
Adattárolás és fájlrendszerek

(jegyzet)

Tuza Zoltán, Uhlár László, Bérci Norbert

2015. október 1-i óra anyaga

Tartalomjegyzék

1. Bevezetés 1

2. Adattároló perifériák 2
2.1. Merevlemez (Hard Disk Drive - HDD) . 2
2.2. Compact Disk (CD) . 3
2.3. Pendrive, Flashdrive, SSD . 4

3. Part́ıciók 5

4. Fájlrendszerek 5
4.1. Fragmentáció . 6
4.2. Fájlrendszer implementációk . 7

5. Könyvtárstruktúra és a fájlrendszer adminisztrációjának manipulációja 9
5.1. Alapvető parancsok . 9
5.2. Jogosultságok . 9
5.3. Jogosultságok megváltoztatása . 10
5.4. Alapértelmezett jogok . 10
5.5. Tulajdonos megváltoztatása . 10
5.6. Fájlrendszerrel kapcsolatos parancsok . 11
5.7. Feladatok . 11

6. Könyvtárszerkezet 11

7. Egyéb parancsok 13

8. Feladatok 13

1. Bevezetés

Egy program futása során az elvégzett számı́tásokból (rész)eredmények keletkeznek, amit az
illékony1 memória [volatile memory] tárol. Ha ezeket az eredményeket el akarjuk tárolni a szá-
mı́tógép két bekapcsolása között vagy egy program két futtatása között, akkor szükséges, hogy a
tárolás elektromos áram nélkül is biztośıtható legyen. Erre kezdetben nyomtatót, illetve lyukkár-
tyákat használtak (ez utóbbi annyival volt szerencsésebb, hogy egy lyukkártya-olvasóval könnyen
vissza lehet tölteni az információt a memóriába). Később megjelentek a szalagos tárolási módsze-
rek, melyek seǵıtségével nagyobb mennyiségű adatot tudtunk lineárisan elmenteni (emlékezzünk
a magnókazettákra, ahol ha egy számot ki szerettünk volna hagyni, azt a szalag gyors tekerésével
tudtuk csak megtenni).

0Revision : 51 (Date : 2013 − 10 − 0722 : 03 : 42 + 0200(Mon, 07Oct2013))
1tápfeszültség megszűnésével a benne tárolt adat elveszik

1

Az áttörést a cserélhető lemezes olvasó jelentette, ahol egy mágnesezhető korongot forgattunk
egy mozgatható mágneses olvasó/́ıró fej előtt, szemben a mágneses szalaggal, ahol az a olvasó
fej fixen volt tartva. Ezzel a fejet különböző, a korong más és más részén lévő adatsávok fölé
tudtuk helyezni. Ezt a módszert - melyben a tárolón lévő adatok bármelyikét a többi adat
érintése/átlépése nélkül érhetjük el - h́ıvjuk véletlen hozzáférésnek [random access]. Ezen a
ponton két irány indult el, az egyik mentén a cserélhető lemezeket fejlesztették, mı́g a másik
vonalon létrejöttek fix- vagy merevlemezek.

Mivel ezek az eszközök nem közvetlenül vannak a számı́tógép alaplapjára éṕıtve, hanem
valamilyen csatlakozón keresztül kapcsolódnak hozzá, ı́gy adattároló perifériák gyűjtőnévvel hi-
vatkozunk rájuk. Például az egeret és a monitort is perifériának tekintjük, az egyiket adatbeviteli
perifériának, mı́g a másikat adatmegjeleńıtő perifériának h́ıvjuk. Egy adattároló eszköz legfon-
tosabb három jellemzője a következő:

• (adat)hozzáférési idő [(data) latency]: Az adat megćımzése és az adat kiolvasása között
eltelt idő. Mai merevlemezeknél ez néhány ms.

• adatátviteli sebesség [transfer rate]: Egy időegység alatt az eszközre ı́rt vagy onnét kiolva-
sott adat mennyisége.

• tárolókapacitás [capacity]: az eszközön tárolható bitek/bájtok mennyisége. Fontos tisztáz-
ni, hogy ez egy bruttó érték: mivel nem a

”
nyers”merevlemezt használjuk a nettó érték ettől

eltérő lehet hiszen a különböző logikai fájlrendszerek más-más módon éṕıtik fel a tárolási
adatszerkezeteket - lásd a fájlrendszerek részt. Az Információ- és kódelmélet ćımű tárgy-
ban részletesen tárgyalásra kerülnek az információ tömöŕıtéséhez illetve az adatvesztéssel
szembeni részleges rezisztenciához szükséges módszerek.

További fontos jellemző az adattárolás élettartalma, azaz meddig képes egy eszköz a rá́ırt infor-
mációt megőrizni. A mágneses elven működő eszközök általában előbb szenvednek mechanikai
hibából kifolyó adatvesztést, mint hogy a mágneses elven tárolt adat elveszne. További, külső
tényezők miatt is sérülhet az adatintegritás, például mechanikai behatás vagy hőhatás miatt2; a
Compact Diskek (CD) esetében például a felület elgombásodása jelent veszélyt az információra
nézve.

2. Adattároló perifériák

2.1. Merevlemez (Hard Disk Drive - HDD)

Ahogyan a cserélhető lemezes adattárolást, úgy a
”
fix” vagy

”
merevlemezes” adattárolást is az

IBM mérnökei találták fel az 1950-es években3. Maga az adattárolás elve az elmúlt ötven év-
ben nem sokat változott, egyedül a megb́ızhatóság és a tárolható adatmennyiség mértéke nőtt
drasztikusan. A külső levegőtől elzárt vagy porszűrővel ellátott nyitott ház a következő részeket
tartalmazza:

• mindkét oldalán mágnesezhető korongok

• olvasó/́ıró fejek, amelyek a mágneses felület felett pár nanométerrel - légpárnán siklanak4

• vezérlő elektronika, amely pozicionálja a fejeket, olvasás esetén elvégzi az analóg mágneses
mérés digitalizálását, illetve a csatoló felületnek megfelelő adatátviteli protokollt megvaló-
śıtja (IDE, SATA, stb.).

• forgatómotor, jellemzően 5400 illetve 7200 forulat/perc sebességgel forgatja a lemezeket,
tehát az olvasó fejek - a sugárirányú poźıciótól függően - kb. 270 km/h-val száguldanak a
lemezek felett.

