
Linux bevezető

(jegyzet)

Bérci Norbert, Uhlár László

2015. szeptember 24-i óra anyaga

Tartalomjegyzék

1. Egy kis történelem 1

1.1. A kezdetek . 1
1.2. A GNU projekt . 2
1.3. A Linux . 2

2. Programok futtatása 3

2.1. Paraméterek . 4

3. Könyvtárak és elérési utak 4

4. Környezeti változók 6

4.1. Összefűzés . 7
4.2. PATH . 7
4.3. PS1 . 8
4.4. LANG . 9

5. Fájlok kezelése 9

5.1. Mintaillesztés . 12
5.2. Egyéb speciális karakterek . 14

6. Átiránýıtás 16

1. Egy kis történelem

1.1. A kezdetek

A számı́tógépek az ötvenes évektől a nyolcvanas évek elejéig a kutatók eszközei voltak és a
tömegek elől gyakorlatilag el voltak zárva. Több kutató használt egy nagy gépet, a fejlesztéseiket
megosztották egymással, igazi kis közösségek jöttek ı́gy létre. A kor egyik legendás gépe volt
a PDP10-es, ezen az ITS nevű operációs rendszer futott, aminek továbbfejlesztésén dolgozott
Richard Stallman is (lásd később). A PDP10 fejlesztését azonban a gyártója a nyolcvanas évekre
abbahagyta, az intézeteknek újabb gépek után kellett nézniük. Ezek már más operációs rendszert
futtattak, melyek nem voltak szabadok, már ahhoz is titoktartási szerződést kellett alá́ırniuk, ha
egy futtatható másolatot akartak. Azaz tilos lett egymásnak seǵıteni, az eddig együttműködő
közösségek felbomlottak, nem oszthatták meg egymással fejlesztéseiket.

0Revision : 62 Date : 2014− 09− 2011 : 32 : 02 + 0200(Sat, 20Sep2014)

1

1.2. A GNU projekt

Richard Stallman ezt az új helyzetet nem tudta elfogadni, elhatározta egy új, teljesen nýılt
operációs rendszernek a meǵırását: 1983 táján létrehozta a GNU projektet, hogy terveit megva-
lóśıtsa. (A GNU jelentése: GNU is not UNIX). Ekkor fogalmazta meg a GNU kiáltványt (melyet
teljes terjedelmében például a http://gnu.hu oldalon olvashatunk el) és a szabad szoftverekkel
kapcsolatos alapelveit:

• a program szabadon használható bármilyen célra,

• a programot bárki szabadon módośıthatja igényei szerint,

• a programot bárki továbbadhatja akár ingyen akár pénzért,

• a program módośıtott verzióinak meg kell felelnie ugyanezen feltételeknek.

Ezen elvek jogilag is megfelelő formába öntésének eredményeképpen jött létre egy különleges
licenc, a GPL (General Public Licence) (teljes szövege magyarul szintén a http://gnu.hu oldalon
olvasható) és a szabad szoftvereket támogató alaṕıtvány, az FSF (Free Software Foundation) is.
Ez utóbbi céljáról, működéséről részletesebb léırás olvasható többek között az fsf.hu oldalon.

A GNU projekt keretében számos programot kifejlesztettek, már csak egy valami hiányzott:
egy olyan kernel (az operációs rendszer magja), melyen futtatni lehetne ezeket.

1.3. A Linux

1991-ben egy finn egyetemista, Linus Torvalds épp egy új projekten kezdett el dolgozni: egy új,
szabad operációs rendszeren, melyben ki akarta jav́ıtani az oktatásra akkoriban előszeretettel
használt MINIX operációs rendszer hibáit, hiányosságait. Azaz adott volt egy kernel (Linus
munkája) alkalmazások nélkül és adott volt egy alkalmazás gyűjtemény (GNU) kernel nélkül.
Nem kellett sok idő ahhoz, hogy egymásra találjanak, ı́gy született meg a Linux, aminek az
előzőek miatt a legpontosabb elnevezése: GNU/Linux. Ma már a GNU programokon ḱıvül más
projektből, más licenceléssel terjesztett szoftverek is tartoz(hat)nak egy disztribúcióhoz, ı́gy ma
a Linux alatt a teljes operációs rendszert értjük. Pár év, és megjelentek az első disztribúciók:
a kernel és a rengeteg GNU alkalmazás közül néhány összeéṕıtve egy jól használható rendszerré
(pl.: Debian: 1993. augusztus 16.).

