Linux bevezeto
(jegyzet)

Bérci Norbert, Uhlar Lészlo

2015. szeptember 24-i éra anyaga

Tartalomjegyzék
1. Egy kis torténelem 1
1.1. Akezdetek 1
1.2, A GNU projekt o o 2
1.3 ALInux . . oo 2
2. Programok futtatasa 3
2.1. Paraméterek Lo 4
3. Konyvtarak és elérési utak 4
4. Kornyezeti valtozok 6
4.1, Osszeflizés o e e e e 7
4.2, PATH e 7
4.3. PS1 . e 8
4.4. LANG . . . o e 9
5. Fajlok kezelése 9
5.1. Mintaillesztés 12
5.2. Egyéb specialis karakterek Lo Lo 14
6. Atiranyitas 16

1. Egy kis torténelem
1.1. A kezdetek

A szamitégépek az Otvenes évektdl a nyolcvanas évek elejéig a kutatdk eszkozei voltak és a
tomegek el6l gyakorlatilag el voltak zarva. Tobb kutaté hasznalt egy nagy gépet, a fejlesztéseiket
megosztottak egymadssal, igazi kis kozosségek jottek igy létre. A kor egyik legendds gépe volt
a PDP10-es, ezen az ITS nevil operaciés rendszer futott, aminek tovabbfejlesztésén dolgozott
Richard Stallman is (lasd kés6bb). A PDP10 fejlesztését azonban a gydrtdja a nyolcvanas évekre
abbahagyta, az intézeteknek Gjabb gépek utan kellett nézniiik. Ezek mar mas operaciés rendszert
futtattak, melyek nem voltak szabadok, mér ahhoz is titoktartési szerzédést kellett alairniuk, ha
egy futtathaté mésolatot akartak. Azaz tilos lett egymadasnak segiteni, az eddig egyiittmikodé
kozosségek felbomlottak, nem oszthattak meg egymassal fejlesztéseiket.

O Revision : 62 Date : 2014 — 09 — 2011 : 32 : 02 + 0200(Sat, 20Sep2014)

1.2. A GNU projekt

Richard Stallman ezt az 1j helyzetet nem tudta elfogadni, elhatarozta egy 1j, teljesen nyilt
operacios rendszernek a megirasat: 1983 tajan létrehozta a GNU projektet, hogy terveit megva-
16sitsa. (A GNU jelentése: GNU is not UNIX). Ekkor fogalmazta meg a GNU kidltvéanyt (melyet
teljes terjedelmében példdul a http://gnu.hu oldalon olvashatunk el) és a szabad szoftverekkel
kapcsolatos alapelveit:

e a program szabadon hasznalhaté barmilyen célra,

e a programot barki szabadon mddosithatja igényei szerint,

e a programot barki tovabbadhatja akar ingyen akar pénzért,

e a program modositott verziéinak meg kell felelnie ugyanezen feltételeknek.

Ezen elvek jogilag is megfelel6 forméba ontésének eredményeképpen jott létre egy kiilonleges
licenc, a GPL (General Public Licence) (teljes szévege magyarul szintén a http://gnu.hu oldalon
olvashatd) és a szabad szoftvereket tdmogaté alapitvany, az FSF (Free Software Foundation) is.
Ez utébbi céljardl, miikodésérol részletesebb leiras olvashaté tobbek kozott az fsf.hu oldalon.

A GNU projekt keretében szdamos programot kifejlesztettek, mar csak egy valami hidnyzott:
egy olyan kernel (az operdciés rendszer magja), melyen futtatni lehetne ezeket.

1.3. A Linux

1991-ben egy finn egyetemista, Linus Torvalds épp egy 1ij projekten kezdett el dolgozni: egy 1j,
szabad operaciés rendszeren, melyben ki akarta javitani az oktatdsra akkoriban elészeretettel
haszndlt MINIX operdciés rendszer hibdit, hidnyossdgait. Azaz adott volt egy kernel (Linus
munkéja) alkalmazdsok nélkiil és adott volt egy alkalmazds gytijtemény (GNU) kernel nélkiil.
Nem kellett sok id6 ahhoz, hogy egymasra talaljanak, igy sziiletett meg a Linux, aminek az
el6z6ek miatt a legpontosabb elnevezése: GNU/Linux. Ma mér a GNU programokon kiviil més
projektbdl, mas licenceléssel terjesztett szoftverek is tartoz(hat)nak egy disztribucidhoz, igy ma
a Linux alatt a teljes operacids rendszert értjiik. Par év, és megjelentek az els§ disztribucidk:
a kernel és a rengeteg GNU alkalmazas koziil néhdny 6sszeépitve egy jol hasznalhaté rendszerré
(pl.: Debian: 1993. augusztus 16.).

Egy Linux disztribicié alatt tehat egy gondosan dsszevéalogatott, rendszermaghdl, felhasznéldi-
és rendszerszintli programokbdl all6, szertedgazo vagy specifikus felhasznélasra alkalmas operéci-
0s rendszert értiink. Egy-egy nagyobb disztribiiciéban olyan sok program talalhaté, hogy nagyon
ritkdn van sziikség kiilsé forrasbdl szarmazé programok telepitésére. Ennek az az elénye, hogy
a szoftverkomponensek egymashoz alakithatok, az egyiittes installaldsuk és alkalmazasuk a lehe-
t6 legkevesebb mértékben vezet hibas miikodésre. S6t, a szoftvercsomagok egymasra épiilése is
megadhatd, igy egy szoftver installaldsakor a sziikséges komponensek automatikusan telepithe-
tOk, illetve az opciondlis komponensek telepitésére felhivhatja a felhaszndlé figyelmét. Mindezek
miatt a csomagok szigori verziészdmozdassal vannak ellatva, és az installdlashoz csomagkezeldt
hasznédlunk, ami a fenti fiigg&ségeket ellendrzi és az installalas 6ta kiadott frissitéseket is nyomon
koveti.

1.3.1. Disztribicidék kozotti leggyakoribb kiilonbségek

A disztribicidkat legtobbszor az kiilonbozteti meg, hogy milyen célkézonségnek és milyen fel-
adatra készitik oket, igy mindenki megtaldlhatja a neki leginkabb megfelel6t. Léteznek olyanok,
melyek lehet6séget nyijtanak arra, hogy szinte az 6sszes konfiguralasi lehetdséget egy grafikus
feliileten végezziik el és vannak olyanok is, amelyek megkovetelik, hogy a felhasznalé mindent a
konfiguraciés allomanyok szerkesztésével allitson be a sajat izlésének megfeleléen. Egyes diszt-
ribicidk célja, hogy mindig a lehetd legfrissebb szoftvereket széllitsa, mig masok jol kitesztelt,
stabil, &m emiatt kissé elavult csomagokat széllitanak. A legtobb disztré adott kézonséget céloz
meg: profi vagy kezdd felhasznaldékat, adminisztratorokat, ,buherdtorokat”, kevés memoridval
rendelkez6 vagy csak CD-t tartalmazd gépeket stb. Néhany disztré a grafikus kdrnyezetet, mig
masok inkabb a karakteres konzolt tdmogatjdk.

