Adattarolas és fajlrendszerek
(Jegyzet)

Tuza Zoltan, Uhlar Laszlo, Bérci Norbert

2015. oktéber 1-i 6ra anyaga

Tartalomjegyzék

1.

2.

1

Bevezetés

Adattarolé perifériak

2.1. Merevlemez (Hard Disk Drive - HDD) . . . . . . .. .. ... . .. ... ...
2.2. Compact Disk (CD) . . . . . ...
2.3. Pendrive, Flashdrive, SSD . . . . . . . . .. ..

Particiok

Fajlrendszerek
4.1. Fragmentacid . . . . . . .. oL e e
4.2. Fijlrendszer implementaciok . . . . . . . .. L oo

Konyvtarstruktara és a fajlrendszer adminisztracigjanak manipulacidja

5.1. Alapvetd parancsok . . . . . . . ...
5.2. Jogosultsagok . . . . ..o
5.3. Jogosultsagok megvaltoztatdsa . . . . . . ... oL Lo
5.4. Alapértelmezett jogok . . . . . . . L
5.5. Tulajdonos megvaltoztatasa . . . . . . . . . . ... L
5.6. Fajlrendszerrel kapcsolatos parancsok . . . . . . . . ... oL
5.7. Feladatok . . . . . . . . .

Konyvtarszerkezet
Egyéb parancsok

Feladatok

. Bevezetés

= w NN

10
10
10
11
11

11

13

13

Egy program futdsa sordn az elvégzett szdmitdsokbdl (rész)eredmények keletkeznek, amit az
illékony! meméria [volatile memory] térol. Ha ezeket az eredményeket el akarjuk tdrolni a szé-
mitdégép két bekapcsolasa kozott vagy egy program két futtatdsa kozott, akkor sziikséges, hogy a
tarolés elektromos dram nélkiil is biztosithatoé legyen. Erre kezdetben nyomtatot, illetve lyukkar-
tydkat hasznaltak (ez utébbi annyival volt szerencsésebb, hogy egy lyukkartya-olvaséval kénnyen
vissza lehet t6lteni az informécit a memoridba). Késdbb megjelentek a szalagos tdroldsi médsze-
rek, melyek segitségével nagyobb mennyiségii adatot tudtunk linedrisan elmenteni (emlékezziink
a magnokazettédkra, ahol ha egy szamot ki szerettiink volna hagyni, azt a szalag gyors tekerésével
tudtuk csak megtenni).

O Revision : 51 (Date : 2013 — 10 — 0722 : 03 : 42 + 0200(Mon, 070ct2013))
Ltapfesziiltség megsziinésével a benne térolt adat elveszik



Az attorést a cserélhetd lemezes olvasé jelentette, ahol egy magnesezhetd korongot forgattunk
egy mozgathaté magneses olvasd/ir6 fej el6tt, szemben a mégneses szalaggal, ahol az a olvasé
fej fixen volt tartva. Ezzel a fejet kiilonboz6, a korong maéas és mds részén 1évo adatsdvok folé
tudtuk helyezni. Ezt a moddszert - melyben a tarolén 1év6é adatok barmelyikét a tobbi adat
érintése/4tlépése nélkiil érhetjitk el - hivjuk véletlen hozzédférésnek [random access]. Ezen a
ponton két irdny indult el, az egyik mentén a cserélheto lemezeket fejlesztették, mig a masik
vonalon létrejottek fix- vagy merevlemezek.

Mivel ezek az eszkozok nem kozvetlenill vannak a szdmitogép alaplapjara épitve, hanem
valamilyen csatlakozon keresztiil kapcsolodnak hozzd, igy adattarold periféridk gyijténévvel hi-
vatkozunk réjuk. Példdul az egeret és a monitort is periféridnak tekintjiik, az egyiket adatbeviteli
periféridnak, mig a masikat adatmegjelenité periféridnak hivjuk. Egy adattarolé eszkoz legfon-
tosabb hirom jellemzdje a kovetkezo:

o (adat)hozzaférési id6 [(data) latency]: Az adat megcimzése és az adat kiolvasdsa kozott
eltelt id6. Mai merevlemezeknél ez néhany ms.

e adatatviteli sebesség [transfer rate]: Egy idSegység alatt az eszkdzre irt vagy onnét kiolva-
sott adat mennyisége.

e tdroldkapacitds [capacity]: az eszkozon tdarolhaté bitek/bdjtok mennyisége. Fontos tisztdz-
ni, hogy ez egy brutté érték: mivel nem a ,nyers” merevlemezt hasznaljuk a nettoé érték ettol
eltérd lehet hiszen a kiilonboz6 logikai féjlrendszerek mas-mas médon épitik fel a tarolasi
adatszerkezeteket - lasd a fajlrendszerek részt. Az Informacié- és kodelmélet cimi targy-
ban részletesen targyalasra keriilnek az informécié témoritéséhez illetve az adatvesztéssel
szembeni részleges rezisztencidhoz sziikséges mddszerek.

Tovéabbi fontos jellemz6 az adattarolas élettartalma, azaz meddig képes egy eszkoz a réirt infor-
méaciét megdrizni. A mégneses elven miikodé eszkozok dltalaban elébb szenvednek mechanikai
hibabdl kifolyé adatvesztést, mint hogy a magneses elven tarolt adat elveszne. Tovabbi, kiilsd
tényezék miatt is sériilhet az adatintegritds, példdul mechanikai behatds vagy héhatds miatt?; a
Compact Diskek (CD) esetében példdul a feliilet elgombasoddsa jelent veszélyt az informaciéra
nézve.

2. Adattarold perifériak
2.1. Merevlemez (Hard Disk Drive - HDD)

Ahogyan a cserélhetd lemezes adattarolast, igy a ,fix” vagy ,merevlemezes” adattaroldst is az
IBM mérnokei taldltak fel az 1950-es években®. Maga az adattarolds elve az elmilt 6tven év-
ben nem sokat véltozott, egyediil a megbizhatdsig és a tarolhaté adatmennyiség mértéke nétt
drasztikusan. A kiils6 leveg6tol elzart vagy porszurovel ellatott nyitott haz a kovetkezo részeket
tartalmazza:

e mindkét oldaldn magnesezheté korongok
e olvasd/ir6 fejek, amelyek a magneses feliilet felett par nanométerrel - 1égparnan siklanak*

e vezérld elektronika, amely pozicionalja a fejeket, olvasds esetén elvégzi az analdg méagneses
mérés digitalizalasat, illetve a csatold feliiletnek megfelel6 adatatviteli protokollt megvalé-
sitja (IDE, SATA, stb.).

e forgatémotor, jellemz&en 5400 illetve 7200 forulat/perc sebességgel forgatja a lemezeket,
tehdt az olvasé fejek - a sugdrirdnyu poziciétdl fiiggben - kb. 270 km/h-val szdguldanak a
lemezek felett.