Egy Linux disztribúció alatt tehát egy gondosan összeválogatott, rendszermagból, felhasználói-
és rendszerszintű programokból álló, szerteágazó vagy specifikus felhasználásra alkalmas operáci-
ós rendszert értünk. Egy-egy nagyobb disztribúcióban olyan sok program található, hogy nagyon
ritkán van szükség külső forrásból származó programok teleṕıtésére. Ennek az az előnye, hogy
a szoftverkomponensek egymáshoz alaḱıthatók, az együttes installálásuk és alkalmazásuk a lehe-
tő legkevesebb mértékben vezet hibás működésre. Sőt, a szoftvercsomagok egymásra épülése is
megadható, ı́gy egy szoftver installálásakor a szükséges komponensek automatikusan teleṕıthe-
tők, illetve az opcionális komponensek teleṕıtésére felh́ıvhatja a felhasználó figyelmét. Mindezek
miatt a csomagok szigorú verziószámozással vannak ellátva, és az installáláshoz csomagkezelőt
használunk, ami a fenti függőségeket ellenőrzi és az installálás óta kiadott frisśıtéseket is nyomon
követi.

1.3.1. Disztribúciók közötti leggyakoribb különbségek

A disztribúciókat legtöbbször az különbözteti meg, hogy milyen célközönségnek és milyen fel-
adatra késźıtik őket, ı́gy mindenki megtalálhatja a neki leginkább megfelelőt. Léteznek olyanok,
melyek lehetőséget nyújtanak arra, hogy szinte az összes konfigurálási lehetőséget egy grafikus
felületen végezzük el és vannak olyanok is, amelyek megkövetelik, hogy a felhasználó mindent a
konfigurációs állományok szerkesztésével álĺıtson be a saját ı́zlésének megfelelően. Egyes diszt-
ribúciók célja, hogy mindig a lehető legfrissebb szoftvereket szálĺıtsa, mı́g mások jól kitesztelt,
stabil, ám emiatt kissé elavult csomagokat szálĺıtanak. A legtöbb disztró adott közönséget céloz
meg: profi vagy kezdő felhasználókat, adminisztrátorokat,

”
buherátorokat”, kevés memóriával

rendelkező vagy csak CD-t tartalmazó gépeket stb. Néhány disztró a grafikus környezetet, mı́g
mások inkább a karakteres konzolt támogatják.

2

További fontos különbség, hogy milyen csomagkezelőt használnak az adott terjesztésben. A
könyvtárstruktúra általában hasonló módon van feléṕıtve, viszont kisebb különbségek adódhat-
nak e tekintetben is, extrém esetekben teljesen eltérő feléṕıtést is alkalmaznak a disztribútorok
(pl.: GoboLinux). A disztrók egyik fő jellemzője az egyes programcsomagok installálásának,
eltávoĺıtásának és frisśıtésének megkönnýıtése és támogatása. A csomagkezelők a rengeteg fel-
teleṕıthető program karbantartását, frisśıtését, teleṕıtését, stb. teszik könnyebbé: például a
GNU/Debian 7 esetében kb. 37000 különböző program közül válogathatunk, ı́gy szinte biztosan
megtaláljuk a felmerült feladataink megoldásához szükséges szoftvereket e bőséges választékban.
Az egyes programok, csomagok pontos verzió számmal vannak ellátva, egy-egy program megfe-
lelő működéséhez szükség lehet más programokra is, azaz függőségei lehetnek. Ezen függőségek
(lehetőleg automatikus) felteleṕıtését is a csomagkezelők végzik.

Hardvertámogatás terén is adódhatnak különbségek, viszont alapvetően mind ugyanazt a
kernelt használják, ı́gy elviekben ha egy disztribúció alatt egy hardver működik, akkor az bár-
mely más, az adott architektúrát támogató disztribúció alatt is működésre b́ırható. Vannak
céldisztribúciók is, például kifejezetten tűzfal vagy router üzemeltetésére. Megkülönböztethetjük
őket az alapján is, hogy server, desktop vagy embedded felhasználásra szánják.

A disztrók nagy részének késźıtői komolyan veszik a biztonsági problémákat, és az ismert
hibák jav́ıtásait rövid időn belül elérhetővé teszik disztrójuk csomagfrisśıtési módszerének seǵıt-
ségével.

Nagy eltérések vannak a disztrók kiadásai között eltelt időben; egyes disztrók fix ciklust
alkalmaznak (például 6 hónaponként egy új kiadás), más disztróknál nincs kötött kiadási ciklus.
Léteznek kereskedelmi terjesztések és vállalati és otthoni / kis irodai disztribúciók is.

Nem mindegyik disztró ugyanazt a kernel verziót használja, továbbá sok disztró saját igénye-
inek megfelelően módośıtja a hivatalosan kiadott, ún.

”
vanilla kernelt.”