Tovabbi fontos kiilonbség, hogy milyen csomagkezel6t haszndlnak az adott terjesztésben. A
konyvtarstruktira altaldban hasonlé médon van felépitve, viszont kisebb kiilonbségek adédhat-
nak e tekintetben is, extrém esetekben teljesen eltér6 felépitést is alkalmaznak a disztribitorok
(pl.: GoboLinux). A disztrék egyik 6 jellemzdje az egyes programcsomagok installdldsdnak,
eltavolitdsdnak és frissitésének megkonnyitése és tdmogatasa. A csomagkezel6k a rengeteg fel-
telepithet6 program karbantartasat, frissitését, telepitését, stb. teszik konnyebbé: példaul a
GNU/Debian 7 esetében kb. 37000 kiilonboz6 program koziil valogathatunk, igy szinte biztosan
megtaldljuk a felmeriilt feladataink megolddsahoz sziikséges szoftvereket e boséges vélasztékban.
Az egyes programok, csomagok pontos verzié szammal vannak ellatva, egy-egy program megfe-
lel6 miikodéséhez sziikség lehet méas programokra is, azaz fiiggéségei lehetnek. Ezen fiiggéségek
(lehetéleg automatikus) feltelepitését is a csomagkezel6k végzik.

Hardvertamogatds terén is addédhatnak kiilonbségek, viszont alapvetéen mind ugyanazt a
kernelt hasznaljak, igy elviekben ha egy disztribticié alatt egy hardver miikodik, akkor az bar-
mely maés, az adott architektirat tamogato disztribicié alatt is miikodésre birhaté. Vannak
céldisztribuciok is, példaul kifejezetten tiizfal vagy router tizemeltetésére. Megkiilonboztethetjiik
Oket az alapjén is, hogy server, desktop vagy embedded felhasznaldsra szanjak.

A disztrék nagy részének készitéi komolyan veszik a biztonsdgi problémékat, és az ismert
hibédk javitdsait rovid idon beliil elérhetévé teszik disztrojuk csomagfrissitési médszerének segit-
ségével.

Nagy eltérések vannak a disztrok kiaddsai kozott eltelt idOben; egyes disztrok fix ciklust
alkalmaznak (példdul 6 hénaponként egy 1j kiadds), mds disztrékndl nincs kotott kiadési ciklus.
Léteznek kereskedelmi terjesztések és vallalati és otthoni / kis irodai disztribucidk is.

Nem mindegyik disztré ugyanazt a kernel verziot hasznélja, tovabba sok disztré sajat igénye-
inek megfeleléen moédositja a hivatalosan kiadott, un. ,vanilla kernelt.”

A nagyobb és ismertebb disztribiicidk (a teljesség igénye nélkiil):

e UHU-Linux, magyar Linux-disztribtici6
e Debian GNU/Linux

e Ubuntu, Kubuntu, Xubuntu

e Mandriva

e Red Hat

e Fedora

e CentOS

e openSUSE

e Slackware

e Gentoo

e Arch Linux

e Knoppix, Damn Small Linux, Live CD-ként valé futtatdsra tervezve
e CrunchBang Linux

Egy kis érdekesség: http://futurist.se/gldt/wp-content /uploads/12.10/gldt1210.svg

2. Programok futtatasa

Nagyon fontos, hogy a jegyzet hatralévd részében szereplé parancsokat kiprébaljuk! Erre tobb
lehet6ségiink adddik:

e egy mar telepitett linux verzié hasznéalataval,

e a putty programmal belépiink valamely egyetemi szerverre (users, cortex) és ott dolgozunk

e cgy letoltott és futtatott live CD/DVD/pendrive haszndlataval
(pl.: http://live.debian.net)

e 1jj linux telepitésével (pl.: http://debian.org)

Bérmelyik médot is hasznaljuk, a belépés utan a kévetkez6(hoz hasonlé) promptot kell kapnunk
(ha grafikus feliiletet haszndlunk, a belépés utan el kell inditani a Terminal vagy xterm vagy
valamilyen hasonlé nevii alkalmazdst):

bercin@users:~$

Ez a prompt a parancsértelmezd [shell] kész allapotét jeloli, kezdhetjiik begépelni a parancsokat.
Mi a jegyzetben a bash parancsértelmezot targyaljuk. A legtobb Linux disztribicidéban, illetve
egyéb UNIX-okon is ezt a shellt (vagy ezzel az dltalunk targyaltak szempontjdbol tilnyomé
tobbségében kompatibilis valtozatot) hasznalnak.

Figyelem! A Linux (és a UNIX-ok) a kis- és nagybetiiket kiilonb6z6 betiiknek tekintik mind
a fajl- és konyvtdrnevek, mind a parancsok neveinek (sét, a parancsok paramétereinek) megads-
sakor. Kiilonosen tigyeljiink a helyes hasznélatra!

2.1. Paraméterek

Az echo program feladata, hogy kiirja a paraméterként atadott sztringeket:

bercin@users:~$ echo ABCD

ABCD

bercin@users:~$ echo EFGH IJKL MNO
EFGH IJKL MNO

bercin@users:~$

Itt tehat az echo a futtatott program, ami az els6 esetben egyetlen paramétert kap: ABCD,
mig a masodik esetben harom &tadott paraméter van, amik a kovetkezék: EFGH, IJKL, MNO. A
paramétereket a legtobb esetben székoz karakter valasztja el egymastol.

A parancsokrol b6vebb informéciét a man (manual - kézikényv) paranccsal lehet kérni. Példaul
az echo parancsrol igy:

bercin@users:~$ man echo

A man parancs paramétere annak a parancsnak a neve, aminek a kézikonyvét meg akarjuk je-
leniteni. A megjelenitett kézikonyvben a kurzormozgaté billentytikkel tudunk navigalni, és a q
billentytivel tudunk kilépni (quit).

A programok t6bbségének van man oldala, amiket a kés6bbiekben targyalt parancsok esetében
is érdemes megnézni, mert a jegyzetben a parancsok lehetéségeinek csak toredékét targyaljuk.
Magardl a parancsértelmezordl példaul a kovetkez6 médon lehet bévebb informaéciét szerezni:

bercin@users:~$ man bash

2.1.1. feladat. Hogyan lehet a man parancs kézikonyvét megnézni?

3. Konyvtarak és elérési utak

Minden futtatott program valamilyen kényvtarban fut, amit a program aktudlis kényvtdrénak
[(current) working directory] neveziink. Ez a shell esetében is {gy van. Az aktudlis konyvtérat
a cd (change directory) paranccsal valtoztathatjuk meg: paraméterként annak a konyvtdrnak a
nevét kell megadni, amibe be akarunk 1épni.

