társítását kétféleképpen
végezhetjük:
 a logikai fájlnév deklarációját követően:

<logikai fájlnév>.open(<fizikai fájlnév>)
parancs segítségével, pl.:

ifstream f;

f.open(”adatok.txt”);
//‘f’ nevű logikai fájl
//‘f’-t az ‘adatok.txt’ fájlhoz
társítjuk

 a logikai fájl definíciójával együtt megadott paraméterben,
pl.:

ifstream f(”adatok.txt”);
//f már a létrehozásától az adatok.txt fájlhoz van társítva

Fájlok megnyitása

• Fizikai fájlnévként karaktertömb (char[]) típusú adatokat
adhatunk meg, amit lehet változó segítségével is, ezért a
program futása közben is bekérhetjük a fájlnevet

• Ha string típusú változóba szeretnénk bekérni a fájlnevet,
akkor azt át kell alakítanunk
 a string típusban található egy olyan függvény, amely

karaktertömbbé alakítja a szöveget, ezt használjuk:
<változónév>.c_str() pl.:

ifstream f;

string fnev;

cin >> fnev;

// logikai fájl
// egy string (a fizikai fájl neve)

// beolvassuk a stringet
f.open(fnev.c_str()); // a beolvasott fájlnevet

próbáljuk megnyitni

Megjegyzés: A C++11-es szabványtól kezdve nem szükséges a
string karaktertömbbé alakítása, felismeri az open() függvény.

Fájlok megnyitása

• Nem garantált, hogy a megadott elérési úton van is egy fájl,
amit a program megnyithat, ezért mielőtt bármilyen
tevékenységet végzünk rajta, célszerű ellenőrizni a fájl
helyességét

• A megnyitás sikerességét a <logikai fájlnév>.fail()
függvénnyel kérdezhetjük le, ha ez igaz, akkor nem sikerült
megnyitni a fájlnevet, pl.:

ifstream f;

f.open(”data/bemenet.dat”); // megnyitás

if(f.fail()) // ha nem sikerült megnyitni

cout<< ”Nem sikerült megnyitni a fájlt!”;
else { … } // ha sikerült megnyitni ebben

az ágban dolgozhatunk a
fájlon

Fájlok megnyitása

• Ha a fájlnevet a felhasználótól kérjük be, célszerű a
megnyitást ciklusba foglalni, addig kérjünk be új fájlnevet a
felhasználótól, amíg nem sikerül megnyitni az adott fájlt, pl.:

ifstream f;

string fnev;

cin >> fnev;

f.open(fnev.c_str());

while(f.fail()){

f.clear();

//fájl megnyitása

//ha nem sikerült megnyitni

//fájl újrainicializálás

cout<< ”Hibás fájlnév!”<< endl;
cin >> fnev;

f.open(fnev.c_str()); //megnyitás az új névvel
} //addig kéri be újra fájlnevet, amíg nem sikerül megnyitni

Fizikai fájlok zárása, váltása

• Fizikai fájlt használat után be kell zárni
 a bezárás automatikusan megtörténik a program végén, de

azért célszerű mindenképpen külön bezárást végezni,
amint befejeztük a programban a fájl használatát

 bezárni a <logikai fájlnév>.close()
függvénnyel lehet, pl.: f.close();

 bezárást követően a logikai fájlnevet újra használhatjuk
másik fizikai fájl kezelésére, pl.:
ifstream input(”adat.txt”); // adat.txt megnyitása

input.close();

input.clear();

input.open(”adatɩ.txt”);

// adat.txt bezárása

// input flage-ek kitörlése

// adat2.txt megnyitása

Adatok olvasása, írása

• A fájlműveletek kimeneti fájlnál az olvasás (>>
operátor), bemeneti fájlnál az írás (<< operátor)
 a logikai típustól függően csak az adott művelet

használható

 írhatunk sortörést az endl utasítással
 az operátorokat ugyanúgy használjuk, mintha a

képernyőre írnánk, azzal a különbséggel, hogy a fájlt adjuk
meg célként/forrásként a képernyő helyett

 pl.:
ofstream f(”kimenet.txt”);
f << ”File első sora” << endl << ”Második sor”;

// tetszőlegesen kiírhatunk dolgokat a fájlba
f.close();

Adatok olvasása, írása

• Egy fájlba bármilyen adat lehet bármilyen sorrendben, olvasásnál
ezért ügyelni kell arra, hogy mindig a megfelelő típusú adatot
olvassuk ki.