A nagyobb és ismertebb disztribúciók (a teljesség igénye nélkül):

• UHU-Linux, magyar Linux-disztribúció

• Debian GNU/Linux

• Ubuntu, Kubuntu, Xubuntu

• Mandriva

• Red Hat

• Fedora

• CentOS

• openSUSE

• Slackware

• Gentoo

• Arch Linux

• Knoppix, Damn Small Linux, Live CD-ként való futtatásra tervezve

• CrunchBang Linux

Egy kis érdekesség: http://futurist.se/gldt/wp-content/uploads/12.10/gldt1210.svg

2. Programok futtatása

Nagyon fontos, hogy a jegyzet hátralévő részében szereplő parancsokat kipróbáljuk! Erre több
lehetőségünk adódik:

• egy már teleṕıtett linux verzió használatával,

3

• a putty programmal belépünk valamely egyetemi szerverre (users, cortex) és ott dolgozunk

• egy letöltött és futtatott live CD/DVD/pendrive használatával
(pl.: http://live.debian.net)

• új linux teleṕıtésével (pl.: http://debian.org)

Bármelyik módot is használjuk, a belépés után a következő(höz hasonló) promptot kell kapnunk
(ha grafikus felületet használunk, a belépés után el kell ind́ıtani a Terminal vagy xterm vagy
valamilyen hasonló nevű alkalmazást):

bercin@users:~$

Ez a prompt a parancsértelmező [shell] kész állapotát jelöli, kezdhetjük begépelni a parancsokat.
Mi a jegyzetben a bash parancsértelmezőt tárgyaljuk. A legtöbb Linux disztribúcióban, illetve
egyéb UNIX-okon is ezt a shellt (vagy ezzel az általunk tárgyaltak szempontjából túlnyomó
többségében kompatibilis változatot) használnak.

Figyelem! A Linux (és a UNIX-ok) a kis- és nagybetűket különböző betűknek tekintik mind
a fájl- és könyvtárnevek, mind a parancsok neveinek (sőt, a parancsok paramétereinek) megadá-
sakor. Különösen ügyeljünk a helyes használatra!

2.1. Paraméterek

Az echo program feladata, hogy kíırja a paraméterként átadott sztringeket:

bercin@users:~$ echo ABCD

ABCD

bercin@users:~$ echo EFGH IJKL MNO

EFGH IJKL MNO

bercin@users:~$

Itt tehát az echo a futtatott program, ami az első esetben egyetlen paramétert kap: ABCD,
mı́g a második esetben három átadott paraméter van, amik a következők: EFGH, IJKL, MNO. A
paramétereket a legtöbb esetben szóköz karakter választja el egymástól.

A parancsokról bővebb információt a man (manual - kézikönyv) paranccsal lehet kérni. Például
az echo parancsról ı́gy:

bercin@users:~$ man echo

A man parancs paramétere annak a parancsnak a neve, aminek a kézikönyvét meg akarjuk je-
leńıteni. A megjeleńıtett kézikönyvben a kurzormozgató billentyűkkel tudunk navigálni, és a q

billentyűvel tudunk kilépni (quit).
A programok többségének van man oldala, amiket a későbbiekben tárgyalt parancsok esetében

is érdemes megnézni, mert a jegyzetben a parancsok lehetőségeinek csak töredékét tárgyaljuk.
Magáról a parancsértelmezőről például a következő módon lehet bővebb információt szerezni:

bercin@users:~$ man bash

2.1.1. feladat. Hogyan lehet a man parancs kézikönyvét megnézni?

3. Könyvtárak és elérési utak

Minden futtatott program valamilyen könyvtárban fut, amit a program aktuális könyvtár ának
[(current) working directory] nevezünk. Ez a shell esetében is ı́gy van. Az aktuális könyvtárat
a cd (change directory) paranccsal változtathatjuk meg: paraméterként annak a könyvtárnak a
nevét kell megadni, amibe be akarunk lépni.

A könyvtárak fa struktúrában ábrázolhatók, azaz egy könyvtárban több másik könyvtár
(vagy fájl) lehet, amikben ismét lehetnek újabb könyvtárak (vagy fájlok). Az viszont biztos,
hogy minden könyvtárnak egyetlen szülő könyvtára van. Azt az útvonalat (könyvtárak adott

4

sorrendjét), amellyel egy adott könyvtárhoz vagy fájlhoz eljuthatunk, a könyvtár vagy fájl elérési
út jának nevezzük. Az elérési útban a könyvtárakat / jel választja el egymástól1.

Minden könyvtárban létezik a . könyvtár, ami az aktuális könyvtárat (azaz saját magát), és
a .. nevű könyvtár, ami az adott könyvtár szülő könyvtárát jelöli. Próbáljuk ki:

bercin@users:~$ cd .

bercin@users:~$

Nem szabad meglepődni, hogy nem történt semmi, mert az aktuális könyvtárból az aktuális
könyvtárba lépni nyilván semmilyen változást nem okozhat. Ugyanakkor a .. (azaz a szülő)
könyvtárba lépés már nem haszontalan:

bercin@users:~$ cd ..

bercin@users:/home$

Ennek a parancsnak az eredménye alapján láthatóvá vált: a parancsértelmező eddig is kíırta,
hogy éppen melyik könyvtárban vagyunk, csak erre eddig nem ford́ıtottunk figyelmet: most, a
dollárjel előtti /home azt jelzi, hogy az aktuális könyvtár a /home-ra változott. Az eddig ott
szereplő ~ (hullámjel, tilde) rövid́ıtés az alapértelmezett könyvtárunkat jelezte. Linux (UNIX)
alatt alapértelmezett esetben a felhasználóknak van egy könyvtára, ahova a felhasználó ı́rási
joggal rendelkezik, és ebbe a könyvtárba kerül, amikor belép a szerverre. Ez a könyvtár a
/home/felhasználónév (ahol felhasználónév a saját felhasználónk neve) amit a felhasználó
home könyvtár ának [home directory] nevezünk. A cd .. parancs tehát a /home/felhasználónév
könyvtárból ennek szülő könyvtárába, azaz a /home könyvtárba vitt, és a parancsértelmező ezt
a változást jelezte a promptban.