2Minden mégneses anyagnak létezik egy tgynevezett Curie-pontja, ezen hémérséklet felett az anyag elveszti
magneses tulajdonsigat

3Az els6 merevlemezt IBM 350 RAMAC néven forgalmaztédk és 5 megabyte térolékapacitdssal rendelkezett,
ezt 6tven darab 24”-os lemezzel érték el

4ebbél kovetkezik, hogy nincs vdkuum a merevlemez belsejében



Feliilrol —_— T

réolvass fej

Oldaltél | |
Korong (platter) i i [ (:):_
— T |
T o—
Feliiletek (surfacksy | | ]
| o Dlz
[ [(——

Henger (cylinder)

1. dbra. A merevlemez vazlatos képe

A lemezeket a kiilonbozé keriiletek mentén sdvokra osztjak, a sdvokat pedig szektorokra, ez
a legkisebb cimezhet6 egység egy merevlemezen. Ezek mérete régebben 512 byte volt, jelenleg
elérhet6 4096 byte is. Mivel az olvasé fejek egyiitt mozognak, ezért a kiilonb6z6 lemezeken azonos
savon allnak minden pillanatban, ezeket a sdvokat egyiittesen cilindernek nevezziik. Lathaté
tehdt, hogy az Osszetartozé adatokat szomszédos szektorokra ill. azonos cilinderekre érdemes
irni. Fontos fogalom még a klaszter, ami az azonos savon egymas utan elhelyezkedd szektorok
gyljténeve. Léasd az 1. &bran. A merevlemez hatékony felosztdsa és az adatok taroldsa a
merevlemezre telepitett fajlrendszer feladata, melyet részletesebben targyalunk.

2.2. Compact Disk (CD)

A cserélhetd lemezes fejlédési vonalat az utébbi évtizedig a magneses tarolasi elven miikodo esz-
kozok hatdrozték meg, de ezek tdrolGkapacitdsa nem nétt és/vagy hozzaférési ideje nem csokkent
olyan mértékben, mint a Compact Diskeké, ezért a tovabbiakban nem is foglalkozunk veliik.

A CD-s adattarolas egy - a merevlemezes tarolastol eltéréen - alapvetden optikai elven miikodo
tarolasi modszer. Egy lézerdidda &ltal kibocsatott koherens fénysugar tapogatja le a CD lemez
feliiletét, melyen apré godrok és pupok valtjak egymaést, melyekrdl masként verddik vissza a
lézersugar - ezzel reprezentdlva a bitek értékeit. Gyértdas soran a CD ROM lemezen - mint a
merevlemeznél - sdvokat és szektorokat hoznak létre, amelyben a biteket a vajatok reprezentdljak.
PlL: ha van mélyedés [pit] akkor az logikai egyes jelent, ha nincs [lane] akkor logikai nulldt.
Amikor az olvasé fej mindig azonos sz6gbdl megvildgitja a feliiletet, akkor a vajatba bees6 lézer
fény maéshova verédik vissza, mint az lézer fény, mint ami nem esett bele a vajatba. Mivel a
lemez fixen sikban forog és az olvasdfej is meghatarozott szogben vilagitja meg a felszint, ezért
a varhaté visszaverddési helyekre fényérzékeny szenzorokat helyeznek el. Ertelemszertien tehat
a logikai egyes és nullas értékek mas-més szenzorbdl valtanak ki jelet. Ebbdl a felépitésbdl
lathatd, hogy minél fékuszaltabb a 1ézersugar, illetve minél kisebbek a vajatok a lemez feliiletén,
anndl nagyobb az elérhetd adatsiirliség (természetesen tovabbi fontos paraméterek is vannak
- anyagtechnikai jellemzdk, a lézer hullamhossza, valamint tobb adattarolé réteggel rendelkezd
lemezek is léteznek). A CD-ROM elnevezésben a ROM (Read Only Memory/Media) rovidités
arra utal, hogy ezeket az eszkozoket csak egyszer lehet frni, utdna mar csak olvashatéak. Azéta
kifejlesztették az tjra irhaté CD lemezeket is, ahol az olvasastdl eltéro tulajdonsagu lézersugarral
visszaallitjak az eredeti feliiletet - természetesen ebben az esetben nem véajatokkal dolgozunk,
hanem a feliiletnek valtoztatjuk meg a visszaverddési tulajdonsigait az irds soran.



2.2.1. feladat. Mibél adédhat a blu-ray disc (BD) elnevezése?

2.3. Pendrive, Flashdrive, SSD

Mivel ezen eszkozok miikodésének megértéséhez komoly elektronikai hattér tudasra van sziikség,
ezért a technikai részleteket nem targyaljuk. A miikodési elvrol elegendé annyit megjegyezniink,
hogy ezek a tarolok olyan kiilonleges aramkorok, amelyekben 1évo tranzisztorok tépfesziiltség
jelenléte nélkiil is képesek megtartani azt az allapotot, amit tapfesziiltség jelenlétében bedllitot-
tunk. Fontos még megjegyezni, hogy ebbdl a technikai megvaldsitasbdl kifolydlag az ilyen tipusi
eszkozok irasi és olvasasi sebessége jelentOsen eltér egymastol.

A flash memoriak két {6 tipusat kiillonboztetjiik meg: a NAND és a NOR memoriacellabdl
allékat, amik neviiket onnét kapték, hogy a megvalésitasuk a logikai NAND (negalt ES) és NOR
(negdlt VAGY) kapukéra hasonlit. A legfontosabb kiilénbség koztiik, hogy a NAND celldk gyor-
sabban torolhetk és irhatok, kevesebb szilicium teriiletet igényelnek, azaz olcsébbak is, tovabba
a tarolt adatokat csak blokkokban lehet elérni (a NOR flash béjt szint{i elérést is lehet6vé tesz).
Mindebbél adéddéan napjaink flash meméridi majdnem kizardlag NAND alaptak, és elsodleges
feladatuk a héttértarak helyettesitése (mivel azok szintén blokkonként cimzettek).

A hardveres megvaldsitas irant érdeklédék a kovetkezd kulcsszavak mentén tudnak tovabbi
informécidhoz jutni: Flash memory, Floating gate, EEPROM.

2.3.1. Wear levelling

A flash memdridk/tarolok egyik legfontosabb tulajdonsdga a mar emlitett blokkonként torténd
torlés, ami miatt egyetlen bajt megvaltoztatasa is a teljes blokk torlését koveteli meg. Nagyon
fontos tehdt, hogy flash tarolok esetén tobb, egymashoz kozel 1évé bajt irasat egyetlen miive-
letben végezziik. Sajnos a blokk tjrairdsok szdmdanak is van egy felsé hatdra, ami napjainkban
(2013) jellemzéen szazezres nagysagrendi, igy a blokkokba szervezett irds sem elegendé, arra
is sziikség van, hogy a blokkokat lehet6ség szerint ugyanannyira haszndljuk el (ugyanannyiszor
toroljiik), fgy megnovelve az eszkoz élettartamat. (Ha ezt nem tennénk, akkor lennének olyan
blokkok az eszkozon, amit olyan sokszor djrairtunk/torsltiink, hogy azok meghibdsodnak, és
ha ezek olyan helyen helyezkednek el, ami a fajlrendszer szempontjabdl kritikus, akkor akar a
teljes taroléeszkozt is hasznalhatatlannd tennék. A nem kritikus helyen 1év6 hibds blokkok is
bossziusagot okoznak, hiszen ezek azt jelentik, hogy az eszkdzon tarolt fajl kiolvasott tartalma
nem egyezik meg azzal, amit odairtunk.)