• A fájl végén most is ott van az EOF jel, amit a <logikai fájlnév>.eof()
függvénnyel tudunk lekérdezni, ez igaz értéket ad vissza, ha a
végére értünk, pl.:

ifstream f;

int data;

f.open(”adatok.txt”);
f >> data;

//amíg nincs vége a fájlnak

//addig olvasunk

while(!f.eof()){

…

f >> data;

}

• Beolvasásnál ugyanúgy beveszi az EOF jelet, ezért célszerű
előreolvasási technikával feldolgozni a fájlokat

C++ fájlkezelés

• Amire érdemes odafigyelni:
 mielőtt elkezdünk beolvasni egy fájlból, nézzük meg, hogy

sikerült-e megnyitni

 a megnyitott fájlt mindig zárjuk be, ha már nincs
szükségünk rá

 bemeneti fájlba ne írjunk, kimeneti fájlból ne olvassunk

 ne olvassunk tovább, ha már elértük az EOF jelet, ha nem
előreolvasást használunk és nem vagyunk biztosak a fájl
tartalmában, akkor ellenőrizzük le, nem értünk-e a fájl
végére, mielőtt felhasználnánk az utolsó beolvasott adatot

 különösen figyeljünk arra, hogy ne írjunk végtelen ciklusba
fájl kiírást

 ha egy fájlt újra megnyitunk írásra, akkor (alapból) korábbi
tartalma törlődni fog a megnyitáskor

Sorok beolvasása

• Alkalmazhatjuk a teljes sor beolvasására szolgáló
getline(<logikai fájlnév>, <szöveg változó>) utasítást, amely a
teljes sor tartalmát kiolvassa - a sortörés kivételével - egy
szöveg változóba

• Pl.:
ifstream bemenet(”valami.x”);
string s;

(előreolvasás)
(amíg nincs vége a fájlnak)

(műveletek s-sel)

(következő sor beolvasása)

getline(bemenet, s);

while(!bemenet.eof()

)

{

…
getline(bemenet, s);

}

Sorok beolvasása

• A sorbeolvasás egy speciális változata, amikor nem a teljes sort
olvassuk be, csak egy részét

• Lehetőségünk van egy adott karakterig olvasni a sort:

• getline(<fájlnév>, <változó>, <karakter>)
 ekkor a harmadik helyen megadjuk azt a karaktert, aminek első

előfordulásánál megáll az olvasás

 a karakter lehet vezérlőkarakter is (pl. tabulátor, ‘\t’)
 kiegészítve az előző változattal, több lépésben olvashatjuk be a teljes

sort

• Pl. egy (legalább két 0-t tartalmazó) sor beolvasása három
lépésben:

getline(f, s1, ’0’ƀ; (beolvasás az első 0-ig)

getline(f, s2, ’0’ƀ; (beolvasás a második 0-ig)

getline(f, s3); (a maradék beolvasása)

Programozási feladat II.