Az aktuális könyvtár neve lekérdezhető a pwd (print working directory) parancs seǵıtségével:

bercin@users:/home$ pwd

/home

bercin@users:/home$ cd ..

bercin@users:/$ pwd

/

bercin@users:/$

A / nevű könyvtár a fájlrendszer gyökér könyvtárát jelöli, azaz azt a könyvtárt, aminek a szülő
könyvtára is saját maga, ı́gy ebből a könyvtárból feljebb már nem lehet lépni:

bercin@users:/$ pwd

/

bercin@users:/$ cd ..

bercin@users:/$ pwd

/

bercin@users:/$

Ha az elérési út / jellel kezdődik, akkor az elérési utat teljes elérési útnak [full path] nevezzük.
A pwd parancs mindig az aktuális könyvtár teljes elérési útját ı́rja ki:

bercin@users:/$ pwd

/

bercin@users:/$ cd home

bercin@users:/home$ pwd

/home

bercin@users:/home$ cd bercin

bercin@users:~$ pwd

/home/bercin

bercin@users:~$

1Figyelem! A könyvtár elválasztó jel Linuxban (és UNIX-ban)
”
jobbra dőlő” perjel, nem az, amit a Windows

használ (ahol
”
balra dőlő” perjel választja el a könyvtárakat).

5

Ha az elérési út nem / jellel kezdődik, akkor is elérési útról beszélünk, de ezt az elérési utat relat́ıv
elérési útnak [relative path] nevezzük. A relat́ıv elérési út azt jelenti, hogy az elérési út nem a
gyökér könyvtártól, hanem az aktuális könyvtártól indul.

bercin@users:~$ pwd

/home/bercin

bercin@users:~$ cd /usr

bercin@users:/usr$ pwd

/usr

bercin@users:/$ cd local/bin

bercin@users:/usr/local/bin$ pwd

/usr/local/bin

bercin@users:/usr/local/bin$

A paraméter nélküli cd parancs visszavisz minket a home könyvtárunkba (bármi is az aktuális
könyvtár):

bercin@users:/usr/local/bin$ pwd

/usr/local/bin

bercin@users:/usr/local/bin$ cd

bercin@users:~$ pwd

/home/bercin

bercin@users:~$

Új könyvtárat az mkdir paranccsal hozhatunk létre, üres könyvtárat az rmdir paranccsal töröl-
hetünk:

bercin@users:~$ mkdir teszt

bercin@users:~$ cd teszt

bercin@users:~/teszt$ pwd

/home/bercin/teszt

bercin@users:~/teszt$ cd ..

bercin@users:~$ rmdir teszt

bercin@users:~$

4. Környezeti változók

A programok számára többféleképpen adhatók át adatok, aminek az egyik módja az előző pél-
dákban is látható parancssori paraméterként átadás. Egy másik módja a környezeti változókon
keresztül történik, amit a programok a futásuk során lekérdezhetnek (és módośıthatnak). A
környezeti változók a parancsértelmezőből történő kilépéssel törlődnek.

Egy környezeti változónak úgy lehet értéket adni, hogy a változó neve után egy egyenlőség
jelet majd a beálĺıtani ḱıvánt értéket ı́rjuk. Például a PLD változónak az abcd értékül adása a
következő módon történik:

bercin@users:~$ PLD=abcd

bercin@users:~$

Az aktuális értéket a változónév elé tett $ jellel lehet lekérdezni oly módon, hogy a parancssorban
szereplő $változónév szöveget a shell a változónév nevű változó aktuális értékére cseréli ki,
majd a parancssort újra értelmezi. Például az echo $PLD értelmezése a következőképpen törté-
nik: A shell először kicseréli a $PLD sztringet a PLD változó értékére (ami jelen esetben abcd),
ı́gy eredményül az echo abcd parancssort kapja, amit aztán újra értelmez és végrehajt:

bercin@users:~$ echo $PLD

abcd

bercin@users:~$

6

Nagyon fontos ismételten hangsúlyozni, hogy a shell végzi a $PLD sztring kicserélését a változó
tartalmára, nem pedig a futtatott program! A program már csak a kicserélt sztringet kapja meg
paraméterként, mit sem sejtve arról, hogy az eredetileg mi volt: az előző példában az echo tehát
már csak az abcd paramétert kapja meg (amit aztán kíır).