A konyvtarak fa strukturdban abrazolhatdk, azaz egy konyvtarban tobb mésik konyvtér
(vagy f4jl) lehet, amikben ismét lehetnek tjabb kényvtarak (vagy fajlok). Az viszont biztos,
hogy minden kényvtarnak egyetlen sziilé konyvtéra van. Azt az utvonalat (konyvtarak adott

sorrendjét), amellyel egy adott kényvtarhoz vagy fajlhoz eljuthatunk, a konyvtér vagy {4jl elérési
dtjdnak nevezziik. Az elérési utban a konyvtarakat / jel vélasztja el egymdstol.

Minden kényvtarban létezik a . konyvtdr, ami az aktudlis konyvtérat (azaz sajét magat), és
a .. nevl konyvtar, ami az adott kényvtar sziilé konyvtarat jeloli. Probaljuk ki:

bercin@users:~$ cd .
bercin@users:~$

Nem szabad meglep6dni, hogy nem tortént semmi, mert az aktualis konyvtarbol az aktualis
kényvtarba 1épni nyilvdn semmilyen valtozdst nem okozhat. Ugyanakkor a .. (azaz a sziild)
konyvtarba 1épés mar nem haszontalan:

bercin@users:~$ cd ..
bercin@users:/home$

Ennek a parancsnak az eredménye alapjan lathatéva vélt: a parancsértelmezo eddig is kiirta,
hogy éppen melyik konyvtarban vagyunk, csak erre eddig nem forditottunk figyelmet: most, a
dollérjel el6tti /home azt jelzi, hogy az aktudlis konyvtar a /home-ra valtozott. Az eddig ott
szerepld ~ (hulldmjel, tilde) révidités az alapértelmezett konyvtéarunkat jelezte. Linux (UNIX)
alatt alapértelmezett esetben a felhasznaléknak van egy konyvtara, ahova a felhasznald irdsi
joggal rendelkezik, és ebbe a konyvtarba keriil, amikor belép a szerverre. Ez a konyvtar a
/home/felhasznalénév (ahol felhaszndlénév a sajat felhaszndlénk neve) amit a felhaszndld
home konyvtdrénak [home directory] neveziink. A cd .. parancs tehdt a /home/felhasznalénév
konyvtarbol ennek sziilé konyvtardba, azaz a /home kényvtarba vitt, és a parancsértelmezo ezt
a valtozast jelezte a promptban.

Az aktuédlis kényvtar neve lekérdezhetd a pwd (print working directory) parancs segitségével:

bercin@users:/home$ pwd
/home
bercin@users:/home$ cd ..
bercin@users:/$ pwd

/

bercin@users:/$

A / nevil konyvtar a féjlrendszer gyokér konyvtarat jeloli, azaz azt a konyvtart, aminek a sziil§
konyvtara is sajat maga, igy ebbél a konyvtarbdl feljebb mar nem lehet 1épni:

bercin@users:/$ pwd
/

bercin@users:/$ cd ..
bercin@users:/$ pwd

/

bercin@users:/$

Ha az elérési ut / jellel kezdédik, akkor az elérési utat teljes elérési dtnak [full path] nevezziik.
A pwd parancs mindig az aktudlis konyvtar teljes elérési tutjat irja ki:

bercin@users:/$ pwd

/

bercin@users:/$ cd home
bercin@users:/home$ pwd

/home

bercin@users:/home$ cd bercin
bercin@users:~$ pwd
/home/bercin

bercin@users:~$

IFigyelem! A konyvtér elvalaszté jel Linuxban (és UNIX-ban) ,, jobbra d8l8” perjel, nem az, amit a Windows
haszndl (ahol ,balra d6l8” perjel valasztja el a konyvtarakat).

Ha az elérési it nem / jellel kezdddik, akkor is elérési utrél beszéliink, de ezt az elérési utat relativ
elérési dtnak [relative path] nevezziik. A relativ elérési it azt jelenti, hogy az elérési it nem a
gyokér konyvtartol, hanem az aktudlis konyvtartol indul.

bercin@users:~$ pwd

/home/bercin

bercin@users:~$ cd /usr
bercin@users:/usr$ pwd

/usr

bercin@users:/$ cd local/bin
bercin@users:/usr/local/bin$ pwd
/usr/local/bin
bercin@users:/usr/local/bin$

A paraméter nélkiili cd parancs visszavisz minket a home kényvtarunkba (barmi is az aktudlis
kényvtar):

bercin@users:/usr/local/bin$ pwd
/usr/local/bin
bercin@users:/usr/local/bin$ cd
bercin@users:~$ pwd

/home/bercin

bercin@users:~$

Uj konyvtarat az mkdir paranccsal hozhatunk létre, iires konyvtarat az rmdir paranccsal t6rol-
hetiink:

bercin@users:~$ mkdir teszt
bercin@users:~$ cd teszt
bercin@users:~/teszt$ pwd
/home/bercin/teszt
bercin@users:~/teszt$ cd ..
bercin@users:~$ rmdir teszt
bercin@users:~$

4. Kornyezeti valtozok

A programok szamara tobbféleképpen adhatok 4t adatok, aminek az egyik mddja az el6z6 pél-
dakban is lathaté parancssori paraméterként atadas. Egy masik médja a kornyezeti valtozékon
keresztiil torténik, amit a programok a futdsuk sordn lekérdezhetnek (és médosithatnak). A
kornyezeti valtozok a parancsértelmezobdl torténo kilépéssel torlédnek.

Egy kornyezeti valtozonak ugy lehet értéket adni, hogy a véltozo neve utan egy egyenléség
jelet majd a bedllitani kivant értéket irjuk. Példaul a PLD valtozénak az abcd értékiil adasa a
kovetkez6 médon torténik:

bercin@users:~$ PLD=abcd
bercin@users:~$

Az aktudlis értéket a valtozénév elé tett $ jellel lehet lekérdezni oly médon, hogy a parancssorban
szereplé $valtozoénév szoveget a shell a valtozénév nevil valtozd aktudlis értékére cseréli ki,
majd a parancssort Gjra értelmezi. Példaul az echo $PLD értelmezése a kovetkez6képpen torté-
nik: A shell elészor kicseréli a $PLD sztringet a PLD véltozd értékére (ami jelen esetben abcd),
igy eredményiil az echo abcd parancssort kapja, amit aztan tjra értelmez és végrehajt:

bercin@users:~$ echo $PLD
abcd
bercin@users:~$

Nagyon fontos ismételten hangsilyozni, hogy a shell végzi a $PLD sztring kicserélését a valtozd
tartalmara, nem pedig a futtatott program! A program mér csak a kicserélt sztringet kapja meg
paraméterként, mit sem sejtve arrdl, hogy az eredetileg mi volt: az el6z8 példdban az echo tehat
mér csak az abcd paramétert kapja meg (amit aztdn kiir).

A shellben térolt kornyezeti véltozdk listdjat aktualis értékeikkel egyiitt a set paranccsal
kaphatjuk meg.

