
C++ Jegyzet – A Kezdetek Miski Marcell

C++ JEGYZET

A Kezdetek

Tartalom
Programkeret, amit mindig be kell írni: .. 2

Deklarációk: ... 2

Elágazás: .. 3

Ciklusok: ... 4

Sima beolvasás, sima kiírás: .. 4

Fontosabb matematikai műveletek: ... 4

Fájl használata: FEJLÉC! .. 4

Maximumkeresés: ... 6

Függvény: ... 7

Struct.. 7

Operátor .. 8

Vektor megtöltése ciklussal+ összegzés tétele:.. 10

Maximumkeresés tétele II: .. 10

Referencia .. 11

GETLINE (fájlból beolvasás) ... 11

Tabulátor/Enter szimbóluma: ... 11

További hintekért lesd meg: .. 11

C++ Jegyzet – A Kezdetek Miski Marcell

Programkeret, amit mindig be kell írni:

A megfelelő fejléc nélkül bizonyos parancsokat nem fog értelmezni a program!

A return mögötti érték megadja, hogy a függvény újbóli elindulásakor milyen értékkel rendelkezzen.

Az int main gyakorlatilag a legfőbb függvény. Ha a beugróban olyasmit kérnek, hogy a függvény pl.:

mindig 1 értéket vegyen fel, akkor a return mögötti értéket 1-re írjuk át.

Deklarációk:

Figyeljünk oda, hogy az egészekkel (integer) való műveletek esetén az osztás nem zárt az egész

számok halmazára, ezért valós (double) számokkal operáljunk tovább!

A bool logikai értéket tárol, értéke IGAZ (true) vagy HAMIS (false) lehet, a false megfelel a nulla, a

true a minden más integernek, ellenben olvashatóbbá és könnyebbé teszi a program kezelését.

A befájl fájlt olvas be, a kifájl fájlt teremt a zárójelben megadott névvel, ezt se felejtsük el.

A stringstream egy fájlszerűen kezelt szövegváltozó, a program az utolsó karakterig nézi jobb

esetben.

A string, ifstream, ofstream, stringstream esetén ne felejtsük el a megfelelő fejléceket. TFH mindezek

használva lesznek, ekkor így néz ki a program:

C++ Jegyzet – A Kezdetek Miski Marcell

Elágazás:

Az elágazásnál a program bizonyos feltétel megléte esetén ezt, nem megléte esetén azt a parancsot

hajtja végre (vagy semmit). Például: „Ha esik az eső, viszek neked esernyőt,” Ezen elágazás esetén,

csak akkor történik meg az esernyő vitele, ha az esik az eső igaz értéket kap. Ezt bővíthetem azzal, ha

a hamisság esetén is csináltatni szeretnék valamit. A különbség az else utáni és a teljes elágazás utáni

parancssor között az, hogy az else csak akkor történik meg, ha hamis a feltétel, ha az elágazás után

írjuk a parancsot, akkor igaz feltétel esetén, az igazon belüli parancs is és az elágazás utáni is

végrehajtódik. Hamis feltétel esetén pedig csak, amit az elágazás után írunk.

A feltételnél relációkat vizsgálunk, erre a megfelelő utasítások a következők:

C++ Jegyzet – A Kezdetek Miski Marcell

Amikor bonyolítjuk és több feltétel meglétét szeretnénk vizsgálni elkerülhetetlen egyéb logikai

művelet használata. (és vagy) alkalmazása, megfelel a nulladrendű logika szabályainak, and/or a

legegyszerűbb, de velük ekvivalens a

Ciklusok:

Alapvetően kétféle ciklusra lesz szükségünk, a for-ra és a while-ra. A for használata akkor célszerű,

amikor konkrét futóindexet kell futtatnunk, szummázásnál, produktumnál, soroknál etc. A while-nál

ezzel szemben nincsen szükség futóindexre.

Célszerű a cikluson belül deklarálni a futóindexet, mert akkor a későbbiekben egy másik cikluson

kívüli ciklusban ismét felhasználható a futóindex megnevezése. Ez mindaddig, míg a feltétel teljesül,

visszaugrik a bajuszvégtől a for elejéig. KEZDŐÉRTÉKET ne felejtsünk adni, illetve futtatni az indexet.