A shellben tárolt környezeti változók listáját aktuális értékeikkel együtt a set paranccsal
kaphatjuk meg.

4.1. Összefűzés

Szükségünk lehet arra, hogy egy környezeti változó aktuális értéke elé és/vagy mögé egy másik

sztringet is beszúrjunk. Írassuk ki két környezeti változó értékét egymáshoz fűzve:

bercin@users:~$ ELEJE=abcd

bercin@users:~$ VEGE=efgh

bercin@users:~$ echo $ELEJE$VEGE

abcdefgh

bercin@users:~$

A sikeren felbuzdulva megpróbálhatunk egy környezeti változó értékéhez közvetlenül hozzáfűzni
egy sztringet:

bercin@users:~$ echo $ELEJEefgh

bercin@users:~$ echo $ELEJE

abcd

bercin@users:~$ echo efgh

efgh

bercin@users:~$

Az utaśıtás azért nem működik (pontosabban működik, csak nem azt az eredményt adja, amit
vártunk), mert a shell nem tudja, hogy mi az ELEJE környezeti változó értékét és a efgh sztringet
akartuk összefűzni, hanem az ELEJEefgh nevű környezeti változó értékét kérdezi le, ami üres.
A megoldás, hogy a {} karakterek közé ı́rva a környezeti változó nevét, a shell már pontosan
meg fogja tudni határozni, hogy meddig tart a környezeti változó neve, és honnét kezdődik a
parancssor többi része:

bercin@users:~$ echo ${ELEJE}efgh

abcdefgh

bercin@users:~$

Természetesen ez a jelölésmód az előző példákkal is használható:

bercin@users:~$ echo ${ELEJE}

abcd

bercin@users:~$ echo ${VEGE}

efgh

bercin@users:~$ echo ${ELEJE}${VEGE}

abcdefgh

bercin@users:~$

4.2. PATH

Magának a parancsértelmezőnek is szüksége van néhány beálĺıtásra a működéséhez, ilyen például
a PATH nevű környezeti változó, ami megadja, hogy melyik könyvtárakban kell keresni a begépelt
parancsokat. Írassuk ki a PATH változó aktuális értékét a fentebb ismertetett módon:

bercin@users:~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/games

bercin@users:~$

7

Eredményül teljes elérési utak kettősponttal elválasztott sorozatát kapjuk, ami azt mutatja,
hogy a begépelt parancsok keresése kizárólag mely könyvtárakban történik. Esetünkben ezek
a /usr/local/bin, /usr/bin, /bin és a /usr/games könyvtárak (ebben a sorrendben!). Ha a
begépelt parancsot ezen könyvtárak valamelyikében megtalálja a parancsértelmező, akkor azt
lefuttatja. Ha nincs ilyen fájl, akkor hibajelzést ad:

bercin@users:~$ svnsjkvnasjlvn

-bash: svnsjkvnasjlvn: command not found

bercin@users:~$

A which paranccsal megtudhatjuk, hogy egy (létező) program pontosan melyik, PATH-ban lévő
könyvtárban található. Például az echo program elérési útja:

bercin@users:~$ which echo

/bin/echo

bercin@users:~$

A which programot bármely másik programra megh́ıvhatjuk, akár saját magára is (ekkor azt
fogja kíırni, hogy ő maga hol található):

bercin@users:~$ which which

/usr/bin/which

bercin@users:~$

4.3. PS1

A PS1 környezeti változóval beálĺıthatjuk a parancsértelmező promptját. Mielőtt ezt megváltoz-
tatnánk, mentsük el a régi értéket például a MENTES környezeti változóba:

bercin@users:~$ MENTES=$PS1

bercin@users:~$

A környezeti változó lekérdezését nyilván nem csak az echo paranccsal használhatjuk, hanem
bármelyik másik paranccsal is. Idézzük fel a környezeti változó értékének a lekérdezését: először
a shell kicseréli a $változónév kifejezést a változónév értékére, majd az ı́gy kapott sort újra
értelmezi. Az előző példában tehát a $PS1 helyére behelyetteśıtődött a PS1 értéke, amit aztán a
MENTES változónak adtunk értékül.

A PS1 átálĺıtása után az új prompttal ugyanúgy használhatjuk a parancsértelmezőt, mint
eddig (ne lepődjünk meg, hogy furcsán néz ki a sor, úgy gépeljük be a parancsainkat, mintha az
előzőekben megszokott prompt lenne!):

bercin@users:~$ PS1=_ez_az_en_promptom_

_ez_az_en_promptom_echo szia

szia

_ez_az_en_promptom_which echo

/bin/echo

_ez_az_en_promptom_

Nézzük meg, hogyan álĺıthatjuk vissza az eredeti állapotot:

_ez_az_en_promptom_PS1=$MENTES

bercin@users:~$

4.3.1. feladat. Mi a PS1 (vagy a MENTES) tartalma?