Ez a meghibdsodas-elkeriilé technika a wear levelling, ami egy kozbiils6 réteget képez a
flash memdria fizikai blokkjai és a fels6bb rétegek (driver, operdciés rendszer) dltal megcim-
zett logikai blokkok kozott. fgy lehet6sége nyilik arra, hogy egy logikailag ugyanarra a blokk-
ra irdnyulé {rds/torlés miiveletet més fizikai blokkra irdnyitson, azaz a fizikai blokkok irdsai-
nak/torléseinek szdmat kozel azonos szinten tartsa, igy a téroléeszkoz élettartamat nagysagren-
dekkel meghosszabbitsa (azaz az élettartam ne a legtobbet {rt/torolt logikai blokktdl fiiggjon,
hanem a teljes eszkoz blokkjai gyakorlatilag kozel egy idében romoljanak el, az {rdsi/torlési mii-
veletek szétteritésének, egyenletesebbé tételének koszonhetden).

A wear levelling technikdban megkiilonboztetiink dinamikus és statikus moddszert: a dinami-
kus mdédszer csak a torlések/irasok sordn végzi el a logikai és a fizikai blokkok 6sszerendelésének
megvaltoztatasat az adott blokk torlési szamanak figyelembe vételével, mig a statikus mddszer
a nem {rt/torolt blokkokra is kiterjeszti ezt. A kiilonbség tehat, hogy amig a dinamikus esetben
azok a logikai blokkok, amelyeket nagyon ritkdn {runk, a helyiikén maradnak (és j6 allapotban
vannak, hiszen csak ritkdn {rtuk feliil), addig a gyakran irt blokkok gyakran cserélédnek, de
egyre rosszabb allapoti blokkokon foglalnak helyet (béar ezen blokkok egyenletesen rosszak). A
statikus esetben a nem frt/torolt blokkokat is fizikailag dthelyezi a flash vezérld, {gy az Gsszes
blokk koézel ugyanazon az elhasznaltsagi fokon van. Ha a teljes tarat tekintjiik, ez nagy élet-
tartam noévekedéshez vezethet (nyilvan attdl fiiggéen, hogy felsébb szintrél a tar mekkora részét
frjuk feliil/toroljitk: példdul ha egy flash tarolét igy hasznalunk, hogy a rd méasolt adatokat azok
felhasznalasa utan toroljiikk és gy irunk ré djabb adatot, akkor nincs szamottevd kiilonbség a
statikus és a dinamikus wear levelling kozott, viszont ha nagy részén fixen ugyanaz az adat taldl-
hatd, és csak kis részét irjuk ujra-és-ujra, akkor oridsi a kiilonbség a statikus és a dinamikus wear


Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés


levelling &ltal elért élettartam hosszabbodds kozott.) A statikus mddszer egyben azt is jelenti,
hogy akkor is torlést/irdst kell végezni, amikor azokat nem a felsébb rétegek kezdeményezik, emi-
att a teljesitménye elvileg kevesebb, mint a dinamikus médszerrel miikodo hattértaré, ugyanakkor
megfelel6 litemezéssel ez a kiilonbség szamottevoen csokkenthetd. Ugyanezen okok miatt a sta-
tikus wear levelling komplexebb algoritmust, igy komplexebb hardveres implementaciét igényel,
azaz dragabb.

Fontos kiemelni, hogy az ilyen tipust meghibasoddsok oka kizérdlag az irés/torlés miiveletek
szdma, nem pedig az utolsé iras 6ta eltelt id6, azaz egy csak olvasdsra hasznalt flash tarold
élettartama nagysagrendekkel hosszabb, mint egy irasra is hasznalté.

A meghibasodasok elkeriilése érdekében végzett wear levelling mellett sziikséges, hogy a mar
meghibasodott blokkokat is nyilvan tartsuk, hogy az arra torténd irast elkeriiljiikk. Ekkor viszont
arra is lehetdség van, hogy a gyartas soran eleve hibas blokkokat szintén megjeloljiik, ami haté-
konyabb, kevesebb selejttel torténé (azaz olcsébb) gyartast jelent, mivel a jelenlegi technoldgia
nem garantdlja a 100%-os hibamentességet.

A wear levellinget és a hibds blokkok nyilvéntartdsat az USB (pen)drive-ok illetve az SSD-k
hardveres megvaldsitdsban tartalmazzdk (flash vezérld), ezeket az eszkozoket gy kell hasznélni,
mintha hagyomanyos hattértarak lennének, minden fentebb emlitett feladatot elvégez a hard-
ver. Koltség és funkcionalitds szempontjdbdl a pendriveok altaldban dinamikus- mig az SSD
hattértarak statikus wear levellinget tartalmaznak.

3. Particiok

Lehet6ségiink van arra, hogy a hattértaron 1évé teriiletet felosszuk és kiilonbozé méretli, de
Osszetartozo teriileteket hozzunk létre. Egy ilyen teriiletet particiénak hivunk. Minden particié
kiilon kezelhet6 a tobbitol: torolhetd, formazhatd, mésolhatd, és sajat fajlrendszerrel rendelke-
zik. Ezért fizikailag egy lemezen tarolhatunk kiilonb6z6 operédcids rendszereket, anélkiil, hogy
zavarnak egymast.

A particidk MS Windows alatt betiivel cimkézve jelennek meg, pl. C:, D:. - fontos megjegyez-
ni, hogy ha fizikailag masik lemezen van egy particié az a meghajté beti jelébol nem derithetd
ki (pl. elképzelhetd, hogy a C: meghajté egy particid, amely a teljes merevlemezt elfoglalja, mig
a D: illetve E: meghajtok fizikailag a C: -t6l kiilonb6z6, de ugyanazon a lemezen helyezkednek
el: valamilyen ardnyban megosztjak a lemez teriiletét).

GNU/Linux alatt mar tisztdbb a helyzet, a dev konyvtér tartalmazza a szémitégéphez csatolt
perifériak eszkozfjljait, igy a merevlemezekét is. Az IDE csatoloval rendelkezé lemezeket hda,
hdb, hdc, hdd, ...névvel taldljuk a konyvtarban, mig a SATA vagy SCSI csatoloval rendelkezoek
sda, sdb, sdc stb névvel érhetdek el. Altaldban két IDE csatlakozé van egy alaplapon, amelyre
két-két eszkozt lehet csatlakoztatni, ezért a hda az elséleges IDE csatlakozd master eszkoze, a
hdb ugyanezen kabelen 1év) slave eszkoz. A hdc, hdd a méasodlagos IDE csatlakozora felflizott
eszkozoket jelzik. Ha a hda lemez particidkat tartalmaz, akkor az els6leges particié hda0 néven,
mig a méasodik particié hdal néven fog szerepelni a /dev konyvtarban. SATA/SCSI eszkozok
esetén az sd utdn kovetkezd a,b,c,d betiijelek és az 1,2,3,4 szdmok ugyanezt jelentik (példaul:
/dev/sda0 vagy /dev/sdal).