Sima beolvasás, sima kiírás:

Fontosabb matematikai műveletek:

A <cmath> fejléct ne felejtsük el abszolútérték, hatvány, gyök esetén.

Fájl használata: FEJLÉC!

Ha adott egy txt fájlunk, akkor ezzel különböző műveleteket tudunk csinálni, ehhez deklarálnunk kell

egy fájl változót, amiben hivatkozunk a fájlra, ahogyan azt fentebb is láthattuk. Fájl tartalmát

elmenthetjük, attól függően, hogy számra, vagy szövegre van szükségünk belőle. Ezt aképp tehetjük

meg, hogy a fájlból beolvasunk annyi karaktert, amennyi a keresett szám előtt van, majd egy számot

C++ Jegyzet – A Kezdetek Miski Marcell

olvasunk be, és így megyünk tovább, amíg azt nem kérjük, hogy álljon meg, pl. ugorjon a következő

sorra (getline). Gyakorlatilag karakterenként futunk végig (egyelőre), kivéve, amikor úgy látjuk, hogy

szám van és mi azt számként mentenénk el. Például, amit a mozinál is alkalmaztunk:

Az a legbiztosabb, ha a fájl legvégébe mindenképpen rakunk entert, mert máskülönben az f.good

függvény nem értelmezett és nem találja meg a fájl legvégét.

Fájlt mi is létrehozhatunk, ekkor a deklarációnkban ifstream helyett ofstreamet kell használni. A

fájlba írás ugyanúgy működik, csak a másikirányú kacsacsőrrel. Erre jó példa volt a sakktáblánk, vagy,

ha akarjuk az aldeterminánsok előjele ;)

C++ Jegyzet – A Kezdetek Miski Marcell

Emellett órán alkalmaztuk a maximumkeresés tételét, és a bizonyos események leszámlálását.

Maximumkeresés:

Ebben az esetben általában egy ciklussal dolgozunk, ami végigfut valamilyen adatsoron, s ebben kell

nekünk elraktározni a legnagyobb értéket. Ez akár az adatsoron belüli műveletekre is vonatkozhat,

hogy a műveletek közül arra kíváncsi, amelyik a legnagyobb értéket adta, ez a komplexitás volt a

moziban is megtalálható.

A ciklusunkból az adatot egy elágazással el kell mentenünk egy cikluson kívüli változóba, abban az

esetben, ha az adatunk nagyobb, mint az előzőleg elmentett, azaz a változó. Így a következő iterálás

után is megmarad az épp legnagyobb érték, mindaddig, míg egy annál nagyobb nem következik.

Ekkor a nagyobbik elmentésre kerül. A ciklus lefutása után a maximumértékkel azt kezdünk, amit

csak szeretnénk. Az alábbi programrészlet csak pozitív számok esetén értelmezett, így a következő

óra ad pontosabb útmutatást.

Remélem érthetőre és hasznosra sikeredett. (Néhány műveletet most nem tisztáztunk, de ha segítség

kell, vagy eljutunk oda, arra is sor kerül, pl.: szöveghossz, karakterkeresés, nagybetű etc.)

Jó tanulást kívánok mindenkinek! 

C++ Jegyzet – A Kezdetek Miski Marcell

A jegyzet néhol szorosan kapcsolódni fog az előző órai jegyzethez, mert a kettő egymásra épül, és

szerves részét képezik egymásnak, így együttesen tanulandóak.

Függvény:

A függvény egy komplett programrészlet, maga a program is egy függvény. A függvény célja, hogy

leegyszerűsítse a programunkat, könnyen lehessen kezelni és javítani. Ha van egy adott

programrészlet, amit sokszor meg kell ismételnünk, gyakorlatilag függvény nélkül belebukhatunk. Egy

hibát vétünk, akkor azt a sok ezer hibát ki kell javítanunk. Valamint ha nem használnánk függvényt, a

programunk érthetetlenül sok sorrá válna.