2Minden mágneses anyagnak létezik egy úgynevezett Curie-pontja, ezen hőmérséklet felett az anyag elveszti
mágneses tulajdonságát

3Az első merevlemezt IBM 350 RAMAC néven forgalmazták és 5 megabyte tárolókapacitással rendelkezett,
ezt ötven darab 24”-os lemezzel érték el

4ebből következik, hogy nincs vákuum a merevlemez belsejében

2

1. ábra. A merevlemez vázlatos képe

A lemezeket a különböző kerületek mentén sávokra osztják, a sávokat pedig szektorokra, ez
a legkisebb ćımezhető egység egy merevlemezen. Ezek mérete régebben 512 byte volt, jelenleg
elérhető 4096 byte is. Mivel az olvasó fejek együtt mozognak, ezért a különböző lemezeken azonos
sávon állnak minden pillanatban, ezeket a sávokat együttesen cilindernek nevezzük. Látható
tehát, hogy az összetartozó adatokat szomszédos szektorokra ill. azonos cilinderekre érdemes
ı́rni. Fontos fogalom még a klaszter, ami az azonos sávon egymás után elhelyezkedő szektorok
gyűjtőneve. Lásd az 1. ábrán. A merevlemez hatékony felosztása és az adatok tárolása a
merevlemezre teleṕıtett fájlrendszer feladata, melyet részletesebben tárgyalunk.

2.2. Compact Disk (CD)

A cserélhető lemezes fejlődési vonalat az utóbbi évtizedig a mágneses tárolási elven működő esz-
közök határozták meg, de ezek tárolókapacitása nem nőtt és/vagy hozzáférési ideje nem csökkent
olyan mértékben, mint a Compact Diskeké, ezért a továbbiakban nem is foglalkozunk velük.

A CD-s adattárolás egy - a merevlemezes tárolástól eltérően - alapvetően optikai elven működő
tárolási módszer. Egy lézerdióda által kibocsátott koherens fénysugár tapogatja le a CD lemez
felületét, melyen apró gödrök és púpok váltják egymást, melyekről másként verődik vissza a
lézersugár - ezzel reprezentálva a bitek értékeit. Gyártás során a CD ROM lemezen - mint a
merevlemeznél - sávokat és szektorokat hoznak létre, amelyben a biteket a vájatok reprezentálják.
Pl.: ha van mélyedés [pit] akkor az logikai egyes jelent, ha nincs [lane] akkor logikai nullát.
Amikor az olvasó fej mindig azonos szögből megviláǵıtja a felületet, akkor a vájatba beeső lézer
fény máshova verődik vissza, mint az lézer fény, mint ami nem esett bele a vájatba. Mivel a
lemez fixen śıkban forog és az olvasófej is meghatározott szögben viláǵıtja meg a felsźınt, ezért
a várható visszaverődési helyekre fényérzékeny szenzorokat helyeznek el. Értelemszerűen tehát
a logikai egyes és nullás értékek más-más szenzorból váltanak ki jelet. Ebből a feléṕıtésből
látható, hogy minél fókuszáltabb a lézersugár, illetve minél kisebbek a vájatok a lemez felületén,
annál nagyobb az elérhető adatsűrűség (természetesen további fontos paraméterek is vannak
- anyagtechnikai jellemzők, a lézer hullámhossza, valamint több adattároló réteggel rendelkező
lemezek is léteznek). A CD-ROM elnevezésben a ROM (Read Only Memory/Media) rövid́ıtés
arra utal, hogy ezeket az eszközöket csak egyszer lehet ı́rni, utána már csak olvashatóak. Azóta
kifejlesztették az újra ı́rható CD lemezeket is, ahol az olvasástól eltérő tulajdonságú lézersugárral
visszaálĺıtják az eredeti felületet - természetesen ebben az esetben nem vájatokkal dolgozunk,
hanem a felületnek változtatjuk meg a visszaverődési tulajdonságait az ı́rás során.

3

2.2.1. feladat. Miből adódhat a blu-ray disc (BD) elnevezése?

2.3. Pendrive, Flashdrive, SSD

Mivel ezen eszközök működésének megértéséhez komoly elektronikai háttér tudásra van szükség,
ezért a technikai részleteket nem tárgyaljuk. A működési elvről elegendő annyit megjegyeznünk,
hogy ezek a tárolók olyan különleges áramkörök, amelyekben lévő tranzisztorok tápfeszültség
jelenléte nélkül is képesek megtartani azt az állapotot, amit tápfeszültség jelenlétében beálĺıtot-
tunk. Fontos még megjegyezni, hogy ebből a technikai megvalóśıtásból kifolyólag az ilyen t́ıpusú
eszközök ı́rási és olvasási sebessége jelentősen eltér egymástól.

A flash memóriák két fő t́ıpusát különböztetjük meg: a NAND és a NOR memóriacellából
állókat, amik nevüket onnét kapták, hogy a megvalóśıtásuk a logikai NAND (negált ÉS) és NOR
(negált VAGY) kapukéra hasonĺıt. A legfontosabb különbség köztük, hogy a NAND cellák gyor-
sabban törölhetők és ı́rhatók, kevesebb sziĺıcium területet igényelnek, azaz olcsóbbak is, továbbá
a tárolt adatokat csak blokkokban lehet elérni (a NOR flash bájt szintű elérést is lehetővé tesz).
Mindebből adódóan napjaink flash memóriái majdnem kizárólag NAND alapúak, és elsődleges
feladatuk a háttértárak helyetteśıtése (mivel azok szintén blokkonként ćımzettek).

A hardveres megvalóśıtás iránt érdeklődők a következő kulcsszavak mentén tudnak további
információhoz jutni: Flash memory, Floating gate, EEPROM.

2.3.1. Wear levelling

A flash memóriák/tárolók egyik legfontosabb tulajdonsága a már emĺıtett blokkonként történő
törlés, ami miatt egyetlen bájt megváltoztatása is a teljes blokk törlését követeli meg. Nagyon
fontos tehát, hogy flash tárolók esetén több, egymáshoz közel lévő bájt ı́rását egyetlen műve-
letben végezzük. Sajnos a blokk újráırások számának is van egy felső határa, ami napjainkban
(2013) jellemzően százezres nagyságrendű, ı́gy a blokkokba szervezett ı́rás sem elegendő, arra
is szükség van, hogy a blokkokat lehetőség szerint ugyanannyira használjuk el (ugyanannyiszor
töröljük), ı́gy megnövelve az eszköz élettartamát. (Ha ezt nem tennénk, akkor lennének olyan
blokkok az eszközön, amit olyan sokszor újráırtunk/töröltünk, hogy azok meghibásodnak, és
ha ezek olyan helyen helyezkednek el, ami a fájlrendszer szempontjából kritikus, akkor akár a
teljes tárolóeszközt is használhatatlanná tennék. A nem kritikus helyen lévő hibás blokkok is
bosszúságot okoznak, hiszen ezek azt jelentik, hogy az eszközön tárolt fájl kiolvasott tartalma
nem egyezik meg azzal, amit odáırtunk.)