4.1. Osszefiizés

Sziikségiink lehet arra, hogy egy kornyezeti véltozé aktudlis értéke elé és/vagy mogé egy mdsik
sztringet is beszurjunk. Irassuk ki két kornyezeti valtozo értékét egymashoz fiizve:

bercin@users:~$ ELEJE=abcd
bercin@users:~$ VEGE=efgh
bercin@users:~$ echo $ELEJE$VEGE
abcdefgh

bercin@users:~$

A sikeren felbuzdulva megprébalhatunk egy kornyezeti valtozé értékéhez kozvetleniil hozzafiizni
egy sztringet:

bercin@users:~$ echo $ELEJEefgh

bercin@users:~$ echo $ELEJE
abcd

bercin@users:~$ echo efgh
efgh

bercin@users:~$

Az utasitds azért nem miikodik (pontosabban miiksdik, csak nem azt az eredményt adja, amit
vartunk), mert a shell nem tudja, hogy mi az ELEJE kornyezeti véltozé értékét és a efgh sztringet
akartuk Osszeflizni, hanem az ELEJEefgh nevii kornyezeti valtozé értékét kérdezi le, ami iires.
A megoldés, hogy a {} karakterek kozé {rva a kornyezeti véaltozé nevét, a shell mar pontosan
meg fogja tudni hatarozni, hogy meddig tart a kornyezeti valtozé neve, és honnét kezdodik a
parancssor tobbi része:

bercin@users:~$ echo ${ELEJE}efgh
abcdefgh
bercin@users:~$

Természetesen ez a jelolésmod az el6z6 példakkal is hasznalhato:

bercin@users:~$ echo ${ELEJE}

abcd

bercin@users:~$ echo ${VEGE}

efgh

bercin@users:~$ echo ${ELEJE}${VEGE}
abcdefgh

bercin@users:~$

4.2. PATH

Maganak a parancsértelmezének is sziiksége van néhany bedllitasra a miikédéséhez, ilyen példaul
a PATH nevii kornyezeti valtozé, ami megadja, hogy melyik konyvtarakban kell keresni a begépelt
parancsokat. Irassuk ki a PATH véaltozé aktudlis értékét a fentebb ismertetett mdédon:

bercin@users:~$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/games
bercin@users:~$

Eredményiil teljes elérési utak kettOsponttal elvalasztott sorozatat kapjuk, ami azt mutatja,
hogy a begépelt parancsok keresése kizdrdlag mely konyvtarakban torténik. Esetiinkben ezek
a /usr/local/bin, /usr/bin, /bin és a /usr/games konyvtarak (ebben a sorrendben!). Ha a
begépelt parancsot ezen konyvtarak valamelyikében megtaldlja a parancsértelmezé, akkor azt
lefuttatja. Ha nincs ilyen f4jl, akkor hibajelzést ad:

bercin@users:~$ svnsjkvnasjlvn
-bash: svnsjkvnasjlvn: command not found
bercin@users:~$

A which paranccsal megtudhatjuk, hogy egy (létezd) program pontosan melyik, PATH-ban 16v6
konyvtarban taldlhaté. Példaul az echo program elérési utja:

bercin@users:~$ which echo
/bin/echo
bercin@users:~$

A which programot barmely mdsik programra meghivhatjuk, akér sajit magéra is (ekkor azt
fogja kifrni, hogy 6 maga hol taldlhato):

bercin@users:~$ which which
/usr/bin/which
bercin@users:~$

4.3. PS1

A PS1 kornyezeti véltozoval bedllithatjuk a parancsértelmezé promptjat. Miel6tt ezt megvaltoz-
tatnank, mentsiik el a régi értéket példaul a MENTES kornyezeti valtozoba:

bercin@users:~$ MENTES=$PS1
bercin@users:~$

A kornyezeti véltozé lekérdezését nyilvan nem csak az echo paranccsal hasznalhatjuk, hanem
barmelyik masik paranccsal is. Idézziik fel a kornyezeti valtozo értékének a lekérdezését: elészor
a shell kicseréli a $valtozoénév kifejezést a valtozonév értékére, majd az igy kapott sort ujra
értelmezi. Az el6z6 példaban tehdt a $PS1 helyére behelyettesitodott a PS1 értéke, amit aztan a
MENTES valtozénak adtunk értékiil.

A PS1 atéllitasa utan az 4j prompttal ugyanigy hasznédlhatjuk a parancsértelmezot, mint
eddig (ne lepddjiink meg, hogy furcsdn néz ki a sor, ugy gépeljiik be a parancsainkat, mintha az
el6z6ekben megszokott prompt lenne!):

bercin@users:~$ PS1=_ez_az_en_promptom_
_ez_az_en_promptom_echo szia

szia

_ez_az_en_promptom_which echo

/bin/echo

_ez_az_en_promptom_

Nézziik meg, hogyan allithatjuk vissza az eredeti allapotot:

_ez_az_en_promptom_PS1=$MENTES
bercin@users:~$

4.3.1. feladat. Mi a PS1 (vagy a MENTES) tartalma?

A PS1 beallitdsardl a kés6bbiekben lesz még sz6 bévebben.

4.4. LANG

A LANG kornyezeti véltozo bedllitasdval dtdllithatjuk a teriileti bedllitdsokat, igy példaul megval-
toztathatjuk a parancsok <al kiirt tizenetek nyelvét. Ertékiil a hasznalni kivant nyelv kétbetiis
kédjat kisbetilikkel és az orszag kétbetiis kodjat nagybetiikkel kell megadni, aldhtuzésjellel elvé-
lasztva:

bercin@users:~$ svnsjkvnasjlvn

-bash: svnsjkvnasjlvn: command not found
bercin@users:~$ LANG=hu_HU

bercin@users:~$ svnsjkvnasjlvn

-bash: svnsjkvnasjlvn: parancs nem taldlhaté
bercin@users:~$

Ha a magyarul kiirt hibaiizenetben az ékezetes betiik helyén kérddjel, vagy egyéb mas ,furcsa”
karakter szerepel, akkor a hu_HU helyett prébaljuk ki a hu_HU.UTF8 értéket. Az UTF-8 karak-
terkodolésrol a késébbiekben lesz részletesen szé.

4.4.1. feladat. Hogyan tudjuk a bedllitas el6tt elmenteni és az atéllitds utan az eredetire vissza-
allitani a LANG kornyezeti valtozot?

4.4.2. feladat. Hogyan tudjuk atdllitani a teriileti bedllitisokat a Németorszagban hasznalt
németre?

4.4.3. feladat. Hogyan tudjuk atéllitani a teriileti bedllitdsokat az USA (délnyugati részén
gyakran) haszndlt spanyolra?