Természetesen az operacids rendszert informalni kell arrdl, hogy milyen particiok léteznek
az adott lemezen, amit a Master Boot Record (MBR) tartalmaz. Ebben taldlhaték a particidk
méretei, kezdd és vég értékeik valamint az, hogy melyik particié tartalmaz operaciés rendszer
elinditdsdhoz sziikséges adatokat - ezt/ezeket a particickat hivjuk bootolhaté particiénak.

A MBR-t az 1980-as években taldltak ki. Tovabbfejlesztése a GUID Partion Table (GPT),
amely szamos kiterjesztést tartalmaz az MBR-hez képest, példaul az MBR esetében a legnagyobb
particié mérete maximum 2 TiB lehet, mig a GPT esetén ez 8 ZiB (ZiB = Zebi Byte = 10247
Byte), tovdabba GPT particiondlds esetén a particidk szama is sokkal tobb lehet.

4. Fajlrendszerek

A féjlrendszer feladata, hogy az eltarolandé fajlokat és konyvtarakat a hattértar egy particiéjan
a megfelel6 helyen elhelyezze, garantilja annak visszaolvashatdsdgat, valamint a valtozasokat


Albert
Kiemelés


adminisztrdlja. Tehéat a fajlrendszer funkcidja kettds: egyrészt tarolja egy adott particién 1é-
v6é adatok (fajlok) helyét, masrészt kezeli az ezekhez kapcsol6dé metaadatokat®. Minden, a
fajlrendszerben tarolt adathoz (egy adott fajl fizikai elhelyezkedése a lemezen) tartozik egy me-
taadat bejegyzés is, ez tartalmazza a fajl vagy konyvtar nevét, a létrehozds, modositas, utolsd
hozzéférés datumat, a tulajdonos adatait, valamint a hozzaférési jogosultsidgokat. A konyvtérak
a fdjlrendszer adatbdziséban 1évé bejegyzésként vannak tarolva (tehdt amennyiben egy lemezrol
elveszitjiik a fajlrendszert leiré adatbdzist (a metaadatokat), gy a nyers adatok (fajlok tartalma)
visszanyerhet6ek, de: 1) nem fogjuk tudni, hogy melyik f4jl hol kezd6dostt, hogyan kovetkeznek
egymads utdn a fajl tartalmat alkoté blokkok és hol van vége 2) nem fogjuk tudni rekonstrudlni a
kényvtarrendszert.) Lathatd, hogy a fdjlrendszer helyes miikodése létfontossdgi a tarolt adatok
hasznalhatésaganak szempontjabdl, éppen ezért a fijlrendszer adatbazisa a lemezen &ltaldban
tobb példanyban, sokszorositva keriil eltaroldsra, csokkentve a megsériilés valdszintiségét.

Mivel a szamitégépek szdamos kiilonboz6 feladatra haszndlhatéak (csalddi személyi szamito-
gép, bankszamlakezeld rendszer, egy tozsdei kereskedOrendszer vagy egy millids forgalmi webki-
szolgdld), ezért az adatok tarolaskor is kiilonboz6 igények 1éphetnek fel (mind teljesitmény, mind
biztonsdg tekintetében). Ezen igényekre kielégitésére rengeteg fdjlrendszer megvaldsitas 1étezik
mas-és-mas tulajdonsagokkal, teljesitménnyel, funkcionalitdssal. Ebben a jegyzetben részleteseb-
ben a FAT, illetve az ext2/3/4 féjlrendszerrel fogunk megismerkedni.

Mivel fajlrendszer sziikséges magdnak az operdciés rendszernek az installaldsahoz is, a féjl-
rendszereket az operacids rendszerrel egyiitt fejlesztik: példaul MS Windows operécids rendszer-
hez harom fajlrendszer érhetd el: a FAT, az NTFS, és az exFAT. Linux alatt a legelterjedtebb az
ext3/4 fdjlrendszer, de szdmos egyedi igényt kielégité megvaldsitds is létezik (XFS, JFS, btrfs,
Reiserfs, stb).

Léteznek hélézati fjlrendszerek is (Google Drive, NFS, sshfs, stb.), amelyek az operdcids
rendszer szempontjabol atlagos particiénak tlinnek, de fizikailag az adatok nem az adat szamito-
gép hattértaran tarolédnak, hanem egy tdvoli szerveren. Példaul az egyetemen 1év6 tarhelyeinket
(turdus, users) is felcsatolhatjuk meghajtéként az dltalunk haszndlt operdcids rendszerben (sét,
valéjdban is ez torténik, nézziik meg a mount paranccsal).

Fontos megjegyezni, hogy a féjlrendszerek fjl- és konyvtarelhelyezési implementaciéja nem
azonos az altalunk megszokott konyvtarstruktirdvall Tehat a felhasznalok szaméra lathato
konyvtarstruktira mogott a fizikai tarolasi modja ettol teljesen eltérd, ahogy ezt latni fogjuk.

4.1. Fragmentacio

Egy féjlrendszerben a féjlok blokkokban tarolédnak. Ha ezek a blokkok fizikailag nem egymas
utdni teriileten helyezkednek el a hattértaron, akkor kilsd fragmentdciordl beszéliink. Ez azoknal
a hattértaraknal érdekes, amelyeknél az egymads utani blokkok olvasésa sokkal gyorsabb miivelet,
mint a tdvoli blokkok olvasdsa (ilyen héttértdr a merevlemez, mivel a fej mozgatdséhoz illetve a
lemez megfeleld helyre forgdsdhoz id6 kell). Annak érdekében, hogy a fdjlok olvasdsit meggyor-
sitsuk, a blokkokat egymas utan helyezhetjiik, amit defragmentdcionak neveziink.

Mivel a fajlokat blokkokban téroljuk, és blokknal kisebb egység lefoglaldséra nincs lehet&ség®,
a fajlt tartalmazo blokkok koziil az utolsé majdnem mindig tartalmaz szabad helyet. Ezt belsd
toredezettségnek nevezziik, mivel a blokkokon beliil van kihasznélatlan hely. Mindebbdl az is
kovetkezik, hogy ha N darab 1 bajtot tartalmazoé allomanyt hozunk létre, akkor a fajlrendszerben
minden fajlhoz egy blokk lefoglalédik, azaz a lemezen 1évo tarhely nem N -1 bajttal csokken,
hanem N - blokkméret bajttal.

A blokkméret megvélasztasival a belsé fragmentdcié csokkenthetd (hiszen ekkor az utolsé
blokk mérete is kisebb, {gy kevesebb kihasznélatlan hely lehet benne), de a blokkok szdma né-
vekszik (hiszen kisebb blokkbdl tobb jon létre, mivel a teljes particidt fel kell osztani blokkokra),
ami nagyobb lehetséget ad a kiils§ fragmentaciéra. Az altaldnosan hasznalt blokkméret 1-4-64
kiB kozott véltozik a particié méretétol fiiggen, mert ez véllalhaté kompormisszumot jelent a
kiils6 és bels6 fragmenticié kozott.