Ez a meghibásodás-elkerülő technika a wear levelling, ami egy közbülső réteget képez a
flash memória fizikai blokkjai és a felsőbb rétegek (driver, operációs rendszer) által megćım-

zett logikai blokkok között. Így lehetősége nýılik arra, hogy egy logikailag ugyanarra a blokk-
ra irányuló ı́rás/törlés műveletet más fizikai blokkra iránýıtson, azaz a fizikai blokkok ı́rásai-
nak/törléseinek számát közel azonos szinten tartsa, ı́gy a tárolóeszköz élettartamát nagyságren-
dekkel meghosszabb́ıtsa (azaz az élettartam ne a legtöbbet ı́rt/törölt logikai blokktól függjön,
hanem a teljes eszköz blokkjai gyakorlatilag közel egy időben romoljanak el, az ı́rási/törlési mű-
veletek szétteŕıtésének, egyenletesebbé tételének köszönhetően).

A wear levelling technikában megkülönböztetünk dinamikus és statikus módszert: a dinami-
kus módszer csak a törlések/́ırások során végzi el a logikai és a fizikai blokkok összerendelésének
megváltoztatását az adott blokk törlési számának figyelembe vételével, mı́g a statikus módszer
a nem ı́rt/törölt blokkokra is kiterjeszti ezt. A különbség tehát, hogy amı́g a dinamikus esetben
azok a logikai blokkok, amelyeket nagyon ritkán ı́runk, a helyükön maradnak (és jó állapotban
vannak, hiszen csak ritkán ı́rtuk felül), addig a gyakran ı́rt blokkok gyakran cserélődnek, de
egyre rosszabb állapotú blokkokon foglalnak helyet (bár ezen blokkok egyenletesen rosszak). A
statikus esetben a nem ı́rt/törölt blokkokat is fizikailag áthelyezi a flash vezérlő, ı́gy az összes
blokk közel ugyanazon az elhasználtsági fokon van. Ha a teljes tárat tekintjük, ez nagy élet-
tartam növekedéshez vezethet (nyilván attól függően, hogy felsőbb szintről a tár mekkora részét
ı́rjuk felül/töröljük: például ha egy flash tárolót úgy használunk, hogy a rá másolt adatokat azok
felhasználása után töröljük és úgy ı́runk rá újabb adatot, akkor nincs számottevő különbség a
statikus és a dinamikus wear levelling között, viszont ha nagy részén fixen ugyanaz az adat talál-
ható, és csak kis részét ı́rjuk újra-és-újra, akkor óriási a különbség a statikus és a dinamikus wear

4

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

levelling által elért élettartam hosszabbodás között.) A statikus módszer egyben azt is jelenti,
hogy akkor is törlést/́ırást kell végezni, amikor azokat nem a felsőbb rétegek kezdeményezik, emi-
att a teljeśıtménye elvileg kevesebb, mint a dinamikus módszerrel működő háttértáré, ugyanakkor
megfelelő ütemezéssel ez a különbség számottevően csökkenthető. Ugyanezen okok miatt a sta-
tikus wear levelling komplexebb algoritmust, ı́gy komplexebb hardveres implementációt igényel,
azaz drágább.

Fontos kiemelni, hogy az ilyen t́ıpusú meghibásodások oka kizárólag az ı́rás/törlés műveletek
száma, nem pedig az utolsó ı́rás óta eltelt idő, azaz egy csak olvasásra használt flash tároló
élettartama nagyságrendekkel hosszabb, mint egy ı́rásra is használté.

A meghibásodások elkerülése érdekében végzett wear levelling mellett szükséges, hogy a már
meghibásodott blokkokat is nyilván tartsuk, hogy az arra történő ı́rást elkerüljük. Ekkor viszont
arra is lehetőség van, hogy a gyártás során eleve hibás blokkokat szintén megjelöljük, ami haté-
konyabb, kevesebb selejttel történő (azaz olcsóbb) gyártást jelent, mivel a jelenlegi technológia
nem garantálja a 100%-os hibamentességet.

A wear levellinget és a hibás blokkok nyilvántartását az USB (pen)drive-ok illetve az SSD-k
hardveres megvalóśıtásban tartalmazzák (flash vezérlő), ezeket az eszközöket úgy kell használni,
mintha hagyományos háttértárak lennének, minden fentebb emĺıtett feladatot elvégez a hard-
ver. Költség és funkcionalitás szempontjából a pendriveok általában dinamikus- mı́g az SSD
háttértárak statikus wear levellinget tartalmaznak.

3. Part́ıciók

Lehetőségünk van arra, hogy a háttértáron lévő területet felosszuk és különböző méretű, de
összetartozó területeket hozzunk létre. Egy ilyen területet part́ıciónak h́ıvunk. Minden part́ıció
külön kezelhető a többitől: törölhető, formázható, másolható, és saját fájlrendszerrel rendelke-
zik. Ezért fizikailag egy lemezen tárolhatunk különböző operációs rendszereket, anélkül, hogy
zavarnák egymást.

A part́ıciók MS Windows alatt betűvel ćımkézve jelennek meg, pl. C:, D:. - fontos megjegyez-
ni, hogy ha fizikailag másik lemezen van egy part́ıció az a meghajtó betű jeléből nem deŕıthető
ki (pl. elképzelhető, hogy a C: meghajtó egy part́ıció, amely a teljes merevlemezt elfoglalja, mı́g
a D: illetve E: meghajtók fizikailag a C: -től különböző, de ugyanazon a lemezen helyezkednek
el: valamilyen arányban megosztják a lemez területét).

GNU/Linux alatt már tisztább a helyzet, a dev könyvtár tartalmazza a számı́tógéphez csatolt
perifériák eszközfájljait, ı́gy a merevlemezekét is. Az IDE csatolóval rendelkező lemezeket hda,
hdb, hdc, hdd, . . . névvel találjuk a könyvtárban, mı́g a SATA vagy SCSI csatolóval rendelkezőek
sda, sdb, sdc stb névvel érhetőek el. Általában két IDE csatlakozó van egy alaplapon, amelyre
két-két eszközt lehet csatlakoztatni, ezért a hda az elsőleges IDE csatlakozó master eszköze, a
hdb ugyanezen kábelen lévő slave eszköz. A hdc, hdd a másodlagos IDE csatlakozóra felfűzött
eszközöket jelzik. Ha a hda lemez part́ıciókat tartalmaz, akkor az elsőleges part́ıció hda0 néven,
mı́g a második part́ıció hda1 néven fog szerepelni a /dev könyvtárban. SATA/SCSI eszközök
esetén az sd után következő a,b,c,d betűjelek és az 1,2,3,4 számok ugyanezt jelentik (például:
/dev/sda0 vagy /dev/sda1).