5. Fajlok kezelése

Az 1s parancesal kilistdzhat6 az aktuélis konyvtdr tartalma (ha nem adunk meg paramétert)
vagy barmely més kényvtar tartalma (ha megadunk egy elérési utat):

bercin@users:~$ 1s

public_html teszt ZHk

bercin@users:~$ 1ls /bin

bash dd lessecho nisdomainname tar
bunzip2 daf lessfile pidof tempfile
bzcat dir lesskey ping touch
bzcmp dmesg lesspipe ping6 true
bzdiff dnsdomainname 1n ps umount
bzegrep domainname login pwd uname
bzexe echo 1s rbash uncompress
bzfgrep ed 1smod readlink vdir
bzgrep egrep mkdir rm which
bzip2 false mknod rmdir ypdomainname
bzip2recover fgrep mktemp rnano zcat
bzless fuser more run-parts zcmp
bzmore getfacl mount rzsh zdiff
cat grep mountpoint sed zegrep
chacl gunzip mt setfacl zfgrep
chgrp gzexe mt-gnu sh zforce
chmod gzip mv sh.distrib zgrep
chown hostname nano sleep zless

cp ip nc stty zmore
cpio kill nc.traditional su znew
dash ksh netcat sync zsh

date less netstat tailf zsh4d
bercin@users:~$

Ebben a példdban az aktudlis konyvtar elemeit (els6-mdsodik sor) és a /bin kényvtar elemeit
listdztuk ki (harmadik sortdl az utolséig).

Egy tdjonnan létrehozott konyvtér is tartalmazza a . és .. konyvtarakat, de ezeket az 1s
alapértelmezetten nem mutatja:

bercin@users:~$ mkdir teszt
bercin@users:~$ cd teszt
bercin@users:~/teszt$ 1s
bercin@users:~/teszt$

Linuxban (és UNIX-ban) a ponttal kezd8d6 konyvtérnevek és fajlnevek rejtettek, azaz az 1s
alapértelmezetten nem listdzza ki ezeket. Ha az ls parancsot a —a paraméterrel hivjuk meg,
akkor mar megmutatja a ponttal kezd6d6 konyvtarakat illetve dllomanyokat is:

bercin@users:~/teszt$ 1ls -a

bercin@users:~/teszt$
Természetesen a . és .. konyvtar minden kényvtarban megtaldlhatd, barmelyiket is listazzuk ki:

bercin@users:~/teszt$ cd
bercin@users:~$ 1s
public_html teszt ZHk
bercin@users:~$ 1s -a
.bash_history .bashrc .lesshst .profile .ssh ZHk
.bash_logout . gnupg .mc public_html teszt
bercin@users:~$

Jol lathato ezen a példan, hogy a . és .. konyvtarak mellett egy felhasznalé home konyvtara
altalaban sok mas, ponttal kezd6d6 fajlt is tartalmaz, amik az elézoek alapjan szintén rejtettek.

Linux (UNIX) esetében a felhasznélé édltal futtatott programok bedllitasait altaldban ponttal
kezd6dé fajlnevii allomanyban taroljuk. A programjaink config fajljai tehat azért a felhaszndld
home konyvtardban vannak, mert igy lehetové valik, hogy felhasznalonként mas és mas beallita-
sok legyenek. Sziikségszeri is itt tarolni a config dllomanyokat, hiszen ezek mashol nem biztos,
hogy tarolhaték, mert altalanos esetben a felhasznalénak csak a home konyvtaraban van irasi
joga.

Féjlokat mdsolni a cp (copy) parancesal lehet, aminek els§ paraméterként meg kell adni
azt az elérési utat, amit masolni szeretnénk, méasodik paraméterként pedig azt az elérési utat,
ahova masolni szeretnénk. Példaul a mar jol ismert echo programot mésoljuk a sajat home
konyvtarunkba masik_echo néven:

bercin@users:~$ cp /bin/echo masik_echo
bercin@users:~$ ls

masik_echo public_html teszt ZHk
bercin@users:~$

Hidba létezik az aktudlis konyvtarban a masik_echo fdjl, ha a megprobaljuk lefuttatni, hibajel-
zést kapunk:

bercin@users:~$ masik_echo
-bash: masik_echo: command not found
bercin@users:~$

Ennek magyarazata, hogy a shell kizardlag a PATH kornyezeti véltozéban felsorolt konyvtarakban
keres, és ezek kozott nem taldlhaté meg az aktudlis konyvtar:

bercin@users:~$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/games
bercin@users:~$

10

A problémét egyszeriien orvosolhatjuk: a parancsnév helyett adjuk meg a futtatand6 parancs

a megadott fajlt probalja meg futtatni. Elérési utként megadhatd teljes elérési tut:

bercin@users:~$ /home/bercin/masik_echo szia
szia
bercin@users:~$

Es megadhaté relativ elérési ut is:

bercin@users:~$./masik_echo szia
szia
bercin@users:~$

A shell tgy tudja megkiilonboztetni, hogy relativ elérési utat vagy elérési it nélkiili parancsnevet
adtunk meg, hogy ha a parancsban nincsen / karakter, akkor parancsnévrél van szé (és a PATH-
ban megadott konyvtarakban keresi a parancsot), de ha van benne / karakter, akkor elérési titrél
van sz6 (s6t, ha az elérési it / jellel kezd6dik, akkor abszolut elérési ut, azaz a gyokér konyvtdrtol
indul, ha nem / jellel kezdddik, akkor relativ, azaz az aktudlis konyvtért6l indul).

Pontosan azért volt tehat sziikség az el6z6 példdban a ./ szerepeltetésére, hogy a shell tudja,
elérési uttal megadott parancsot akarunk futtatni, és a . konyvtar megadasaval ez pontosan azt
jelenti, hogy az aktualis konyvtarban 1évé f4jlrél van szo.

Erre a problémaéra az el6z6 megoldason kiviil masik két megoldas is 1étezik: az egyik, hogy
az aktudlis konyvtdrat (tehdt a . konyvtdrat) is beillesztjitk a PATH listdba, a mésik, hogy 1ét-
rehozunk egy sajat konyvtarat a home konyvtarunkban, ahol a sajat futtathatd allomanyainkat
fogjuk tarolni. Az elsé megoldds biztonsdgi kockazatokat rejt (ezért nem is keres a shell az
aktudlis konyvtarban), igy vélasszuk a masodik megoldédst. Hivjuk ezt a konyvtérat bin-nek:

bercin@users:~$ mkdir bin

bercin@users:~$ PATH=$PATH:"/bin

bercin@users:~$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/games: /home/bercin/bin
bercin@users:~$

Létrehoztuk tehat a bin konyvtarat a home konyvtarunkban, majd a PATH kornyezeti valtozd
végéhez hozzafiiztiik ennek az djonnan létrehozott konyvtarnak az elérési utjat. Részletesebben
itt két csere is tortént: a $PATH:~/bin sztringet a shell értelmezte és a $PATH sztringet kicse-
rélte a PATH kornyezeti valtozd aktudlis értékére, majd a ~ jelet is kicserélte a felhaszndlé home
kényvtardnak elérési titjdra, {gy eredményiil (ebben az esetben) a