A függvényeket a főfüggvényen (main) kívül kell

létrehozni. A függvény típusa a függvény névleges

értékére vonatkozik. Erre olyankor van szükség, amikor a

függvénnyel egyéb dolgunk lesz még. Láthattunk ilyenekre

példákat. (egyenlőségvizsgálat, szövegkiírás etc.) A

függvény névleges értékét, azaz a visszatérési értéket a

„return valami” adja meg. A függvény neve után az input

változók szerepelnek sima vesszővel elválasztva. Az input

változók típusát ne felejtsük el megadni! Ennek meg kell

egyeznie azzal, amit később a főfüggvényben elvárnánk.

Az input változó olyan változó, mely a függvényen belül van értelmezve. Azért van rá szükség, hogy

így a megfelelő függvényen kívüli változókat meghívhassuk és a függvényen belül tudjunk operálni. A

program később függvényhíváskor ezt az input változót teszi

egyenlővé azzal a függvényen kívüli változóval, amelyek nevét a

zárójelbe megfelelő sorrendben írjuk. Ez addig tart, amíg a

függvény véget nem ér, következő meghíváskor ismét egyenlővé

tehetjük egy másik függvényen kívüli változóval.

Struct

Új típus létrehozására való. Később ezen

típussal is deklarálhatunk változókat. Ez

szintén a programunk leegyszerűsítésére

szolgál. Ezt láthattuk a Complex változó

esetén is. Hiszen ez a változó két double

típusból áll, a valós (real) értékből és

kapcsolódik hozzá egy imaginárius

(imaginary) érték is. Struct nélkül

állandóan ezzel a két változóval kéne

dolgoznunk. Ellenben, ha létrehozunk egy

új típust, akkor később elég lesz egyetlen változót használnunk.

A struct törzsében deklarálnunk kell, hogy milyen típusú változókból áll az új

típusunk. Itt adjuk meg, hogy hogy néz ki eredetileg is ismert típusokból

összerakva az új típus. Az új változó részeire hivatkozhatunk a következőképpen:

C++ Jegyzet – A Kezdetek Miski Marcell

Valtozo_neve.reszvaltozo_neve

Operátor

Hogy még esztétikusabbá tegyük a programot az újonnan létrehozott változókhoz különböző

operátorokat is létrehozhatunk. Erre is szükségünk van, csak gondoljunk bele: Tudjuk, mit tegyünk

egy valós számmal, egy szöveggel, de, hogyan értelmezzük két komplex szám egyenlőségét? Na, azt

nem tudjuk. Éppúgy, mint azt sem, hogy két pont mikor lesz önmaga. Ezekre mi rájöhetünk, de a

programolvasók nem fogják tudni, anélkül, hogy mi ne mondanánk meg neki. Ez a megmondás az

operátor. Ennek szájbarágása nélkül csak részváltozókkal tudunk operálni, és ez nyilvánvalóan

megnövelné a programunk terjedelmét, mikor mi minimálra törekszünk. Csak képzeljük el, mihez

kezdenénk egy 10 dimenziós vektortér esetén. .

Az operátornak a fent említett módon típust kell adni, majd a benne használandó változókat

deklarálni kell a zárójelben. Az operátor törzsébe kerül azon részváltozókkal végzendő műveletek,

melyeket a program már képes értelmezni és mi szeretnénk, hogy történjen. Ezek után a program

már értelmezni képes a megadott típusok közötti szimbólumot.

A cout << komplex_neve értelmeztetése konkrétan így történik:

Mivel a cout nem egy változótípus, ezért csak így lehet megadni, bármilyen típus kiírását is

szeretnénk értelmeztetni. Itt látható, hogy valóban elég a két double tárolása, mert az „+i*”

könnyedén kiíratható vele.

Innentől kezdve a fájlba írást is értelmezni tudja, ezért ajánlott megérteni, megjegyezni.

C++ Jegyzet – A Kezdetek Miski Marcell

Ennek leellenőrzésére készítsünk egy olyan programot, mely egy adott komplex számot deklarál,

majd azt egyenlővé teszi egy másik komplexszámmal, és ezt a komplex számot írjuk ki a képernyőre

és egy fájlba.

spoiler!

C++ Jegyzet – A Kezdetek Miski Marcell

Alapvetőbb feladatrészek:

Vektor megtöltése ciklussal+ összegzés tétele:

Vektor esetén ne felejtsük el az #include <vector> fejlécet!