Természetesen az operációs rendszert informálni kell arról, hogy milyen part́ıciók léteznek
az adott lemezen, amit a Master Boot Record (MBR) tartalmaz. Ebben találhatók a part́ıciók
méretei, kezdő és vég értékeik valamint az, hogy melyik part́ıció tartalmaz operációs rendszer
elind́ıtásához szükséges adatokat - ezt/ezeket a part́ıciókat h́ıvjuk bootolható part́ıciónak.

A MBR-t az 1980-as években találták ki. Továbbfejlesztése a GUID Partion Table (GPT),
amely számos kiterjesztést tartalmaz az MBR-hez képest, például az MBR esetében a legnagyobb
part́ıció mérete maximum 2 TiB lehet, mı́g a GPT esetén ez 8 ZiB (ZiB = Zebi Byte = 10247

Byte), továbbá GPT part́ıcionálás esetén a part́ıciók száma is sokkal több lehet.

4. Fájlrendszerek

A fájlrendszer feladata, hogy az eltárolandó fájlokat és könyvtárakat a háttértár egy part́ıcióján
a megfelelő helyen elhelyezze, garantálja annak visszaolvashatóságát, valamint a változásokat

5

Albert
Kiemelés

adminisztrálja. Tehát a fájlrendszer funkciója kettős: egyrészt tárolja egy adott part́ıción lé-
vő adatok (fájlok) helyét, másrészt kezeli az ezekhez kapcsolódó metaadatokat5. Minden, a
fájlrendszerben tárolt adathoz (egy adott fájl fizikai elhelyezkedése a lemezen) tartozik egy me-
taadat bejegyzés is, ez tartalmazza a fájl vagy könyvtár nevét, a létrehozás, módośıtás, utolsó
hozzáférés dátumát, a tulajdonos adatait, valamint a hozzáférési jogosultságokat. A könyvtárak
a fájlrendszer adatbázisában lévő bejegyzésként vannak tárolva (tehát amennyiben egy lemezről
elvesźıtjük a fájlrendszert léıró adatbázist (a metaadatokat), úgy a nyers adatok (fájlok tartalma)
visszanyerhetőek, de: 1) nem fogjuk tudni, hogy melyik fájl hol kezdődött, hogyan következnek
egymás után a fájl tartalmát alkotó blokkok és hol van vége 2) nem fogjuk tudni rekonstruálni a
könyvtárrendszert.) Látható, hogy a fájlrendszer helyes működése létfontosságú a tárolt adatok
használhatóságának szempontjából, éppen ezért a fájlrendszer adatbázisa a lemezen általában
több példányban, sokszorośıtva kerül eltárolásra, csökkentve a megsérülés valósźınűségét.

Mivel a számı́tógépek számos különböző feladatra használhatóak (családi személyi számı́tó-
gép, bankszámlakezelő rendszer, egy tőzsdei kereskedőrendszer vagy egy milliós forgalmú webki-
szolgáló), ezért az adatok tároláskor is különböző igények léphetnek fel (mind teljeśıtmény, mind
biztonság tekintetében). Ezen igényekre kieléǵıtésére rengeteg fájlrendszer megvalóśıtás létezik
más-és-más tulajdonságokkal, teljeśıtménnyel, funkcionalitással. Ebben a jegyzetben részleteseb-
ben a FAT, illetve az ext2/3/4 fájlrendszerrel fogunk megismerkedni.

Mivel fájlrendszer szükséges magának az operációs rendszernek az installálásához is, a fájl-
rendszereket az operációs rendszerrel együtt fejlesztik: például MS Windows operációs rendszer-
hez három fájlrendszer érhető el: a FAT, az NTFS, és az exFAT. Linux alatt a legelterjedtebb az
ext3/4 fájlrendszer, de számos egyedi igényt kieléǵıtő megvalóśıtás is létezik (XFS, JFS, btrfs,
Reiserfs, stb).

Léteznek hálózati fájlrendszerek is (Google Drive, NFS, sshfs, stb.), amelyek az operációs
rendszer szempontjából átlagos part́ıciónak tűnnek, de fizikailag az adatok nem az adat számı́tó-
gép háttértárán tárolódnak, hanem egy távoli szerveren. Például az egyetemen lévő tárhelyeinket
(turdus, users) is felcsatolhatjuk meghajtóként az általunk használt operációs rendszerben (sőt,
valójában is ez történik, nézzük meg a mount paranccsal).

Fontos megjegyezni, hogy a fájlrendszerek fájl- és könyvtárelhelyezési implementációja nem
azonos az általunk megszokott könyvtárstruktúrával! Tehát a felhasználók számára látható
könyvtárstruktúra mögött a fizikai tárolási módja ettől teljesen eltérő, ahogy ezt látni fogjuk.

4.1. Fragmentáció

Egy fájlrendszerben a fájlok blokkokban tárolódnak. Ha ezek a blokkok fizikailag nem egymás
utáni területen helyezkednek el a háttértáron, akkor külső fragmentációról beszélünk. Ez azoknál
a háttértáraknál érdekes, amelyeknél az egymás utáni blokkok olvasása sokkal gyorsabb művelet,
mint a távoli blokkok olvasása (ilyen háttértár a merevlemez, mivel a fej mozgatásához illetve a
lemez megfelelő helyre forgásához idő kell). Annak érdekében, hogy a fájlok olvasását meggyor-
śıtsuk, a blokkokat egymás után helyezhetjük, amit defragmentációnak nevezünk.

Mivel a fájlokat blokkokban tároljuk, és blokknál kisebb egység lefoglalására nincs lehetőség6,
a fájlt tartalmazó blokkok közül az utolsó majdnem mindig tartalmaz szabad helyet. Ezt belső
töredezettségnek nevezzük, mivel a blokkokon belül van kihasználatlan hely. Mindebből az is
következik, hogy ha N darab 1 bájtot tartalmazó állományt hozunk létre, akkor a fájlrendszerben
minden fájlhoz egy blokk lefoglalódik, azaz a lemezen lévő tárhely nem N · 1 bájttal csökken,
hanem N · blokkméret bájttal.

A blokkméret megválasztásával a belső fragmentáció csökkenthető (hiszen ekkor az utolsó
blokk mérete is kisebb, ı́gy kevesebb kihasználatlan hely lehet benne), de a blokkok száma nö-
vekszik (hiszen kisebb blokkból több jön létre, mivel a teljes part́ıciót fel kell osztani blokkokra),
ami nagyobb lehetőséget ad a külső fragmentációra. Az általánosan használt blokkméret 1-4-64
kiB között változik a part́ıció méretétől függően, mert ez vállalható kompormisszumot jelent a
külső és belső fragmentáció között.