Sadatok tulajdonsagait lefré adatok
6az tjabb fijlrendszerek mar adnak erre lehetéséget, pontosan ezt a problémét megoldandé



4.2. Fajlrendszer implementaciok
4.2.1. Flash fijlrendszerek

A flash térolékra optimalizalt fajlrendszerek figyelembe veszik a flash taroldk fentebb térgyalt
sajatossagait, ugyanakkor nagyon fontos, hogy ezek a fajlrendszerek kizarolag kozvetleniil a flash
memoéridn haszndlandok, azaz az USB (pen)drive, SSD hattértarak esetében sziikségtelen ilyen
fajlrendszereket haszndlni, mert a flash specidlis kezelését a hardver (a fentebb emlitett flash
vezérl) elvégzi. Flash fdjlrendszerekre példa: JFFS(2), YAFFS.

4.2.2. A FAT fajlrendszer

A File Allocation Table (FAT) fajlrendszert a Microsoft fejlesztette, és a Windows XP megjele-
néséig ez volt a Windows operacios rendszerek altal kizardlagosan hasznalt fajlrendszer. A FAT
fajlrendszer klasztereket tart szamon, és a kiilonb6z6 FAT verziok féként abban kiilonboznek,
hogy hény biten tdroljdk a klaszterek sorszamait (FAT12, FAT16, FAT32). Ez bitszdm hata-
rozza meg, hogy Osszesen mekkora lehet egy FAT particié mérete. Az operaciés rendszert is
tartalmaz6 FAT particidk tartalmaznak boot sectort is, ez a szektor keriil beolvasdsra a memo-
ridba az operacids rendszer bootolasdnak elsé 1épéseként.

Az aldbbiakban részletesen megnézziik, hogyan tarolja a fijlokat a FAT fajlrendszer. A 2
abran lathaté a particié egy darabja: a tarolt fijlok, valamint a hozzdjuk tartozé allokécids
tédbla-beli bejegyzések. Az allokdcids tabla - tobbek kozott - tartalmazza a fdjl nevét és annak
a klaszternek a szamat, ahol a fajl kezd6dik. Minden klaszter végén taldlhatd egy cim amely a
f4jl tobbi darabjdt tdrold klaszterre mutat vagy egy OxFFF(F...F) jelzés, ami azt jelenti, hogy
ez az utolsé klaszter, amiben a fajl részlete volt eltarolva. Fontos észrevenniink, hogy a rendszer
nem koveteli meg, hogy egy nagyobb méretii fijl egymads utani klaszterek sorozataként legyen a
lemezen: az operacids rendszer utasitdsaitdl fiiggben akar rengeteg, a lemez kiilonb6z6 pontjain
elhelyezkedd klaszterbe is keriilhet a f4jl egy-egy darabja. A klaszterméret az esetek tilnyoméd
tobbségében 2-32 KiB kozotti.

FAT fajlrendszert hasznélnak a pendrive-ok.

4.2.1. feladat. Egyes pendrive-ok esetében a hattértar els6 néhany kilobéjtja specidlisan kiala-
kitott. Mi lehet ennek az oka?

FILET THTj0002
0 1 HH“\z 3 4

0003|  0004|  FFFF
| # Ly

2. dbra. Egy FAT partici6 darabja. Forrés:
http://www.ntfs.com/images/recover-FAT-structure.gif

4.2.3. Az Ext2 fajlrendszer

Az ext2 fajlrendszer alapegysége a blokk, amelynek mérete tipikusan 1-8 kiB-ig terjed (ez a
fajlrendszer létrehozasakor beallithato érték, de kés6bb nem valtoztathaté és minden blokk ekkora
méreti lesz). Igy ha létrehozunk egy f4jlt amiben elhelyeziink 2 karaktert az minimum 1 kiB-ot
(vagy épp 8 kiB-ot, ha akkora a blokkméret) fog elfoglalni a lemezen. A szuperblokk a particié
elején helyezkedik el és az operaciés rendszer bootoldsdhoz sziikséges adatokat, illetve magardl
a fajlrendszerrél egyéb informéacidkat tartalmazz. A blokkokat csoportokban taroljak, ezzel is
csokkentve a toredezettség mértékét. Ezeket a blokkokbdl allé csoportokat extents-nek nevezziik.

A ext2 fajlrendszerben minden f4jlt és konyvtarat egy igynevezett inode ir le. Az inode tartal-
mazza a fajllal vagy konyvtarral kapcsolatos adminisztrativ informdciokat: fajlnevét, létrehozas-,



médositds datumdt, tulajdonost, jogosultsdgokat, stb. Az inode t6bbi része 12-15 linket (blokk
cimeket) tartalmaz, amely egy csoportot cimez meg, ezek a direkt blokkok (ldsd a 3. dbran).
Amennyiben a fajl mérete meghaladja a direkt blokkokban tarolhaté adatmennyiséget, akkor az
utolsé link helyére nem egy direkt blokk cimet helyeziink az inode-ban, hanem egy maésik cso-
portleirét, ami tovabbi blokkokra vagy csoportleirékra mutat. Ezzel a mddszerrel a legnagyobb
tarolhato fajl mérete 1 kiB-os blokk méretnél 16 GiB, mig 8 kiB blokkméret esetén 2 TiB.

Cirect blocks

Double indirect

Indirect blocks blocks

mode

Infos

N

=

3. dbra. Az ext2 inode felépiése Forras:
http://upload.wikimedia.org/wikipedia/commons/a/a2/Ext2-inode.gif

A fajlok és konyvtarak mellett 1étezik egy masik tipusd inode bejegyzés-tipus is, ez a link. A
link nem més, mint egy bejegyzés a fajlrendszerben, amely egy mésik fajlrendszer-beli bejegyzésre
hivatkozik. Onmagéban tehdt nem tarol adatot, hanem az 6t megnyité programot tovabbiré-
nyitja az dltala mutatott fijlra (ennek egyszer(ibb véltozata az MS Windows-beli parancsikon).
Két tipusat kiillonboztetjiik meg, az egyik a soft link a méasik a hard link.

A hard link esetében a konyvtarbejegyzésben szerepld inode bejegyzés egy mar 1étezé i-node-ra
mutat. A hard linkek tehat pontosan ugyaniugy néznek ki, mint az adott fajl els6é konyvtarbejegy-
zése, azaz a hard linkek egyenrangtak! Ezzel szemben a soft link egy specidlis fajl, amely annak
a fajlnak az elérési utjat tartalmazza, amire mutat. Ebbol kivetkezoen a hard linknél a mutatott
f&jl vagy konyvtar addig nem torolhetd, amig létezik rd4 mutaté link (ezt a link szdmlalébol tudja
- 1l4sd feladatok). Hard link létrehozdsara az 1n parancs haszndlhaté. Szintaktikdja: 1n régi dj
ahol régi jelenti azt a mar meglévé fijlt, amire linket akarunk létrehozni, és dj jelenti a létre-
hozandé linket. Az 1s -i paranccsal kilistdzhatok az i-node szamok is, igy ellenérizhetd, hogy a
hard link valéban ugyanarra az i-node-ra mutat. Fontos, hogy hard link csak fijlra hozhaté 1étre
(azaz konyvtdrra nem)! Soft linket az 1In -s régi dj paranccsal hozhatunk létre.

