BevProg (C++) összefoglaló
Változók
deklaráció: típus változónév1, változónév2, ... ;
deklaráció inicializálással: típus változónév = valami;
értékadás: változónév1 = új_érték;
egyenlőségvizsgálat: változónév1 == változónév2
Típusok:
· int = egész
· double, float = valós
· char = karakter (vagy egy 0-255-ig terjedő szám)
· bool = logikai
· string = szöveg
· szoveg.length() vagy szoveg.size() // szöveg hossza
· hol = szoveg1.find(szoveg2, honnan)
// megkeresi a szoveg2 első előfordulását szoveg1-ben a honnan sorszámú karaktertől kezdve és eltárolja a hol változóban
· szoveg2 = szoveg1.substr(honnan, milyenHosszan) // szövegrészlet
· szoveg1.substr(honnan) // Honnan sorszámú karaktertől végig
· ifstream = befájl, ofstream = kifájl (be kell include-olni: <fstream>)
· stringstream >> szöveg számmá konvertálására használjuk
(be kell include-olni: <sstream>)
· vector = tömb
· #include <vector> // Kötelező
· vector<típus> változónév; // < > jelek közötti típusból álló elemek tömbje
· változónév.push_back(érték);
// új elemet ad a tömb végéhez, aminek értéke a zárójelek közti érték
· valami = változónév[i]; // a tömb i-dik eleme és értékének lekérdezése
változónév[i] = valami; // a tömb i-dik eleme és értékadása
· változónév.size() // tömb elemeinek száma
Megjegyzések:
· változónévben lehet: angol ABC betűi, számok(de nem kezdődhet vele) és ’_’
· Felismerés szinten kell tudni: +=, -=, *=, /= jelentése:
· pl: változó1 += változó2; változó1 = változó1 + változó2;
· A double és a float közt az a különbség, hogy a double kétszer pontosabb
· A karakterekre alkalmazhatók a szokványos reláció-jelek (< és >)
· A nagyobb hátrébb van az ABC-ben (magyar betűk a z után vannak)

Elágazás
if (feltétel)
{ utasítások; ...; }
else if (feltétel)
{ utasítások; ...; }
else
{ utasítások; ...; }
Megjegyzések:
· else ág csak akkor hajtódik végre, ha minden korábbi feltétel hamis volt, de akkor mindenképp lefut a blokkja.
· „else if” ágból akármennyi lehet
· az „else if” és az „else” ág elhagyható
· ha csak egy utasításból áll a blokk, akkor nem muszáj { } jelek közé rakni
· ’;’ csak az utasítások blokkon belül kell, de ott kötelezően minden utasítás végére
Ciklus
while (feltétel) // addig hajtja végre a ciklustörzset, amíg a feltétel igaz
{ utasítások; ...; } // ciklus törzse
 (
addig
 csinálja,
amíg
 igaz
) (
első
 alkalommal
hajtja
 végre
) (
minden
 körben végrehajtja
)vagy
for (int i = 0 ; i < n ; i++)
{ utasítások; ...; }
Megjegyzések:
· Felismerés szinten kell tudni:
· do
{ utasítások; ...; }
while (feltétel); // hátultesztelős ciklus
· az ciklus törzse lehet üres is: „while (feltétel) ; ” vagy „for (int i=0; i<n; i++) ;”
· ha csak egy utasításból áll a blokk, akkor nem muszáj { } jelek közé rakni
· ’;’ csak az utasítások blokkon belül kell, de ott kötelezően minden sor végére

[bookmark: _GoBack] (
Visszatérési
 típus
) (
Visszatérési érték
)[image:] (
Függvény
)Függvények
Függvény létrehozása:
típus függvénynév (típus paraméter1, típus ¶méter2, ...) //
 (
Paraméterlista
){
 (
Referencia szerinti
 átadás
(ha
megváltoztat
juk
, megtartja az értékét
 a függvény lefutása után is
)
) (
Érték szerinti
 átadás
(
másolattal
 dolgozunk)
)utasítások;
 ...
return visszatérésiÉrték;
}
Hogyan használjuk a függvényünket:
int main ()
{ ...
korábbanLétrehozottVáltozó = függvénynév(paraméter1, paraméter2, ...);
... }
Megjegyzések:
· a „korábbanLétrehozottVáltozó” típusának meg kell egyezni a függvény visszatérési típusával.
· „korábbanLétrehozottVáltozó” értéke a return után megadott értékkel lesz egyenlő.
· a paraméterlistának meg kell egyeznie mindenhol (paraméterek számában, típusban).
· Ha void típusú a függvény, akkor nincs visszatérési értéke és így használjuk:
· függvénynév(paraméter1, paraméter2, ...); // bal oldalon nem áll semmi
· Ha csak egy utasításból áll a blokk, akkor nem muszáj { } jelek közé rakni.
· ’;’ csak az utasítások blokkon belül kell, de ott kötelezően minden sor végére.
· Természetesen nem csak a mainben használhatjuk függvényünket.