5adatok tulajdonságait léıró adatok
6az újabb fájlrendszerek már adnak erre lehetőséget, pontosan ezt a problémát megoldandó

6

4.2. Fájlrendszer implementációk

4.2.1. Flash fájlrendszerek

A flash tárolókra optimalizált fájlrendszerek figyelembe veszik a flash tárolók fentebb tárgyalt
sajátosságait, ugyanakkor nagyon fontos, hogy ezek a fájlrendszerek kizárólag közvetlenül a flash
memórián használandók, azaz az USB (pen)drive, SSD háttértárak esetében szükségtelen ilyen
fájlrendszereket használni, mert a flash speciális kezelését a hardver (a fentebb emĺıtett flash
vezérlő) elvégzi. Flash fájlrendszerekre példa: JFFS(2), YAFFS.

4.2.2. A FAT fájlrendszer

A File Allocation Table (FAT) fájlrendszert a Microsoft fejlesztette, és a Windows XP megjele-
néséig ez volt a Windows operációs rendszerek által kizárólagosan használt fájlrendszer. A FAT
fájlrendszer klasztereket tart számon, és a különböző FAT verziók főként abban különböznek,
hogy hány biten tárolják a klaszterek sorszámait (FAT12, FAT16, FAT32). Ez bitszám hatá-
rozza meg, hogy összesen mekkora lehet egy FAT part́ıció mérete. Az operációs rendszert is
tartalmazó FAT part́ıciók tartalmaznak boot sectort is, ez a szektor kerül beolvasásra a memó-
riába az operációs rendszer bootolásának első lépéseként.

Az alábbiakban részletesen megnézzük, hogyan tárolja a fájlokat a FAT fájlrendszer. A 2
ábrán látható a part́ıció egy darabja: a tárolt fájlok, valamint a hozzájuk tartozó allokációs
tábla-beli bejegyzések. Az allokációs tábla - többek között - tartalmazza a fájl nevét és annak
a klaszternek a számát, ahol a fájl kezdődik. Minden klaszter végén található egy ćım amely a
fájl többi darabját tároló klaszterre mutat vagy egy 0xFFF(F...F) jelzés, ami azt jelenti, hogy
ez az utolsó klaszter, amiben a fájl részlete volt eltárolva. Fontos észrevennünk, hogy a rendszer
nem követeli meg, hogy egy nagyobb méretű fájl egymás utáni klaszterek sorozataként legyen a
lemezen: az operációs rendszer utaśıtásaitól függően akár rengeteg, a lemez különböző pontjain
elhelyezkedő klaszterbe is kerülhet a fájl egy-egy darabja. A klaszterméret az esetek túlnyomó
többségében 2-32 KiB közötti.

FAT fájlrendszert használnak a pendrive-ok.

4.2.1. feladat. Egyes pendrive-ok esetében a háttértár első néhány kilobájtja speciálisan kiala-
ḱıtott. Mi lehet ennek az oka?

2. ábra. Egy FAT part́ıció darabja. Forrás:
http://www.ntfs.com/images/recover-FAT-structure.gif

4.2.3. Az Ext2 fájlrendszer

Az ext2 fájlrendszer alapegysége a blokk, amelynek mérete tipikusan 1-8 kiB-ig terjed (ez a
fájlrendszer létrehozásakor beálĺıtható érték, de később nem változtatható és minden blokk ekkora
méretű lesz). Így ha létrehozunk egy fájlt amiben elhelyezünk 2 karaktert az minimum 1 kiB-ot
(vagy épp 8 kiB-ot, ha akkora a blokkméret) fog elfoglalni a lemezen. A szuperblokk a part́ıció
elején helyezkedik el és az operációs rendszer bootolásához szükséges adatokat, illetve magáról
a fájlrendszerről egyéb információkat tartalmazz. A blokkokat csoportokban tárolják, ezzel is
csökkentve a töredezettség mértékét. Ezeket a blokkokból álló csoportokat extents-nek nevezzük.

A ext2 fájlrendszerben minden fájlt és könyvtárat egy úgynevezett inode ı́r le. Az inode tartal-
mazza a fájllal vagy könyvtárral kapcsolatos adminisztrat́ıv információkat: fájlnevét, létrehozás-,

7

módośıtás dátumát, tulajdonost, jogosultságokat, stb. Az inode többi része 12-15 linket (blokk
ćımeket) tartalmaz, amely egy csoportot ćımez meg, ezek a direkt blokkok (lásd a 3. ábrán).
Amennyiben a fájl mérete meghaladja a direkt blokkokban tárolható adatmennyiséget, akkor az
utolsó link helyére nem egy direkt blokk ćımet helyezünk az inode-ban, hanem egy másik cso-
portléırót, ami további blokkokra vagy csoportléırókra mutat. Ezzel a módszerrel a legnagyobb
tárolható fájl mérete 1 kiB-os blokk méretnél 16 GiB, mı́g 8 kiB blokkméret esetén 2 TiB.

3. ábra. Az ext2 inode feléṕıése Forrás:
http://upload.wikimedia.org/wikipedia/commons/a/a2/Ext2-inode.gif

A fájlok és könyvtárak mellett létezik egy másik t́ıpusú inode bejegyzés-t́ıpus is, ez a link. A
link nem más, mint egy bejegyzés a fájlrendszerben, amely egy másik fájlrendszer-beli bejegyzésre
hivatkozik. Önmagában tehát nem tárol adatot, hanem az őt megnyitó programot továbbirá-
nýıtja az általa mutatott fájlra (ennek egyszerűbb változata az MS Windows-beli parancsikon).
Két t́ıpusát különböztetjük meg, az egyik a soft link a másik a hard link.

A hard link esetében a könyvtárbejegyzésben szereplő inode bejegyzés egy már létező i-node-ra
mutat. A hard linkek tehát pontosan ugyanúgy néznek ki, mint az adott fájl első könyvtárbejegy-
zése, azaz a hard linkek egyenrangúak! Ezzel szemben a soft link egy speciális fájl, amely annak
a fájlnak az elérési útját tartalmazza, amire mutat. Ebből következően a hard linknél a mutatott
fájl vagy könyvtár addig nem törölhető, amı́g létezik rá mutató link (ezt a link számlálóból tudja
- lásd feladatok). Hard link létrehozására az ln parancs használható. Szintaktikája: ln régi új

ahol régi jelenti azt a már meglévő fájlt, amire linket akarunk létrehozni, és új jelenti a létre-
hozandó linket. Az ls -i paranccsal kilistázhatók az i-node számok is, ı́gy ellenőrizhető, hogy a
hard link valóban ugyanarra az i-node-ra mutat. Fontos, hogy hard link csak fájlra hozható létre
(azaz könyvtárra nem)! Soft linket az ln -s régi új paranccsal hozhatunk létre.