A soft linknél a link az elérési utat tarolja, igy a mutatott fajl vagy konyvtar nem tudja,
hogy 1étezik olyan hivatkozds, amely red mutat. Eppen ezért ha letoroljiik a hivatkozott fajlt,
a link ,célpont” nélkiil marad, és ,torott” link [dangling / broken link] jon 1étre. Mdsik fontos
kiilonbség, hogy hard linket csak particién beliil lehet létrehozni, mivel az inode-ra mutat, aminek
a szamozéasa particién beliil egyedi. Ezzel szemben a soft link elérési utat tarol (ahogy azt mér
emlitettiik egy particié a konyvtérstruktira tetszéleges pontjara becsatolhatd), igy a soft link
mutathat mésik particién elhelyezkedd fajlra is.

4.2.4. SWAP fajlrendszer

Egy adott pillanatban nem minden programot hasznalunk, amit elinditottunk a szamitégépiin-
kon, illetve az adott programnak sem hasznaljuk minden részét. Ebbol kifolyélag a nem aktiv
programokat, valamint programrészeket az operacios rendszer nem a viszonylag szlikos meméri-


Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés


aban tartja, hanem a héttértdron, az uigynevezett swap teriileten. A térolds olyan formétumban
torténik, hogy a kiirt memorialapokat sziikség esetén kiilon keresés-konvertalds nélkiil a memo-
ridba tudja visszatolteni. (Példdul: amikor a télcara letesziink egy programot és sokdig nem
foglalkozunk vele, majd késobb el6vessziik azt tapasztaljuk, hogy elég lassan reagdl a kéréseink-
re, és a hattértar nagy tempoban dolgozik: ekkor keriilnek vissza a swap teriiletrol a memdridba
az adott programhoz tartozé adatok és program részletek). MS Windows alatt a fajlrendszerben
egy fajlként jelenik meg a swap teriilet, amit Pagefile-nak hiv a rendszer. GNU/Linux rend-
szereknél a swap tarteriilet fajl mellett egy linux-swap tipusu féjlrendszerrel rendelkezé kiilon
particié is lehet.

5. Konyvtarstruktira és a fajlrendszer adminisztraciojanak
manipulacidja

Linux alatt a BASH shell segitségével lehetOségiink van a parancssori utasitasok segitségével
fajlok és konyvtarak létrehozasara, médositasara, valamint torlésére, tehat a konyvtarstruktira
modositasdra. Tovabba lehetdségiink van a fijlrendszer adminisztracios informéaciok megjeleni-
tésére, megfeleld jogosultsag esetén modositasara.

5.1. Alapvets parancsok

A cd, pwd, mkdir, rmdir, 1s, rm, mv, cp parancsokat az els6 6ra anyaga tartalmazta. A cat
paranccsal egy fajl tartalma jelenitheté meg, a touch paranccsal egy tires fajl hozhaté 1étre.

5.2. Jogosultsagok

A linux disztribicidkban taldlhat6 egy kitiintetett felhasznald, a rendszergazda, ami a telepités
soran jon létre, a neve: root. Neki mindenhez joga van, barmit térélhet, barmit megnyithat, 1ét-
rehozhat felhasznélét, stb. Az 6 altala inditott programok az & jogaival futnak, egy szandékosan
vagy véletleniil megvaltoztatott program a root jogaival futva komoly karokat tud okozni. Ezért
a legtobb disztribuciéban 1étre kell hozni mar a telepitéskor egy korlatozott jogu felhasznalot,
akinek az adataival belépve korldtozott jogokkal tudunk dolgozni. Ez igy biztonsdgos!

5.2.1. példa. frjuk be: cat /etc/passwd A kapott hosszu lista elsé oszlopa a rendszeriinkon
1év§ felhaszndlok neveit tartalmazza, a sajatunkat is ott kell latnunk. (Taldn kideriilt mér: a cat
utasitdssal szoveges fajlok tartalmét lehet kilistdzni.)

A lentebb bemutatédsra keriilé jogoknak igazi jelentGsége a tobb felhaszndlé altal haszndlt rend-
szerek esetében van (pl.: users és turdus szerverek), ha egy gépet csak egyediil mi haszndlunk, a
jogosultsagok allitgatdsa nem lesz annyira fontos.

Minden felhaszndlé valamilyen csoportnak is tagja (akar tobbnek is), mindenkinek van egy
alapértelmezett csoportja (elsédleges csoport), ez Debian rendszeren megegyezik a felhaszndld
nevével, a felhasznalé létrehozasakor jon létre, az 1j felhasznald egybol belekertil.

5.2.2. feladat. Adjuk ki a kovetkez6 utasitast: cat /etc/group A kapott lista els6 oszlopa a
rendszeriinkon 1évé csoportok neveit tartalmazza.

A Linux fajlrendszere tarolja a f4jl tulajdonosdnak azonositéjat a fajlhoz tartozd csoportot és a
hozzéaférési jogosultsagot is. A hozzaférési jogosultsdgok abrazolasahoz egy harom részbol &llé
kédot hasznal, amit fajlmodnak neveziink.

o Elsé rész a sajat (user) jogot
e Midsodik rész a csoport (group) jogot
e Harmadik rész mindenki més (others) jogait rogziti

A sajét jog alatt a fajl tulajdonosdnak jogait értjiik, legtobb esetben & az adott f4jl vagy konyvtar
létrehozdja is. Mindegyik rész a kovetkezd komponensekbol all:



e 1 (Read): olvasdsi jog (vagyis az adott fajl ezdltal olvashatd)
e w (Write): irdsi jog (az adott f4jl ezéltal vélik irhatéva)

e x (eXecute): végrehajtasi jog (futtatdsi jog)

5.3. Jogosultsagok megvaltoztatasa

Egy f4jl tulajdonosi (hozzéférési) jogait csak a f4jl tulajdonosa, vagy a rendszergazda tudja meg-
véltoztatni a kovetkezd parancesal: chmod +|-<méd> <fajlnév> Meg kell hatdrozni az aldbbia-
kat: adunk vagy elvesziink jogot (+: adunk, -: elvesziink), kinek /kitél (sajat, csoport, mindenki
mas (ugo)), milyen jogot adunk (rwx /421).

5.3.1. példa. Sajat magunknak irasi jog: chmod u+w munka.tar.gz
5.3.2. példa. Mdsoknak futtatdsi jog: chmod o+x munka.tar.gz
5.3.3. példa. Egyszerre tobb jogot is meg lehet valtoztatni: chmod o+x,u+w munka.tar.gz

5.3.4. példa. Mindenkinek minden jog: chmod 777 munka.tar.gz ugyanezt a funkciét valositja
meg a chmod a+rwx munka.tar.gz

5.3.5. példa. Csak nekem legyen jogom mindenhez: chmod 700 munka.tar.gz ugyanaz mint:
chmod u+rwx,g-rwx,o-rwx munka.tar.gz

Fajlok esetében a végrehajtasi jognak csak a futtathaté fajlokndl van jelent8ségiik (bindris dllo-
manyok, scriptek). Konyvtdrak esetén az olvasési jog azt jelenti, hogy elolvashatja a fajlok neveit
az adott konyvtarban, az irasi jog jelenti, hogy a konyvtarban alloményt, konyvtarat hozhatunk
létre, mig a futtatdsi jog megengedi a belépést a konyvtarba.