 Összeg számolás fájlból
 írjuk ki a képernyőre a „szamok.txt” fájlban tárolt

számok összegét

 Észrevétel:

 A cin whitespace-ig olvas, ha az eof az utolsó ábrázolható
karakter után van, akkor azt is hozzá olvassa a cin a többihez és
a beolvasási csatorna fájl vége flag-e aktiválódik. Emiatt lehet
az, hogy utoljára beolvasott adatot már nem dolgozza fel a
ciklus. (Egyszerű megoldás: enter ütése az utolsó adat után)

Megoldás (1) 2. feladat

#include <iostream>
#include <fstream>
#include <string>

#include <stdlib.h>

using namespace std;

int main()

{

 ifstream bemenet("szamok.txt");
 ofstream kimenet("szamok_kimenet.txt");

 if(bemenet.fail()){

 cout<< "Nem sikerult megnyitni a fajlt!";

 }

 int sum=0;
 string szam;

while(!bemenet.eof())

 {

 getline(bemenet, szam,' ');

 sum=sum+atoi(szam.c_str());
 }

 kimenet<<"A szamok osszege "<<sum<<"\n";

 cout<<"A szamok osszeget a szamok_kimenet.txt kimeneti fajlban megatalalod";

 bemenet.close();
 kimenet.close();

 return 0;

}

Megoldás (2) 2. feladat – haladó

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <stdio.h>

#include <cstring>

using namespace std;

int main()

{

 ifstream bemenet("szamok.txt");

 ofstream kimenet("szamok_kimenet.txt");

 if(bemenet.fail()){

 cout<< "Nem sikerult megnyitni a fajlt!";

 }

 string szam_sorozat;

 int sum=0;

 char * number;

 while(!bemenet.eof())
 {
 getline(bemenet, szam_sorozat);
 const char * elvalaszt=" ,.-";
 char * aktualis_bemente= const_cast<char*>(szam_sorozat.c_str());
 number = strtok (aktualis_bemente,elvalaszt);

 while(number != NULL)
 {
 sum=sum+atoi(number);
 number = strtok (NULL, elvalaszt);
 }
 }

 kimenet<<"A szamok osszege ("<<szam_sorozat<<"): "<<sum<<"\n";
 cout<<"A szamok osszege ("<<szam_sorozat<<"): "<<sum<<"\n";
 cout<<"A szamok osszeget a szamok_kimenet.txt kimeneti fajlban megatalalod";
 bemenet.close();
 kimenet.close();

 return 0;
}

Megoldás (3) 2. feladat – haladó++

#include <iostream>

#include <fstream>

#include <string>

#include <stdlib.h>

using namespace std;

int main()

{

 ifstream bemenet("szamok.txt");

 ofstream kimenet("szamok_kimenet.txt");

 if(bemenet.fail()){

 cout<< "Nem sikerult megnyitni a fajlt!";

 }

 string szam_sorozat;

 int sum=0;

 int length_of_number=0;

 int index=0;

while(!bemenet.eof())
 {
 getline(bemenet, szam_sorozat);
 for (string::iterator it=szam_sorozat.begin(); it!=szam_sorozat.end(); ++it)
 {
 if(!isdigit(*it)){
 sum=sum+atoi(szam_sorozat.substr (index-length_of_number, length_of_number).c_str());
 length_of_number=0;
 }else{
 length_of_number++;
 }
 index++;
 }
 }
 kimenet<<"A szamok osszege ("<<szam_sorozat<<"): "<<sum<<"\n";
 cout<<"A szamok osszeget a szamok_kimenet.txt kimeneti fajlban megatalalod";
 bemenet.close();
 kimenet.close();

 return 0;
}

Házi feladatok

 2.32 Fésülj össze két monoton sorozatot fájlból és írd
ki azt egy harmadik fájlba (egy elem innen, egy
onnan…)
Bemeneti fájlok nevei: sorozat_be1, sorozat_be2
Kimeneti fájl neve: sorozat_ki

 3.27 Add meg egy tetszőleges (fájlból beolvastott)
szöveg leghosszabb szavát és írasd ki azt egy
fájlba .
Bemeneti fálj neve: leghosszabb_szo_be
Kimeneti fálj neve: leghosszabb_szo_ki

 5.1 Véletlen tömb: egy tömb elemeit töltsd fel véletlen
számokkal.

 5.3 Vektor szórása (átlagtól való eltérések átlaga)
(matematikailag nem teljesen korrekt, de nekünk jó
lesz)