A soft linknél a link az elérési utat tárolja, ı́gy a mutatott fájl vagy könyvtár nem tudja,
hogy létezik olyan hivatkozás, amely reá mutat. Éppen ezért ha letöröljük a hivatkozott fájlt,
a link

”
célpont” nélkül marad, és

”
törött” link [dangling / broken link] jön létre. Másik fontos

különbség, hogy hard linket csak part́ıción belül lehet létrehozni, mivel az inode-ra mutat, aminek
a számozása part́ıción belül egyedi. Ezzel szemben a soft link elérési utat tárol (ahogy azt már
emĺıtettük egy part́ıció a könyvtárstruktúra tetszőleges pontjára becsatolható), ı́gy a soft link
mutathat másik part́ıción elhelyezkedő fájlra is.

4.2.4. SWAP fájlrendszer

Egy adott pillanatban nem minden programot használunk, amit elind́ıtottunk a számı́tógépün-
kön, illetve az adott programnak sem használjuk minden részét. Ebből kifolyólag a nem akt́ıv
programokat, valamint programrészeket az operációs rendszer nem a viszonylag szűkös memóri-

8

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

Albert
Kiemelés

ában tartja, hanem a háttértáron, az úgynevezett swap területen. A tárolás olyan formátumban
történik, hogy a kíırt memórialapokat szükség esetén külön keresés-konvertálás nélkül a memó-
riába tudja visszatölteni. (Például: amikor a tálcára leteszünk egy programot és sokáig nem
foglalkozunk vele, majd később elővesszük azt tapasztaljuk, hogy elég lassan reagál a kéréseink-
re, és a háttértár nagy tempóban dolgozik: ekkor kerülnek vissza a swap területről a memóriába
az adott programhoz tartozó adatok és program részletek). MS Windows alatt a fájlrendszerben
egy fájlként jelenik meg a swap terület, amit Pagefile-nak h́ıv a rendszer. GNU/Linux rend-
szereknél a swap tárterület fájl mellett egy linux-swap t́ıpusú fájlrendszerrel rendelkező külön
part́ıció is lehet.

5. Könyvtárstruktúra és a fájlrendszer adminisztrációjának
manipulációja

Linux alatt a BASH shell seǵıtségével lehetőségünk van a parancssori utaśıtások seǵıtségével
fájlok és könyvtárak létrehozására, módośıtására, valamint törlésére, tehát a könyvtárstruktúra
módośıtására. Továbbá lehetőségünk van a fájlrendszer adminisztrációs információk megjeleńı-
tésére, megfelelő jogosultság esetén módośıtására.

5.1. Alapvető parancsok

A cd, pwd, mkdir, rmdir, ls, rm, mv, cp parancsokat az első óra anyaga tartalmazta. A cat

paranccsal egy fájl tartalma jeleńıthető meg, a touch paranccsal egy üres fájl hozható létre.

5.2. Jogosultságok

A linux disztribúciókban található egy kitüntetett felhasználó, a rendszergazda, ami a teleṕıtés
során jön létre, a neve: root. Neki mindenhez joga van, bármit törölhet, bármit megnyithat, lét-
rehozhat felhasználót, stb. Az ő általa ind́ıtott programok az ő jogaival futnak, egy szándékosan
vagy véletlenül megváltoztatott program a root jogaival futva komoly károkat tud okozni. Ezért
a legtöbb disztribúcióban létre kell hozni már a teleṕıtéskor egy korlátozott jogú felhasználót,
akinek az adataival belépve korlátozott jogokkal tudunk dolgozni. Ez ı́gy biztonságos!

5.2.1. példa. Írjuk be: cat /etc/passwd A kapott hosszú lista első oszlopa a rendszerünkön
lévő felhasználók neveit tartalmazza, a sajátunkat is ott kell látnunk. (Talán kiderült már: a cat
utaśıtással szöveges fájlok tartalmát lehet kilistázni.)

A lentebb bemutatásra kerülő jogoknak igazi jelentősége a több felhasználó által használt rend-
szerek esetében van (pl.: users és turdus szerverek), ha egy gépet csak egyedül mi használunk, a
jogosultságok álĺıtgatása nem lesz annyira fontos.

Minden felhasználó valamilyen csoportnak is tagja (akár többnek is), mindenkinek van egy
alapértelmezett csoportja (elsődleges csoport), ez Debian rendszeren megegyezik a felhasználó
nevével, a felhasználó létrehozásakor jön létre, az új felhasználó egyből belekerül.

5.2.2. feladat. Adjuk ki a következő utaśıtást: cat /etc/group A kapott lista első oszlopa a
rendszerünkön lévő csoportok neveit tartalmazza.

A Linux fájlrendszere tárolja a fájl tulajdonosának azonośıtóját a fájlhoz tartozó csoportot és a
hozzáférési jogosultságot is. A hozzáférési jogosultságok ábrázolásához egy három részből álló
kódot használ, amit fájlmodnak nevezünk.

• Első rész a saját (user) jogot

• Második rész a csoport (group) jogot

• Harmadik rész mindenki más (others) jogait rögźıti

A saját jog alatt a fájl tulajdonosának jogait értjük, legtöbb esetben ő az adott fájl vagy könyvtár
létrehozója is. Mindegyik rész a következő komponensekből áll:

9

• r (Read): olvasási jog (vagyis az adott fájl ezáltal olvasható)

• w (Write): ı́rási jog (az adott fájl ezáltal válik ı́rhatóvá)

• x (eXecute): végrehajtási jog (futtatási jog)

5.3. Jogosultságok megváltoztatása

Egy fájl tulajdonosi (hozzáférési) jogait csak a fájl tulajdonosa, vagy a rendszergazda tudja meg-
változtatni a következő paranccsal: chmod +|-<mód> <fájlnév> Meg kell határozni az alábbia-
kat: adunk vagy elveszünk jogot (+: adunk, -: elveszünk), kinek/kitől (saját, csoport, mindenki
más (ugo)), milyen jogot adunk (r w x / 4 2 1).

5.3.1. példa. Saját magunknak ı́rási jog: chmod u+w munka.tar.gz

5.3.2. példa. Másoknak futtatási jog: chmod o+x munka.tar.gz

5.3.3. példa. Egyszerre több jogot is meg lehet változtatni: chmod o+x,u+w munka.tar.gz

5.3.4. példa. Mindenkinek minden jog: chmod 777 munka.tar.gz ugyanezt a funkciót valóśıtja
meg a chmod a+rwx munka.tar.gz

5.3.5. példa. Csak nekem legyen jogom mindenhez: chmod 700 munka.tar.gz ugyanaz mint:
chmod u+rwx,g-rwx,o-rwx munka.tar.gz

Fájlok esetében a végrehajtási jognak csak a futtatható fájloknál van jelentőségük (bináris állo-
mányok, scriptek). Könyvtárak esetén az olvasási jog azt jelenti, hogy elolvashatja a fájlok neveit
az adott könyvtárban, az ı́rási jog jelenti, hogy a könyvtárban állományt, könyvtárat hozhatunk
létre, mı́g a futtatási jog megengedi a belépést a könyvtárba.