A PS1 beálĺıtásáról a későbbiekben lesz még szó bővebben.

8

4.4. LANG

A LANG környezeti változó beálĺıtásával átálĺıthatjuk a területi beálĺıtásokat, ı́gy például megvál-
toztathatjuk a parancsok által kíırt üzenetek nyelvét. Értékül a használni ḱıvánt nyelv kétbetűs
kódját kisbetűkkel és az ország kétbetűs kódját nagybetűkkel kell megadni, aláhúzásjellel elvá-
lasztva:

bercin@users:~$ svnsjkvnasjlvn

-bash: svnsjkvnasjlvn: command not found

bercin@users:~$ LANG=hu_HU

bercin@users:~$ svnsjkvnasjlvn

-bash: svnsjkvnasjlvn: parancs nem található

bercin@users:~$

Ha a magyarul kíırt hibaüzenetben az ékezetes betűk helyén kérdőjel, vagy egyéb más
”
furcsa”

karakter szerepel, akkor a hu_HU helyett próbáljuk ki a hu_HU.UTF8 értéket. Az UTF-8 karak-
terkódolásról a későbbiekben lesz részletesen szó.

4.4.1. feladat. Hogyan tudjuk a beálĺıtás előtt elmenteni és az átálĺıtás után az eredetire vissza-
álĺıtani a LANG környezeti változót?

4.4.2. feladat. Hogyan tudjuk átálĺıtani a területi beálĺıtásokat a Németországban használt
németre?

4.4.3. feladat. Hogyan tudjuk átálĺıtani a területi beálĺıtásokat az USA (délnyugati részén
gyakran) használt spanyolra?

5. Fájlok kezelése

Az ls paranccsal kilistázható az aktuális könyvtár tartalma (ha nem adunk meg paramétert)
vagy bármely más könyvtár tartalma (ha megadunk egy elérési utat):

bercin@users:~$ ls

public_html teszt ZHk

bercin@users:~$ ls /bin

bash dd lessecho nisdomainname tar

bunzip2 df lessfile pidof tempfile

bzcat dir lesskey ping touch

bzcmp dmesg lesspipe ping6 true

bzdiff dnsdomainname ln ps umount

bzegrep domainname login pwd uname

bzexe echo ls rbash uncompress

bzfgrep ed lsmod readlink vdir

bzgrep egrep mkdir rm which

bzip2 false mknod rmdir ypdomainname

bzip2recover fgrep mktemp rnano zcat

bzless fuser more run-parts zcmp

bzmore getfacl mount rzsh zdiff

cat grep mountpoint sed zegrep

chacl gunzip mt setfacl zfgrep

chgrp gzexe mt-gnu sh zforce

chmod gzip mv sh.distrib zgrep

chown hostname nano sleep zless

cp ip nc stty zmore

cpio kill nc.traditional su znew

dash ksh netcat sync zsh

date less netstat tailf zsh4

bercin@users:~$

9

Ebben a példában az aktuális könyvtár elemeit (első-második sor) és a /bin könyvtár elemeit
listáztuk ki (harmadik sortól az utolsóig).

Egy újonnan létrehozott könyvtár is tartalmazza a . és .. könyvtárakat, de ezeket az ls

alapértelmezetten nem mutatja:

bercin@users:~$ mkdir teszt

bercin@users:~$ cd teszt

bercin@users:~/teszt$ ls

bercin@users:~/teszt$

Linuxban (és UNIX-ban) a ponttal kezdődő könyvtárnevek és fájlnevek rejtettek, azaz az ls

alapértelmezetten nem listázza ki ezeket. Ha az ls parancsot a -a paraméterrel h́ıvjuk meg,
akkor már megmutatja a ponttal kezdődő könyvtárakat illetve állományokat is:

bercin@users:~/teszt$ ls -a

. ..

bercin@users:~/teszt$

Természetesen a . és .. könyvtár minden könyvtárban megtalálható, bármelyiket is listázzuk ki:

bercin@users:~/teszt$ cd

bercin@users:~$ ls

public_html teszt ZHk

bercin@users:~$ ls -a

. .bash_history .bashrc .lesshst .profile .ssh ZHk

.. .bash_logout .gnupg .mc public_html teszt

bercin@users:~$

Jól látható ezen a példán, hogy a . és .. könyvtárak mellett egy felhasználó home könyvtára
általában sok más, ponttal kezdődő fájlt is tartalmaz, amik az előzőek alapján szintén rejtettek.

Linux (UNIX) esetében a felhasználó által futtatott programok beálĺıtásait általában ponttal
kezdődő fájlnevű állományban tároljuk. A programjaink config fájljai tehát azért a felhasználó
home könyvtárában vannak, mert ı́gy lehetővé válik, hogy felhasználónként más és más beálĺıtá-
sok legyenek. Szükségszerű is itt tárolni a config állományokat, hiszen ezek máshol nem biztos,
hogy tárolhatók, mert általános esetben a felhasználónak csak a home könyvtárában van ı́rási
joga.