Alapkérdés, hogyan töltsünk meg egy vektort csupa egyessel, majd szummázuk őket (összegzés

tétele).

Ezt forral a legcélszerűbb. A v.size() egy függvény, mely a vektor hosszára utal, ez mindig arra a

számra tér, amit mi a deklarációban a v vektornak adtunk, mint méret. Egy tíz elemű vektor

deklarálása: vector<típus> vektor_neve<10>. A fenti függvény ezt azt a számértéket veszi föl, ami itt a

10. Figyelni kell, mert a vektor első eleme a 0. elem. De ez megfogja könnyíteni a ciklus létrehozását.

Látható, hogy a futóindexet elég a

v.size-ig vinni. Összeadás esetén

hasonlóképpen járunk el. Az összegzés

tételét alkalmazzuk. E szerint

deklarálnunk kell egy olyan változót,

mely az összeadás értékét tárolja. Ha ezt a cikluson belül deklaráljuk null kezdőértékkel, akkor

minden egyes visszatérés után lenullázódik az érték, így nem mentettük el, ezért a cikluson kívülre

kell tennünk.

A cikluson belül ezt az értéket kell

módosítanunk úgy, hogy ehhez

hozzáadjuk az i. elemet.

Maximumkeresés tétele II:

Az előző fejezetben látott leírás csak addig jó, amíg a pozitív számok halmazán vagyunk. Legtöbb

esetben vektorbeli elemeket kell majd összehasonlítanunk. Az előző programrészlet kiterjesztése

negatív számokra macerás lenne, ezért mentsük el a bekért számokat egy vektorba. Ezt az előbb

nézett módszerrel alkalmazva megtehetjük.

Ezt úgy oldhatjuk meg, hogy a

maximum kezdeti értékének a vektor 0.

elemét adjuk meg. Innentől minden a

már ismert módon hajtható végre.

A fejlécek átismétlése kedvéért kérlek sorold fel a lehető legtöbb általunk ismert fejléct! (6)

Jobb felső sarokban megtalálhatóak.

C++ Jegyzet – A Kezdetek Miski Marcell

Az eukleideszi távolság két pont között ahol a az A, b a B pontok koordinátái.

√∑

Ezt írjuk fel C++ nyelven, fejlécelni ne felejtsünk!

Spoiler:

z=sqrt(pow(abs(a.x-b.x),2)+ pow(abs(a.y - b.y),2));

 (abs, ide nem feltétlenül kell, csak plussznak van benne)

Jó tanulást kívánok mindenkinek! 

Referencia

A függvényen kívüli változót a megadottak szerint módosítja és

elmenti, referencia nélkül a függvény lefutása után a függvényen

kívüli változó értéke az marad, ami a fgv előtt is volt. A referencia

akkor használatos, amikor nem a függvényünkkel „számolnak”

tovább, hanem például a függvényen kívüli változó értékével,

viszont a függvényben elvégzett művelet értékét várják el tőlünk a változó helyén.

A képen látható példában például beolvastathatjuk a „szam” nevű változót, ekkor a függvény után a

„szam” nevű változó értéke felére csökken.

Más szavakkal ’&’ nélkül a C++ beolvassa a függvény nélküli változó értékét az inputváltozóba, majd

ezzel operál a függvényen belül, vagy ad a függvénynek értéket (return esetén) vagy nem. ’&’ láttán a

program beolvassa a függvényen kívüli változót az input változóba, azzal operál a függvényen belül,

majd a függvény_vége bajusz elérésekor egyenlővé teszi a függvényen kívüli változót a függvényben

levő inputváltozó utolsó értékével. – Excelben jártasaknak ismerős lehet lsd függvény írásakor, mit

jelent az ’$’ jel egyes cellák megnevezésében.

GETLINE (fájlból beolvasás)

Kizárólag stringtípusnál értelmezett!

getline(miből,hova_string,meddig)

Tabulátor/Enter szimbóluma:

\t tabulátor

 \n enter

További hintekért lesd meg:

cplusplus.com

Jó tanulást kívánok mindenkinek! 