5.3.6. feladat. Hozzunk létre egy könyvtárat, és változtassuk meg a jogosultságait úgy, hogy
aki ismeri a könyvtárban lévő fájlneveket, alkönyvtárakat, az el tudja ezeket olvasni, de más nem!

5.4. Alapértelmezett jogok

Amikor egy fájlt létrehozunk, akkor az a jogosultságok alapértelmezett értékével fog rendelkezni.
Pl.: Létrehozunk egy üres fájlt:

$ touch akarmi

$ ls -la akarmi

-rw-r--r-- 1 bnorbert staff 0 Okt 31 06:14 akarmi

A létrehozáson ḱıvül, alapértelmezés szerint ı́rási és olvasási joggal, a csoportba tartozók
és mindenki más pedig csak olvasási joggal rendelkeznek. Ennek az az oka, hogy az operációs
rendszer a fájl létrehozásakor a 022 maszkot alkalmazza. Egy állomány létrehozásakor alapér-
telmezésben senki sem kap futtatási jogot. Az alapértelmezett maszk lekérdezhető a következő
paranccsal:

$ umask

022

Könyvtárak létrehozása esetén a 777-ből vonódik ki a mask, azaz alapértelmezetten egy könyv-
tár 755 jogokkal jön létre. Fájloknál a 666-ból vonódik ki a mask, ı́gy 644 jogokkal jönnek létre
a fájljaink.

5.5. Tulajdonos megváltoztatása

Az egyes bejegyzések (fájlok és könyvtárak) tulajdonosának megváltoztatása a chown parancs se-
ǵıtségével történik, valamint felhasználó csoport váltása a chgrp parancs seǵıtségével lehetséges.
A jogosultságokat is tartalmazó részletes listát a ls -l paranccsal kaphatunk (illetve kombi-
nálhatjuk a már megismert -i kapcsolóval is, hogy az i-node azonośıtók is láthatóak legyenek:
ls -li

10

5.6. Fájlrendszerrel kapcsolatos parancsok

• Az fsck parancs seǵıtségével lehet ellenőrizni, hogy a háttértár tartalma megegyezik-e az
adminsztrációs fájlok által léırt állapottal, azaz a fájlrendszer koherens állapotban van-e.
Ilyen például akkor fordulhat elő, amikor hirtelen kikapcsol a számı́tógép (pl. áramszünet
esetén) és valamilyen lemezművelet félbeszakad. Szintén problematikus eset a fájlrendszer
koherenciájának szempontjából, ha akkor távoĺıtunk el egy cserélhető eszközt, amikor még
nem fejeződött be a lemezre ı́rás művelet.

• Fájlrendszer egy üres part́ıcióra a mkfs parancs seǵıtségével tudunk létrehozni, a parancs
lefutása létrehozza az összes adminisztrációs állományt, ami szükséges a fájlrendszer me-
nedzseléséhez. Hasonlóan, ha egy fájlrendszerrel rendelkező part́ıciót leformázunk, akkor
a formázás létrehozza az üres adminisztrációs fájlokat (fontos, hogy ezzel még az előző
fájlrendszerben tárolt adatok megmaradnak, csak nem tartozik hozzájuk adminisztrációs
állomány).

• Az érvényes, hibamentes fájlrendszereket tartalmazó part́ıciókat használat előtt fel kell
csatolnunk a könyvtárstruktúrába. Általában az mnt könyvtárban van egy - part́ıcióhoz
tartozó - üres könyvtár, ahová a mount paranccsal tudjuk becsatolni a part́ıciót.

5.7. Feladatok

• Mit csinál a df parancs? Keressük meg a man oldalán, hogy mit csinál a -T kapcsoló és
futtassuk a df -T parancsot.

• Nézzük meg a stat parancs man oldalát, próbáljuk ki a következőekre: sima fájl, könyvtár,
eszközfájl, soft link, hard link.

• Nézzük meg az ls -i parancsot, keressünk egy fájl a könyvtárból és nézzük meg, hogy az ls
-i parancsban megadott inode szám egyezik-e a stat parancs kimenetével.

• Hozzunk létre soft és hard linkeket, fájlra, könyvtárra, figyelünk a link counter értékének
változására. Töröljük azt a fájlt amire a link mutat mit tapasztalunk szoft illetve hard link
esetén?

• nézzük meg a dumpe2fs parancsot és futtassuk az egyik part́ıcióra. A grep parancs seǵıts-
gével (grep -i superblock) nézzük meg hány példányban tárolódik a lemezen a szuperblokk.

6. Könyvtárszerkezet

Linux alatt fa gráfba van szervezve a teljes könyvtárszerkezet, (azaz ne számı́tsunk C, D, ...
meghajtókra!) Mindennek az alapja a / jellel jelölt gyökérkönyvtár, más néven root. Ez minden
fájlrendszer alapja, ebből ágaztatható le a teljes szerkezet.

6.0.1. példa. Adjuk ki a következő utaśıtást: ls / Hasonló listát kell látnunk:

bin

boot

cdrom

dev

etc

home

lib

lost+found

media

mnt

opt

proc

root

11

sbin

sys

tmp

usr

var

vmlinuz

Ezek a főkönyvtárak majdnem minden Linuxban változatlanul megvannak, leszámı́tva talán a
/cdrom-ot és /media-t. A /media egy újabb

”
találmány”, ide kerülnek a cserélhető médiák.

Nézzük, melyikben mi található:

bin, sbin: A bin könyvtárakban futtatható állományok vannak. Több bin könyvtár is található
ezen ḱıvül, például a /usr/bin és a /usr/sbin. Bár ez nem törvényszerű, de általában a
bin könyvtárakban a minden felhasználó által elérhető programok kerülnek az sbin könyv-
tárakba pedig olyan rendszereszközök, melyeket általában rendszergazdák használnak. A
/bin és /sbin az alaprendszerhez, a boot folyamathoz szükséges programokat tartalmazza,
a felhasználói programok a /usr/bin /usr/sbin alá kerülnek.

boot: a boot könyvtárban találhatók a bootnál fontos fájlok: általában a rendszermag (kernel),
illetve Grub rendszerbetöltő esetén annak konfigurációs állománya is.

cdrom:Ez alá csatolódik be a CD meghajtó egység.

dev: Linux alatt fájlokon keresztül érünk el mindent, a CD-vel kezdve, a hangon át, az egérig.
Ezek a speciális eszközfájlok találhatók ebben a mappában.