5.3.6. feladat. Hozzunk létre egy konyvtarat, és valtoztassuk meg a jogosultsagait gy, hogy
aki ismeri a konyvtarban 1évo fajlneveket, alkonyvtarakat, az el tudja ezeket olvasni, de mas nem!

5.4. Alapértelmezett jogok

Amikor egy f4jlt létrehozunk, akkor az a jogosultsdgok alapértelmezett értékével fog rendelkezni.
Pl.: Létrehozunk egy tires fajlt:

$ touch akarmi
$ 1s -la akarmi
-rw-r--r—-- 1 bnorbert staff O Okt 31 06:14 akarmi

A létrehozason kiviil, alapértelmezés szerint irasi és olvasdsi joggal, a csoportba tartozdk
és mindenki més pedig csak olvasasi joggal rendelkeznek. Ennek az az oka, hogy az operacids
rendszer a fajl létrehozasakor a 022 maszkot alkalmazza. Egy allomany létrehozasakor alapér-
telmezésben senki sem kap futtatasi jogot. Az alapértelmezett maszk lekérdezhet6 a kovetkezd
paranccsal:

$ umask
022

Konyvtarak létrehozasa esetén a 777-bol vonddik ki a mask, azaz alapértelmezetten egy kényv-
tar 755 jogokkal jon létre. Féjloknal a 666-bdél vonddik ki a mask, igy 644 jogokkal jonnek 1étre
a fajljaink.

5.5. Tulajdonos megvaltoztatasa

Az egyes bejegyzések (fajlok és konyvtérak) tulajdonosdnak megvaltoztatdsa a chown parancs se-
gitségével torténik, valamint felhaszndlé csoport valtasa a chgrp parancs segitségével lehetséges.
A jogosultsidgokat is tartalmazé részletes listdt a 1s -1 paranccsal kaphatunk (illetve kombi-
nalhatjuk a mar megismert -i kapcsoldval is, hogy az i-node azonositok is lathatéak legyenek:
1s -1i

10



5.6. Fajlrendszerrel kapcsolatos parancsok

e Az fsck parancs segitségével lehet ellenérizni, hogy a hattértar tartalma megegyezik-e az
adminsztracios fajlok altal leirt allapottal, azaz a féjlrendszer koherens allapotban van-e.
Ilyen példaul akkor fordulhat el$, amikor hirtelen kikapcsol a szdmitégép (pl. dramsziinet
esetén) és valamilyen lemezmiivelet félbeszakad. Szintén problematikus eset a fajlrendszer
koherencidjanak szempontjabdl, ha akkor tavolitunk el egy cserélhetd eszkozt, amikor még
nem fejez6dott be a lemezre irds miivelet.

e Fijlrendszer egy lires particidra a mkfs parancs segitségével tudunk létrehozni, a parancs
lefutasa létrehozza az Gsszes adminisztraciés allomanyt, ami sziitkséges a fajlrendszer me-
nedzseléséhez. Hasonléan, ha egy féjlrendszerrel rendelkez6 particiét leformazunk, akkor
a formézds létrehozza az iires adminisztracids féjlokat (fontos, hogy ezzel még az el6z8
fajlrendszerben tarolt adatok megmaradnak, csak nem tartozik hozzajuk adminisztracids
allomény).

e Az érvényes, hibamentes fdjlrendszereket tartalmazd particiékat haszndlat elétt fel kell
csatolnunk a konyvtarstruktirdba. Altaldban az mnt kényvtarban van egy - particiéhoz
tartozo - iires konyvtar, ahova a mount paranccsal tudjuk becsatolni a particiot.

5.7. Feladatok

e Mit csindl a df parancs? Keressitk meg a man oldaldn, hogy mit csindl a -T kapcsold és
futtassuk a df -T parancsot.

e Nézziik meg a stat parancs man oldalat, probaljuk ki a kovetkezéekre: sima fajl, konyvtar,
eszkozfdjl, soft link, hard link.

e Nézziik meg az ls -1 parancsot, keressiink egy fajl a konyvtarbdl és nézziik meg, hogy az ls
-i parancsban megadott inode szam egyezik-e a stat parancs kimenetével.

e Hozzunk létre soft és hard linkeket, fajlra, konyvtarra, figyeliink a link counter értékének
valtozasara. Toroljiik azt a fajlt amire a link mutat mit tapasztalunk szoft illetve hard link
esetén?

e nézziik meg a dumpe2fs parancsot és futtassuk az egyik particiéra. A grep parancs segits-
gével (grep -1 superblock) nézzitk meg hdny példdnyban térolédik a lemezen a szuperblokk.

6. Konyvtarszerkezet

Linux alatt fa grafba van szervezve a teljes konyvtdrszerkezet, (azaz ne szémitsunk C, D, ...
meghajtékral) Mindennek az alapja a / jellel jelolt gyokérkonyvtér, mds néven root. Ez minden
fajlrendszer alapja, ebbél dgaztathato le a teljes szerkezet.

6.0.1. példa. Adjuk ki a kovetkezd utasitast: 1s / Hasonlo listat kell latnunk:

bin
boot
cdrom
dev
etc
home
1ib
lost+found
media
mnt
opt
proc
root

11



sbin
sys

tmp
usr
var
vmlinuz

Ezek a fokonyvtarak majdnem minden Linuxban valtozatlanul megvannak, leszamitva taldn a
/cdrom-ot és /media-t. A /media egy djabb ,taldlmany”, ide keriilnek a cserélhetd médidk.
Nézziik, melyikben mi taldlhaté:

bin, sbin: A bin kényvtarakban futtathaté dlloményok vannak. T6bb bin konyvtar is taldlhato
ezen kiviil, példdul a /usr/bin és a /usr/sbin. Bdr ez nem térvényszerii, de dltaldban a
bin koényvtarakban a minden felhasznalé altal elérhet6 programok keriilnek az sbin konyv-
tdrakba pedig olyan rendszereszkozok, melyeket altaldban rendszergazddk hasznédlnak. A
/bin és /sbin az alaprendszerhez, a boot folyamathoz sziikséges programokat tartalmazza,
a felhasznaldi programok a /usr/bin /usr/sbin ald keriilnek.

boot: a boot kényvtarban taldlhaték a bootndl fontos fajlok: dltaldban a rendszermag (kernel),
illetve Grub rendszerbetolté esetén annak konfiguraciés alloméanya is.

cdrom:Ez ald csatolédik be a CD meghajté egység.

dev: Linux alatt fijlokon keresztiil ériink el mindent, a CD-vel kezdve, a hangon at, az egérig.
Ezek a specidlis eszkozfdjlok taldlhatok ebben a mappéaban.