/usr/local/bin:/usr/bin:/bin:/usr/games: /home/bercin/bin
értéket kapta. A végrehajtasi fazisban tehat az tortét, mintha a
PATH=/usr/local/bin:/usr/bin:/bin:/usr/games:/home/bercin/bin

parancsot irtuk volna be, ezt bizonyitja a PATH kornyezeti valtozo értéke kifratdsdnak eredménye.
A feladat megolddsdhoz mar csak egy 1épés van hétra, az aktudlis konyvtarban 1évé masik_echo
fajlt at kell mozgatni a bin kényvtarba, amit a mv (move) parancs segitségével tehetiink meg:

bercin@users:~$ 1s
masik_echo public_html teszt ZHk
bercin@users:~$ 1s -a bin

bercin@users:~$ mv masik_echo bin

bercin@users:~$ 1ls -a bin
masik_echo

bercin@users:~$ 1s

bin public_html teszt ZHk

bercin@users:~$

11

Prébaljuk ki, hogy most mar miikddik-e a masik_echo program inditdsa, holott az nincs is az
aktualis konyvtarban:

bercin@users:~$ 1s

bin public_html teszt ZHk
bercin@users:~$ masik_echo szia
szia

bercin@users:~$

Az mv parancs az dtmozgatds mellett dtnevezésre is haszndlhaté: gondoljunk bele, ha dtmozgatok
egy fajlt az aktudlis konyvtarbol az aktudlis konyvtarba csak méasik néven, akkor valdjaban
atnevezést hajtottam végre. Emiatt nincs kiilon parancs atnevezésre a Linuxban (és a UNIX-
okban).

Ha a cp vagy mv parancsnak mdsodik paraméterként (tehét a cél elérési titként) konyvtarat
adunk meg, akkor abba a konyvtarba ugyanolyan néven fog mdsolédni (cp esetében) illetve
atmozgatédni (mv esetében) a forrasként megadott f4jl. Természetesen tobb f4jlt is masolhatunk
egy paranccsal, ha felsoroljuk az 6sszes mésolandd fajlt, majd az utolsé paraméterként megadjuk
azt a konyvtarat, ahova azokat masolni szeretnénk. Ekkor az utolsé paraméter csak konyvtar
lehet!

bercin@users:~$ 1s bin

masik_echo

bercin@users:~$ cp /bin/mv /bin/cp /bin/mkdir /bin/rmdir bin
bercin@users:~$ 1s bin

cp masik_echo mkdir mv rmdir

bercin@users:~$

Féjlok torlésére az rm parancs szolgédl, paraméterekként meg kell adni a toérlendd fajlok elérési
utjait. Példaul az imént a bin konyvtarba mésolt alloményok koziil néhany torlése:

bercin@users:~$ 1s bin

cp masik_echo mkdir mv rmdir
bercin@users:~$ rm bin/mv bin/mkdir bin/cp
bercin@users:~$ 1s bin

masik_echo rmdir

bercin@users:~$

Természetesen ha egy konyvtar Osszes fajljat torolni szeretnénk, nem kell azokat egyesével felso-
rolni, hanem megadhatjuk a konyvtarnevet is az rm parancsnak:

bercin@users:~$ rm bin
rm: cannot remove ‘bin’: Is a directory
bercin@users:~$

Mivel alapértelmezetten az rm parancs fajlok torlésére szolgél, kiilon paraméter megadasa sziik-
séges, hogy konyvtarat toroljiink: -r (rekurziv torlés)

bercin@users:~$ rm -r bin
bercin@users:~$

Figyelem! Linuxban (és UNIX-ban) a torlés dltaldban visszafordithatatlan miivelet! Nincs
»Trash” vagy ,,Kuka”, amibe ideiglenesen atkeriilnek a torolt dlloményok! Az rm parancs ki-
adasakor azok azonnal torlédnek.

5.1. Mintaillesztés

A shell nem csak a kornyezeti valtozdk értékének lekérdezésére haszndlt $ jelet értelmezi spe-
cidlisan, hanem lehetdség van a féjlok neveinek mintaillesztésére, azaz a 1étez6 fajlnevek koziil
adott mintdnak megfelel6k kivélasztasara. A shell altal erre a célra hasznélt specidlis karakterek
és jelentéseik az 1. tablazatban lathatdak.

12

illeszt6 karakter ‘ karakterek, amelyek megfelelnek a mintanak

*

barmely karakter akarhdnyszor (nulla alkalommal is!)

? barmely karakter pontosan egy alkalommal

[karakterek]

karakterek koziil barmelyik pontosan egy alkalommal

1. tdbldzat. A shell mintailleszt® karakterei

A mintaillesztést a /bin konyvtarban fogjuk szemléltetni. Alljon itt egy lista a benne talalhaté
fajlokrél annak érdekében, hogy a lentebbi példdkat a szerverre valé belépés nélkiil is meg lehessen

érteni.

bercin@users:~$ cd /bin
bercin@users:/bin$ 1s

bash
bunzip2
bzcat
bzcmp
bzdiff
bzegrep
bzexe
bzfgrep
bzgrep
bzip2
bzip2recover
bzless
bzmore
cat
chacl
chgrp
chmod
chown
cp

cpio
dash
date

dd

df

dir
dmesg
dnsdomainname
domainname
echo

ed
egrep
false
fgrep
fuser
getfacl
grep
gunzip
gzexe
gzip
hostname
ip

kill

ksh

less

bercin@users:/bin$

lessecho
lessfile
lesskey
lesspipe
1n

login

1s

1smod
mkdir
mknod
mktemp
more
mount
mountpoint
mt
mt-gnu
mv

nano

nc
nc.traditional
netcat
netstat

[rassuk ki a ¢ karakterrel kezd6d6 fajlokat:

bercin@users:/bin$ 1ls c*

cat chacl

chgrp

chmod

bercin@users:/bin$

chown cp

cpio

nisdomainname
pidof
ping
ping6

ps

pwd
rbash
readlink
rm

rmdir
rnano
run-parts
rzsh

sed
setfacl
sh
sh.distrib
sleep
stty

su

sync
tailf

tar
tempfile
touch
true
umount
uname
uncompress
vdir
which
ypdomainname
zcat
zcmp
zdiff
zegrep
zfgrep
zforce
zgrep
zless
zmore
znew

zsh

zsh4

A cx mintdnak tehat megfelel minden olyan fajl, ami c karakterrel kezdédik és utdna barmely
karakterbol barhany szerepel. A * karakter azonban nem csak a minta végén lehet, s6t, nem csak
egy szerepelhet bel6le egy mintdban:

bercin@users:/bin$ 1ls *1x

bzless getfacl 1lessecho 1lesspipe 1s readlink tailf
chacl kill lessfile 1n 1smod setfacl tempfile
false 1less lesskey login nc.traditional sleep zless

bercin@users:/bin$

A *1x mintdnak megfelel az Osszes olyan fajl, amiben legaldbb egy 1 betii szerepel. Hasonléan
egyszeri kilistazni azokat a fajlokat, amelyekben legalabb egy 1 és utdna legaldabb egy s betil

szerepel:

bercin@users:/bin$ 1s

*1 kg%

13

bzless less lessfile lesspipe 1smod
false lessecho 1lesskey 1s zless
bercin@users:/bin$