Fájlokat másolni a cp (copy) paranccsal lehet, aminek első paraméterként meg kell adni
azt az elérési utat, amit másolni szeretnénk, második paraméterként pedig azt az elérési utat,
ahova másolni szeretnénk. Például a már jól ismert echo programot másoljuk a saját home
könyvtárunkba masik_echo néven:

bercin@users:~$ cp /bin/echo masik_echo

bercin@users:~$ ls

masik_echo public_html teszt ZHk

bercin@users:~$

Hiába létezik az aktuális könyvtárban a masik_echo fájl, ha a megpróbáljuk lefuttatni, hibajel-
zést kapunk:

bercin@users:~$ masik_echo

-bash: masik_echo: command not found

bercin@users:~$

Ennek magyarázata, hogy a shell kizárólag a PATH környezeti változóban felsorolt könyvtárakban
keres, és ezek között nem található meg az aktuális könyvtár:

bercin@users:~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/games

bercin@users:~$

10

A problémát egyszerűen orvosolhatjuk: a parancsnév helyett adjuk meg a futtatandó parancs
elérési útját, ı́gy a shellnek nem kell a PATH-ban lévő könyvtárakban keresnie, hanem közvetlenül
a megadott fájlt próbálja meg futtatni. Elérési útként megadható teljes elérési út:

bercin@users:~$ /home/bercin/masik_echo szia

szia

bercin@users:~$

És megadható relat́ıv elérési út is:

bercin@users:~$./masik_echo szia

szia

bercin@users:~$

A shell úgy tudja megkülönböztetni, hogy relat́ıv elérési utat vagy elérési út nélküli parancsnevet
adtunk meg, hogy ha a parancsban nincsen / karakter, akkor parancsnévről van szó (és a PATH-
ban megadott könyvtárakban keresi a parancsot), de ha van benne / karakter, akkor elérési útról
van szó (sőt, ha az elérési út / jellel kezdődik, akkor abszolút elérési út, azaz a gyökér könyvtártól
indul, ha nem / jellel kezdődik, akkor relat́ıv, azaz az aktuális könyvtártól indul).

Pontosan azért volt tehát szükség az előző példában a ./ szerepeltetésére, hogy a shell tudja,
elérési úttal megadott parancsot akarunk futtatni, és a . könyvtár megadásával ez pontosan azt
jelenti, hogy az aktuális könyvtárban lévő fájlról van szó.

Erre a problémára az előző megoldáson ḱıvül másik két megoldás is létezik: az egyik, hogy
az aktuális könyvtárat (tehát a . könyvtárat) is beillesztjük a PATH listába, a másik, hogy lét-
rehozunk egy saját könyvtárat a home könyvtárunkban, ahol a saját futtatható állományainkat
fogjuk tárolni. Az első megoldás biztonsági kockázatokat rejt (ezért nem is keres a shell az
aktuális könyvtárban), ı́gy válasszuk a második megoldást. Hı́vjuk ezt a könyvtárat bin-nek:

bercin@users:~$ mkdir bin

bercin@users:~$ PATH=$PATH:~/bin

bercin@users:~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/games:/home/bercin/bin

bercin@users:~$

Létrehoztuk tehát a bin könyvtárat a home könyvtárunkban, majd a PATH környezeti változó
végéhez hozzáfűztük ennek az újonnan létrehozott könyvtárnak az elérési útját. Részletesebben
itt két csere is történt: a $PATH:~/bin sztringet a shell értelmezte és a $PATH sztringet kicse-
rélte a PATH környezeti változó aktuális értékére, majd a ~ jelet is kicserélte a felhasználó home
könyvtárának elérési útjára, ı́gy eredményül (ebben az esetben) a

/usr/local/bin:/usr/bin:/bin:/usr/games:/home/bercin/bin

értéket kapta. A végrehajtási fázisban tehát az törtét, mintha a

PATH=/usr/local/bin:/usr/bin:/bin:/usr/games:/home/bercin/bin

parancsot ı́rtuk volna be, ezt bizonýıtja a PATH környezeti változó értéke kíıratásának eredménye.
A feladat megoldásához már csak egy lépés van hátra, az aktuális könyvtárban lévő masik_echo

fájlt át kell mozgatni a bin könyvtárba, amit a mv (move) parancs seǵıtségével tehetünk meg:

bercin@users:~$ ls

masik_echo public_html teszt ZHk

bercin@users:~$ ls -a bin

. ..

bercin@users:~$ mv masik_echo bin

bercin@users:~$ ls -a bin

. .. masik_echo

bercin@users:~$ ls

bin public_html teszt ZHk

bercin@users:~$

11

Próbáljuk ki, hogy most már működik-e a masik_echo program ind́ıtása, holott az nincs is az
aktuális könyvtárban:

bercin@users:~$ ls

bin public_html teszt ZHk

bercin@users:~$ masik_echo szia

szia

bercin@users:~$

Az mv parancs az átmozgatás mellett átnevezésre is használható: gondoljunk bele, ha átmozgatok
egy fájlt az aktuális könyvtárból az aktuális könyvtárba csak másik néven, akkor valójában
átnevezést hajtottam végre. Emiatt nincs külön parancs átnevezésre a Linuxban (és a UNIX-
okban).