etc: Az etc könyvtár a gyűjtőhelye a különböző programok globális konfigurációs fájljainak.
Ellentétben a Windowsos registry megoldással, Linux alatt minden konfigurációs állomány
egyszerű szövegfájlba van mentve, aminek nagy előnye, hogy az állományok akkor is egysze-
rűen elérhetők, ha a rendszer egyébként használhatatlan. Természetesen emellett az egyes
programok felhasználó specifikus beálĺıtásokkal is rendelkeznek, ezeket a home könyvtárak-
ban tárolja a rendszer, rejtett mappákban.

home: ez alatt a könyvtár alatt találhatók a felhasználói könyvtárak, az adott könyvtár alatt a
felhasználónak teljes dúlási joga van, ezen az egy könyvtáron ḱıvül azonban leginkább csak
olvasási joga van alapból.

lib: a lib könyvtár alatt már a rendszer részei lapulnak: library fájlok, kernel modulok, stb.

lost+found: egy speciális könyvtár, jelen esetben egy ext3 t́ıpusú fájlrendszerrel szerelt part́ıci-
óról van szó, ez a könyvtár nem is a Linux, mint inkább a fájlrendszer része: a fájlrendszer
jav́ıtásakor előkerült, névvel nem rendelkező fájl darabokat helyezi el itt a rendszer.

media: rendszerfüggő, általában a /media könyvtár alá kerülnek befűzésre a CD/DVD eszközök,
pendrive illetve a floppy. Röviden: a cserélhető médiák.

mnt: a másik becsatolásra használt könyvtár. Ez alá a könyvtár alá kerülnek (általában)
csatolásra a fix part́ıciók. Mivel ebben a könyvtárstruktúrában nincs kiemelt helye/neve egy
egy meghajtónak, mint Windows alatt a C:, D:, stb., ı́gy egy-egy eszközt tetszőleges helyre
befűzhetünk a fájlrendszerbe. Különösen praktikus ez például a home könyvtár estén: ha
kinőjük az e célra fenntartott part́ıciót, és veszünk egy új vincsesztert, egyszerűen csak
rámásoljuk anyagainkat, letöröljük az eredeti példányt, majd befűzzük a /home könyvtár
alá az új adathordozót.

opt: a hivatalos léırás szerint külsős programok települnek ebbe a könyvtárba, de a rendszerek
nagy részén üresen áll...

proc: Itt találhatóak az éppen futó folyamatokkal kapcsolatos metaadatok, illetve információk
a rendszerről: processzorról, memóriáról, stb. Nagy mennyiségű hasznos információt talál
itt az avatott kéz.

12

root: A rendszergazda (root) felhasználó home könyvtára

tmp: Az egyes programoknak szükségük van/lehet átmeneti fájlokra. Ezek kerülnek ide. Ez a
másik olyan könyvtár, amely alapértelmezetten ı́rható minden felhasználó számára.

usr: Ez alatt a könyvtár alatt található minden. Persze ez ı́gy kicsit túlzónak hat, de majdnem
igaz: az usr könyvtár alatt található a teleṕıtett programok nagy része, hagyományból ide
szoktunk forrásokat pakolni (/usr/src), és azt leford́ıtani. Itt találhatók a dokumentációk,
itt találhatók az ikonok nagy része, stb...

var: Szintén számos szolgáltatás gyűjtőkönyvtára. Itt találhatók a naplófájlok, egyes programok
hosszabb ideig tárolt, mégis átmeneti fájljai, alapértelmezetten a felhasználói postaládák,
stb.

6.0.2. feladat. Nézzünk bele az egyes könyvtárakba: adjuk ki a következő utaśıtást (utánuk
ENTER): ls /bin (aztán ls /boot, ls /home,...)

6.0.3. feladat. Gépeljük be, majd nyomjunk ENTER-t: cat /proc/meminfo

7. Egyéb parancsok

Néhány gyakran használt, fontosabb parancs:

date: kíırja az aktuális dátumot.

df: disk free, egy kis statisztikát jeleńıt meg az egyes part́ıciók foglaltságáról. pl.: df -h

du: disk usage, az egyes állományok, könyvtárak méretéről késźıt kis statisztikát. pl.: du -hs ./

(a man alapján próbáljuk meg értelmezni az egyes kapcsolókat, paramétereket!)

ncal: calendar, egy kis naptár program. pl.: ncal 2011

Természetesen a listát még hosszasan lehetne sorolni, aki további parancsokkal szeretne megis-
merkedni, használja ki az internet lehetőségeit! Bármely kereső a

”
linux parancsok” kifejezésre

több jól használható oldalt is ajánl.

8. Feladatok

8.0.1. feladat. Nézz utána, hogy mit csinál az ncal parancs!

8.0.2. feladat. A hét milyen napján születtél?

8.0.3. feladat. Mekkora helyet foglalsz a users.itk.ppke.hu szerveren?

8.0.4. feladat. Hozd létre a következő könyvtárstruktúrát a saját könyvtáradon belül!

./szulok/apa

./szulok/anya

8.0.5. feladat. Hozz létre egy fájlt (akár üreset is lehet) az apa alkönyvtáron belül! (touch,
esetleg nano, esetleg cat,. . .)

8.0.6. feladat. Másold át az anya alkönytárba!

8.0.7. feladat. Írasd ki egy fájlba az elmúlt 10 percben módośıtott fálok neveit a munkakönyv-
táradon belül! (find parancs)

8.0.8. feladat. Fűzd hozzá a fájl végéhez az aktuális dátumot! (date és átiránýıtás)

8.0.9. feladat. Módośıtsd az előző fájl jogait, hogy neked csak ı́rási jogod, másoknak (csoport,
egyéb) pedig semmilyen joga ne legyen!

13

8.0.10. feladat. Próbáld meg a tartalmát kilistázni! (pl.: cat)

8.0.11. feladat. Szerezz információkat az od programról! (man, keresők,. . .)

8.0.12. feladat. Add ki a következő utaśıtást:
verb=echo ő | od -t x1

Értelmezd az eredményt!

14

	1 Bevezetés
	2 Adattároló perifériák
	2.1 Merevlemez (Hard Disk Drive - HDD)
	2.2 Compact Disk (CD)
	2.3 Pendrive, Flashdrive, SSD

	3 Partíciók
	4 Fájlrendszerek
	4.1 Fragmentáció
	4.2 Fájlrendszer implementációk

	5 Könyvtárstruktúra és a fájlrendszer adminisztrációjának manipulációja
	5.1 Alapvető parancsok
	5.2 Jogosultságok
	5.3 Jogosultságok megváltoztatása
	5.4 Alapértelmezett jogok
	5.5 Tulajdonos megváltoztatása
	5.6 Fájlrendszerrel kapcsolatos parancsok
	5.7 Feladatok

	6 Könyvtárszerkezet
	7 Egyéb parancsok
	8 Feladatok