Figyelem! A karakterek sorrendje fontos! Az el6z6 minta nem ugyanaz, mint a *s*1x*:

bercin@users:/bin$ 1ls *s*x1x*
lessfile setfacl sleep
bercin@users:/bin$

5.1.1. példa. Listazzuk ki azokat a fajlokat, amelyek masodik karaktere e:

bercin@users:/bin$ 1ls Tex

getfacl lessecho 1lesskey netcat readlink setfacl =zegrep
less lessfile lesspipe mnetstat sed tempfile
bercin@users:/bin$

5.1.2. példa. Listazzuk ki azokat a fajlokat, amelyek masodik karaktere e és a hatodik karaktere
c

bercin@users:/bin$ 1ls 7e?77cx*
getfacl 1lessecho setfacl
bercin@users:/bin$

5.1.3. példa. Listazzuk ki azokat a fdjlokat, amelyek pontosan harom karakterbdl allnak:

bercin@users:/bin$ 1ls 777
cat dir ksh pwd sed tar zsh
bercin@users:/bin$

5.1.4. példa. Listazzuk ki azokat a fajlokat, amelyek az abcd karakterek koziil valamelyikkel
kezdodnek és utolsé karakteriik e:

bercin@users:/bin$ 1ls [acbd]*e
bzexe bzmore date dnsdomainname domainname
bercin@users:/bin$

A mintaillesztés természetesen nem csak a fdjlok kilistdzdsdnal, hanem mésoldsndl (cp), dtmoz-
gatdsnal (mv), torlésnél (rm) is hasznos, s6t — mivel a behelyettesitést a shell végzi — barmely més
program is felhasznélhatja ezt a funkcidt, ha fijlok neveit varja paraméterként.

5.2. Egyéb specidlis karakterek

Eddig elhallgattuk, de a szemfiiles olvasé mdar taldlkozhatott azzal a problémaval, hogy (pél-
ddul konyvtar létrehozdsindl) a fentiek alapjdn nem tud székoéz karaktert tartalmazé nevet
hasznalni, hiszen a szokoz karakter paraméter elvalaszté karakter, igy ha megprobalunk egy
Kedves Hallgatok nevil konyvtarat létrehozni, akkor azt két kiilon konyvtarként fogja a shell
létrehozni:

bercin@users:~$ mkdir Kedves Hallgatok
bercin@users:~$ 1ls

bin Hallgatok Kedves public_html teszt ZHk
bercin@users:~$

Hasonl6 a probléma a mintailleszt6 karakterek hasznélatdval is:

bercin@users:~$ mkdir *x*xKkkk

mkdir: cannot create directory ‘Kedves’: File exists
bercin@users:~$ ls

bin Hallgatok Kedves public_html teszt ZHk
bercin@users:~$

14

A hibaiizenet magyarédzata, hogy a shell a ***K*x** mintdt behelyettesiti az aktualis konyvtarban
taldlhaté Kedves fajlnévvel (ez létezé név, hiszen éppen az el6bb hoztuk létre ezt a konyvtérat),
igy az mkdir parancs a Kedves paramétert kapja, ami nyilvan hibahoz vezet, hiszen nem hozhaté
létre egy mar meglévé névvel 1j konyvtar.

A problémét gy orvosolhatjuk, hogy a specidlis karakterek specidlis jelentését kikapcsoljuk,
azaz a kikapcsolds utan a karakterek mar 6nmagukat jelentik: a $ karaktert nem prébélja meg a
shell véltozo értékére cserélni, a mintailleszté karaktereket nem prébélja meg féjlnevekre illeszte-
ni, stb. A specidlis jelentés kikapcsolasdra a \ karakter hasznalandé. Figyelem! Itt ,balra dolg”
perjelrdl van szo, nem a konyvtarakat elvalaszto ,, jobbra dél6” perjelrol!

Egy szokozt tartalmazé konyvtar 1étrehozasara hasznalhaté tehat a kdvetkezd mddszer:

bercin@users:~$ mkdir Ez\ itt\ egy\ teljes\ mondat

bercin@users:~$ ls

bin Ez itt egy teljes mondat Hallgatok Kedves public_html teszt ZHk
bercin@users:~$

Egy kicsit problémés minden specialis karakter elé beszirni a \ jelet, de ez a probléma is meg
van oldva: ha tobb karakter specidlis jelentését akarjuk kikapcsolni, akkor a sztringet ’ jelek kozé
kell tenni:

bercin@users:~$ mkdir ’Ez itt egy masik hosszu nevu konyvtar’
bercin@users:~$ ls

bin Hallgatok teszt
Ez itt egy masik hosszu nevu konyvtar Kedves ZHk
Ez itt egy teljes mondat public_html

bercin@users:~$

Néha azonban mégis sziikség lenne arra, hogy kornyezeti valtozokat is tudjunk idézojelek kozott
megadott sztringekben szerepeltetni:

bercin@users:~$ szamlaszam=123456789
bercin@users:~$ mkdir ’A bankszamlam szama: $szamlaszam’
bercin@users:~$ 1s

A bankszamlam szama: $szamlaszam Ez itt egy teljes mondat public_html
bin Hallgatok teszt
Ez itt egy masik hosszu nevu konyvtar Kedves ZHk

bercin@users:~$

A koényvtarnévben nem helyettesitédott be a szamlaszam koérnyezeti valtozé értéke. Megoldds:
ha a sztinget " jelek kozé tessziik, akkor a shell a $ értelmezését tovabbra is meg fogja tenni:

bercin@users:~$ mkdir "A bankszamlam szama: $szamlaszam"
bercin@users:~$ 1s

A bankszamlam szama: 123456789 Ez itt egy teljes mondat teszt
A bankszamlam szama: $szamlaszam Hallgatok ZHk
bin Kedves

Ez itt egy masik hosszu nevu konyvtar public_html
bercin@users:~$

Természetesen magénak a kornyezeti véltozénak is adhaté a fenti médon székozt (vagy egyéb
mas specidlis karaktert) tartalmazé érték:

bercin@users:~$ telefonszam="+36 12 345 6789"
bercin@users:~$ mkdir "A telefonszamom: $telefonszam"
bercin@users:~$ 1s

A bankszamlam szama: 123456789 Hallgatok
A bankszamlam szama: $szamlaszam Kedves

A telefonszamom: +36 12 345 6789 public_html
bin teszt

15

Ez itt egy masik hosszu nevu konyvtar ZHk
Ez itt egy teljes mondat
bercin@users:~$

A promptot most mar atallithatjuk uigy, hogy az sokkal szebben nézzen ki, mint az elsé példdban
(lasd a 4.3. részt):

bercin@users:~$ PS1="Ez az en promptom: "
Ez az en promptom: echo szia

szia

Ez az en promptom: 1ls

A bankszamlam szama: 123456789 Hallgatok
A bankszamlam szama: $szamlaszam Kedves

A telefonszamom: +36 12 345 6789 public_html
bin teszt

Ez itt egy masik hosszu nevu konyvtar ZHk
Ez itt egy teljes mondat
Ez az en promptom:

A prompt beéllitasakor hasznalhatunk specidlis értékeket is, amiket a shell értelmezni fog, és a
megfelel6 értékre cserél. Ezek koziil a leggyakrabban hasznaltak a 2. tdblazatban lathatoak.

specialis karakter \ karakterek, amelyek megfelelnek a mintanak

\u felhasznalonév

\h a gép neve, amire be vagyunk jelentkezve

\H a gép teljes neve, amire be vagyunk jelentkezve

\w az aktudlis konyvtar teljes elérési uttal

\W az aktudlis konyvtar elérési itjanak utolsé eleme

\$ egyszeru felhasznal6 esetében $ jel, rendszergazda esetében # jel

2. tablazat. Prompt bedllitasahoz hasznélhato legfontosabb specialis karakterek

Ahogy a tablazatbdl latszik, a \ karakter egyes esetekben specidlis értelmezésti karakterek
specidlis értelmezésének kikapcsolasara, méas esetekben normaél értelmezésti karakterek specidlis
értelmezésének bekapcsolasara szolgal. Figyelem! A tabldzatban szerepl karakterek a prompt
bedllitasdban értelmezettek csak a tédbldzat szerint!

5.2.1. példa. A prompt
felhaszndlé: <felhaszndlé> gép: <gép> konyvtar: <kdnyvtar> $
-ra torténo beallitdsa a kovetkez6 mddon végezheto el:

bercin@users:~$ PS1="felhaszndlé: \u gép: \h konyvtar: \w § "

felhaszndlé: bercin gép: www-users kdnyvtar: ~ $ echo szia
szia
felhaszndlé: bercin gép: www-users konyvtar: ~ §

6. Atirényl'tés

Linuxban (UNIX-ban) minden elinditott programnak az induldskor hérom kiilonb6z6 ki-bemeneti
(I/0) csatorngja létezik: a 0 szdmmal, a C nyelvben stdin-nel, a C++ nyelvben cin-nel jelslt
sztenderd bemenet, az 1 szammal, a C nyelvben stdout-tal, a C++ nyelvben cout-tal jelolt szten-
derd kimenet és a 2 szammal, a C nyelvben stderr-rel, a C++4 nyelvben cerr-rel jelolt hiba
kimenet. Ezeket a csatorndkat at lehet irdnyitani. A sztenderd kimenetet dtirdnyithatjuk egy
fajlba a parancs utdn > jelet végiil a f4jl nevét megadva:

16

bercin@users:~$ 1s /bin/cx*

/bin/cat /bin/chgrp /bin/chown /bin/cpio
/bin/chacl /bin/chmod /bin/cp
bercin@users:~$ 1s /bin/c* > kimenet
bercin@users:~$

A > specidlis karakter az 1ls parancs kimenetét a kimenet fijlba irdnyitotta &t (létrehozva a
f&jlt, ha az addig nem létezett), emiatt nem latszik a parancs eredménye a képernyén. Egy f4jl
tartalmat a cat paranccsal frathatjuk ki. Irassuk ki a kimenet fajl tartalmat:

bercin@users:~$ cat kimenet
/bin/cat

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cp

/bin/cpio

bercin@users:~$

Egy parancs nem csak a sztenderd kimenetére irhat ki iizeneteket, hanem a hiba kimenetén is
megjelenithet szoveget: ehhez a kovetkezo példaban a c-vel kezd6dé fajlokat és a asadadads nevii
fajlt is megprobaljuk kilistazni, de az utobbi nem létezik:

bercin@users:~$ ls asadadads /bin/c*

1s: cannot access asadadads: No such file or directory
/bin/cat /bin/chgrp /bin/chown /bin/cpio
/bin/chacl /bin/chmod /bin/cp

bercin@users:~$

A hiba kimenet atiranyitasara a 2> karaktereket kell hasznalnunk:

bercin@users:~$ 1s asadadads /bin/c* 2> kimenet
/bin/cat /bin/chgrp /bin/chown /bin/cpio
/bin/chacl /bin/chmod /bin/cp

bercin@users:~$ cat kimenet

1s: cannot access asadadads: No such file or directory
bercin@users:~$

Jol ldthato, hogy a sztenderd kimenet (4tirdnyitds hidnydban) tovabbra is megjelent a képernyén,
de a hibaiizenetet mar a fijlban taroltuk el. Ha mind a hiba, mind a sztenderd kimenetet at
akarjuk iranyitani, akkor az el6z6ek természetesen egymds utdn is alkalmazhatok:

bercin@users:~$ 1ls asadadads /bin/c* > kimenet.sima 2> kimenet.hiba
bercin@users:~$ cat kimenet.sima

/bin/cat

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cp

/bin/cpio

bercin@users:~$ cat kimenet.hiba

1s: cannot access asadadads: No such file or directory
bercin@users:~$

Ha a két kimenetet ugyanabba a fajlba akarjuk atirdanyitani akkor arra a kovetkezé modszert kell
hasznalni:

17

bercin@users:~$ 1ls asadadads /bin/c* > kimenet 2>&1
bercin@users:~$ cat kimenet

1s: cannot access asadadads: No such file or directory
/bin/cat

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cp

/bin/cpio

bercin@users:~$

A 2>&1 azt jelenti, hogy a sztenderd error kimenetet (2) ugyanoda akarjuk dtirdanyitani, ahova a
sztenderd kimenet (1) aktuélisan irdnyitva van a feldolgozds pillanatdban.

6.0.1. feladat. Mi a kiilonbség az alabbiak k6zott?
parancs 2>&1 > fajlnev

parancs > fajlnev 2>&1

Prébéljuk ki, és értelmezziik az eredményt!

Az el6z6ekben a kimenetet dgy irdnyitottuk at, hogy ha a fijl nem létezett, akkor azt a
shell 1étrehozta, ha létezett, akkor torolte annak tartalmét, és ezutan irta bele az atirdnyitas
eredményét. Ha arra van sziikségiink, hogy a fajl tartalmét ne to6rolje, hanem a mar meglévo fajl
végéhez irja hozza az atirdnyitas tartalmat, akkor a >> karaktereket kell hasznalni:

bercin@users:~$ ls /bin/cp* > kimenet
bercin@users:~$ cat kimenet

/bin/cp

/bin/cpio

bercin@users:~$ 1s /bin/ch* > kimenet
bercin@users:~$ cat kimenet
/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

bercin@users:~$ 1s /bin/cax >> kimenet
bercin@users:~$ cat kimenet
/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cat

bercin@users:~$

18

	1 Egy kis történelem
	1.1 A kezdetek
	1.2 A GNU projekt
	1.3 A Linux

	2 Programok futtatása
	2.1 Paraméterek

	3 Könyvtárak és elérési utak
	4 Környezeti változók
	4.1 Összefűzés
	4.2 PATH
	4.3 PS1
	4.4 LANG

	5 Fájlok kezelése
	5.1 Mintaillesztés
	5.2 Egyéb speciális karakterek

	6 Átirányítás