Struktúra: új, saját magunk által meghatározott új TÍPUS
struct rekordnév
{
 (
mezők
)típus1 változónév1, változónév2, változónév3;
típus2 változónév4;
...
típus3 függvénynév1 (paraméterlista) // belső függvény - csak felismerés szinten
{ utasítások; ...; }
...
 };

// Operátorok írása valószínűleg csak felismerés szinten kell
típus4 operator+ (típus5 operatorElőttiVáltozóNeve, típus5 operatorUtániVáltozóNeve)
{
 utasítások;
return összeg;
 } // Természetesen az összeadás jel (+) helyére bármilyen más jelet írhatunk
hogyan használjuk:
· rekordnév változónév; // létrehoztunk egy változót a saját típusunkból
· változónév.mező1 = valami; // mező1 = struct-on belül változónév1 néven szerepel
· valami = változónév.mező1;
// az egyenlőség két oldalán levő változók típusa meg kell egyezzen!!!
· valami = változónév.függvény1(paraméterlista); // belső függvény használata
Megjegyzések:
· MINDIG meg kell mondani a programnak, hogy a struct-unk melyik mezőjére hivatkozunk (ezt ponttal lehet megtenni).
· A struct-unkat NEM használhatjuk változóként, hanem csakis típusként, amiből tetszőleges számú változót hozhatunk létre.
· Akár egy általunk definiált függvénynek is lehet a visszatérési értéke a struct-unk.

Fájlkezelés
Beolvasás:
#include <fstream>
#include <sstream>
...
	ifstream befajl(”fáljnév.txt”);
	vagy
	ifstream befajl;
befajl.open(”fáljnév.txt”);

while (befajl.good()) // Addig olvasson, amíg vannak beolvasatlan sorok
{
// Szöveg beolvasása
string ideiglenes;
getline(befajl, ideiglenes, ’,’) ;
// szöveg beolvasása az ideiglenes nevű változóba a befajl-ból vesszőig
getline(befajl, ideiglenes) ;
// szöveg beolvasása az ideiglenes nevű változóba a befajl-ból enterig
// Szám beolvasása
string ideiglenes;
stringstream ss;
double amibeBeSzeretnékOlvasni;
getline(befajl, ideiglenes, ’,’) ;
// szöveg beolvasása az ideiglenes nevű változóba a befajl-ból vesszőig
ss << ideiglenes; // beolvasott szövegrészletet átmásoljuk a stringstream-be
ss >> amibeBeSzeretnékOlvasni; //szöveg konvertálása számmá
ss.clear(); // stringstream ürítése
}
befajl.close();
...

Kiírás:
#include <fstream>
...
	ofstream kifajl(”fáljnév.txt”);
	vagy
	ofstream kifajl;
kifajl.open(”fáljnév.txt”);

for (int i = 0; i <n; i++) // Annyiszor írjon, ahány kiírandó adat van
{
// Adat kiírása
kifajl << adat[i];
}
kifajl.close();
...
Megjegyzések:
· A fájlba írást vagy fájlból olvasást végezhetjük a mainben is, de szebb megoldás külön függvényt létrehozni. – Ekkor a két ... közti részt teljes egészében a beolvasó/kiíró függvény törzsébe kell beilleszteni.
· Ha a beolvasást külön függvényben végezzük és a KI/BEFALJ-t paraméterként adjuk át, akkor annak MINDENKÉPP REFERENCIA szerint kell ÁTADNI (&) – Ez a fajta megoldás azonban elkerülendő (hacsak a beugrót nem így írták meg).

Matematikai függvények
>> #include <cmath>
· sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x) értelemszerűen
· pow(x,y) >> hatványozás (xy), sqrt(x) >> gyökvonás
Megjegyzések:
· x lehet int, float és double is.
· Hatványozással megoldható a nem négyzetes gyökvonás (pl: pow(x, 1/3)).
Kiiratás képernyőre: cout << valami << valami (<< endl);
Beolvasás billentyűzetről: cin >> valamibe >> másikValamibe;
Megjegyzések:
· cin szöveget szóközig olvas, számot értelemszerűen a szám végéig, tizedesvesszőt nem, helyette tizedespontot ismer fel.
· cin felfüggeszti a program futását, amíg minden utána következő változó értéket nem kap.
· A getline(cin, szoveg) illetve getline (cin, szoveg, ’,’) itt is működik
· cout: kiiratásnál érdemes szóközt, vesszőt vagy sortörést is rakni a változók közé, hogy értelmes kimenetet kapjunk.
· pl: cout << változó1 << ’ ’ << változó2 << ’,’ << változó3 << endl;
· A cin és a cout is stream típusú változó, ugyanúgy, mint ahogy az ifstream és ofstream is lehet stream-ként kezelve (ez akkor fontos, ha paraméterként szeretnénk átadni).
Jelmagyarázat:
· kék: kulcsszó (a programunkban szó szerint ugyanígy kell, hogy szerepeljen)
· piros: gyakran elkövetett hibák
· zöld: komment, magyarázószöveg
image1.emf

Paraméterek