etc: Az etc konyvtar a gytjtéhelye a kiilonb6z6 programok globdlis konfiguracids fajljainak.
Ellentétben a Windowsos registry megoldassal, Linux alatt minden konfigurdcids alloméany
egyszeri szovegfajlba van mentve, aminek nagy elénye, hogy az dlloméanyok akkor is egysze-
rlien elérhetdk, ha a rendszer egyébként hasznalhatatlan. Természetesen emellett az egyes
programok felhasznal6 specifikus beallitasokkal is rendelkeznek, ezeket a home konyvtarak-
ban tarolja a rendszer, rejtett mappakban.

home: ez alatt a konyvtar alatt taldlhatok a felhasznédléi konyvtarak, az adott konyvtar alatt a
felhasznalonak teljes dulasi joga van, ezen az egy konyvtaron kiviil azonban leginkdbb csak
olvasasi joga van alapbdl.

lib: a lib kényvtar alatt méar a rendszer részei lapulnak: library fajlok, kernel modulok, stb.

lost+found: egy specialis konyvtar, jelen esetben egy ext3 tipusu fajlrendszerrel szerelt partici-
orol van szé, ez a konyvtar nem is a Linux, mint inkabb a fajlrendszer része: a fajlrendszer
javitdsakor elékeriilt, névvel nem rendelkez6 fajl darabokat helyezi el itt a rendszer.

media: rendszerfiiggd, dltaldban a /media kényvtar ald keriilnek befiizésre a CD/DVD eszkozok,
pendrive illetve a floppy. Roviden: a cserélheté médidk.

mnt: a mdasik becsatoldsra haszndlt konyvtdr. Ez ald a konyvtar ald keriilnek (altaldban)
csatoldsra a fix particiék. Mivel ebben a kényvtarstruktirdban nincs kiemelt helye/neve egy
egy meghajténak, mint Windows alatt a C:, D:, stb., igy egy-egy eszkozt tetszbleges helyre
beflizhetiink a fajlrendszerbe. Kiilénosen praktikus ez példaul a home kényvtar estén: ha
kingjiik az e célra fenntartott particiét, és vesziink egy 1j vincsesztert, egyszeriien csak
ramasoljuk anyagainkat, letoroljiikk az eredeti példdnyt, majd beflizziikk a /home kényvtar
ald az 4j adathordozot.

opt: a hivatalos leirds szerint kiils0s programok telepiilnek ebbe a konyvtarba, de a rendszerek
nagy részén iiresen all...

proc: Itt talalhatéak az éppen futéd folyamatokkal kapcsolatos metaadatok, illetve informacidék
a rendszerrOl: processzorrdl, memériarol, stb. Nagy mennyiségii hasznos informéciot taldl
itt az avatott kéz.

12



root: A rendszergazda (root) felhaszndlé home konyvtéra

tmp: Az egyes programoknak sziikségiik van/lehet dtmeneti fajlokra. Ezek keriilnek ide. Ez a
maésik olyan konyvtar, amely alapértelmezetten irhaté minden felhasznalé szamara.

usr: Ez alatt a konyvtar alatt talalhaté minden. Persze ez igy kicsit tilzonak hat, de majdnem
igaz: az usr konyvtar alatt taldlhaté a telepitett programok nagy része, hagyomanybdl ide
szoktunk forrdsokat pakolni (/usr/src), és azt leforditani. Itt taldlhatdk a dokumentdcidk,
itt taldlhaték az ikonok nagy része, stb...

var: Szintén szamos szolgaltatas gyujtékonyvtara. Itt talalhaték a naplofajlok, egyes programok
hosszabb ideig tarolt, mégis dtmeneti fajljai, alapértelmezetten a felhasznaldi postaladak,
stb.

6.0.2. feladat. Nézziink bele az egyes konyvtarakba: adjuk ki a kovetkezd utasitast (utdnuk
ENTER): 1s /bin (aztdn 1s /boot, 1s /home,...)

6.0.3. feladat. Gépeljiik be, majd nyomjunk ENTER-t: cat /proc/meminfo

7. Egyéb parancsok

Néhédny gyakran hasznélt, fontosabb parancs:
date: kiirja az aktualis ddtumot.
df: disk free, egy kis statisztikat jelenit meg az egyes particidk foglaltsagardl. pl.: df -h

du: disk usage, az egyes allomanyok, konyvtarak méretérol készit kis statisztikat. pl.: du -hs ./
(a man alapjan prébaljuk meg értelmezni az egyes kapcsolékat, paramétereket!)

ncal: calendar, egy kis naptar program. pl.: ncal 2011

Természetesen a listat még hosszasan lehetne sorolni, aki tovabbi parancsokkal szeretne megis-
merkedni, hasznélja ki az internet lehet&ségeit! Barmely keres6 a ,linux parancsok” kifejezésre
t6bb jol hasznalhaté oldalt is ajanl.

8. Feladatok

8.0.1. feladat. Nézz utdna, hogy mit csindl az ncal parancs!

8.0.2. feladat. A hét milyen napjan sziilettél?

8.0.3. feladat. Mekkora helyet foglalsz a users.itk.ppke.hu szerveren?

8.0.4. feladat. Hozd létre a kovetkezo konyvtarstruktirat a sajat konyvtaradon beliil!

./szulok/apa
./szulok/anya

8.0.5. feladat. Hozz létre egy fajlt (akdr iireset is lehet) az apa alkényvtdron beliill (touch,
esetleg nano, esetleg cat,. ..)

8.0.6. feladat. Masold 4t az anya alkonytéarbal

8.0.7. feladat. Irasd ki egy f4jlba az elmilt 10 percben médositott falok neveit a munkakényv-
téaradon beliil! (find parancs)

8.0.8. feladat. Fiizd hozzd a fajl végéhez az aktudlis ddtumot! ( date és atirdnyitas)

8.0.9. feladat. Mddositsd az eldzé f4jl jogait, hogy neked csak irdsi jogod, masoknak (csoport,
egyéb) pedig semmilyen joga ne legyen!

13



8.0.10. feladat. Prébédld meg a tartalmat kilistdzni! (pl.: cat)
8.0.11. feladat. Szerezz informécidkat az od programrdl! (man, keresdk,. . .)

8.0.12. feladat. Add ki a kovetkezd utasitéast:
verb=echo 6 | od -t x1
Ertelmezd az eredményt!

14



	1 Bevezetés
	2 Adattároló perifériák
	2.1 Merevlemez (Hard Disk Drive - HDD)
	2.2 Compact Disk (CD)
	2.3 Pendrive, Flashdrive, SSD

	3 Partíciók
	4 Fájlrendszerek
	4.1 Fragmentáció
	4.2 Fájlrendszer implementációk

	5 Könyvtárstruktúra és a fájlrendszer adminisztrációjának manipulációja
	5.1 Alapvető parancsok
	5.2 Jogosultságok
	5.3 Jogosultságok megváltoztatása
	5.4 Alapértelmezett jogok
	5.5 Tulajdonos megváltoztatása
	5.6 Fájlrendszerrel kapcsolatos parancsok
	5.7 Feladatok

	6 Könyvtárszerkezet
	7 Egyéb parancsok
	8 Feladatok