Ha a cp vagy mv parancsnak második paraméterként (tehát a cél elérési útként) könyvtárat
adunk meg, akkor abba a könyvtárba ugyanolyan néven fog másolódni (cp esetében) illetve
átmozgatódni (mv esetében) a forrásként megadott fájl. Természetesen több fájlt is másolhatunk
egy paranccsal, ha felsoroljuk az összes másolandó fájlt, majd az utolsó paraméterként megadjuk
azt a könyvtárat, ahova azokat másolni szeretnénk. Ekkor az utolsó paraméter csak könyvtár
lehet!

bercin@users:~$ ls bin

masik_echo

bercin@users:~$ cp /bin/mv /bin/cp /bin/mkdir /bin/rmdir bin

bercin@users:~$ ls bin

cp masik_echo mkdir mv rmdir

bercin@users:~$

Fájlok törlésére az rm parancs szolgál, paraméterekként meg kell adni a törlendő fájlok elérési
útjait. Például az imént a bin könyvtárba másolt állományok közül néhány törlése:

bercin@users:~$ ls bin

cp masik_echo mkdir mv rmdir

bercin@users:~$ rm bin/mv bin/mkdir bin/cp

bercin@users:~$ ls bin

masik_echo rmdir

bercin@users:~$

Természetesen ha egy könyvtár összes fájlját törölni szeretnénk, nem kell azokat egyesével felso-
rolni, hanem megadhatjuk a könyvtárnevet is az rm parancsnak:

bercin@users:~$ rm bin

rm: cannot remove ‘bin’: Is a directory

bercin@users:~$

Mivel alapértelmezetten az rm parancs fájlok törlésére szolgál, külön paraméter megadása szük-
séges, hogy könyvtárat töröljünk: -r (rekurźıv törlés)

bercin@users:~$ rm -r bin

bercin@users:~$

Figyelem! Linuxban (és UNIX-ban) a törlés általában visszaford́ıthatatlan művelet! Nincs

”
Trash” vagy

”
Kuka”, amibe ideiglenesen átkerülnek a törölt állományok! Az rm parancs ki-

adásakor azok azonnal törlődnek.

5.1. Mintaillesztés

A shell nem csak a környezeti változók értékének lekérdezésére használt $ jelet értelmezi spe-
ciálisan, hanem lehetőség van a fájlok neveinek mintaillesztésére, azaz a létező fájlnevek közül
adott mintának megfelelők kiválasztására. A shell által erre a célra használt speciális karakterek
és jelentéseik az 1. táblázatban láthatóak.

12

illesztő karakter karakterek, amelyek megfelelnek a mintának

* bármely karakter akárhányszor (nulla alkalommal is!)
? bármely karakter pontosan egy alkalommal

[karakterek] karakterek közül bármelyik pontosan egy alkalommal

1. táblázat. A shell mintaillesztő karakterei

A mintaillesztést a /bin könyvtárban fogjuk szemléltetni. Álljon itt egy lista a benne található
fájlokról annak érdekében, hogy a lentebbi példákat a szerverre való belépés nélkül is meg lehessen
érteni.

bercin@users:~$ cd /bin

bercin@users:/bin$ ls

bash dd lessecho nisdomainname tar

bunzip2 df lessfile pidof tempfile

bzcat dir lesskey ping touch

bzcmp dmesg lesspipe ping6 true

bzdiff dnsdomainname ln ps umount

bzegrep domainname login pwd uname

bzexe echo ls rbash uncompress

bzfgrep ed lsmod readlink vdir

bzgrep egrep mkdir rm which

bzip2 false mknod rmdir ypdomainname

bzip2recover fgrep mktemp rnano zcat

bzless fuser more run-parts zcmp

bzmore getfacl mount rzsh zdiff

cat grep mountpoint sed zegrep

chacl gunzip mt setfacl zfgrep

chgrp gzexe mt-gnu sh zforce

chmod gzip mv sh.distrib zgrep

chown hostname nano sleep zless

cp ip nc stty zmore

cpio kill nc.traditional su znew

dash ksh netcat sync zsh

date less netstat tailf zsh4

bercin@users:/bin$

Írassuk ki a c karakterrel kezdődő fájlokat:

bercin@users:/bin$ ls c*

cat chacl chgrp chmod chown cp cpio

bercin@users:/bin$

A c* mintának tehát megfelel minden olyan fájl, ami c karakterrel kezdődik és utána bármely
karakterből bárhány szerepel. A * karakter azonban nem csak a minta végén lehet, sőt, nem csak
egy szerepelhet belőle egy mintában:

bercin@users:/bin$ ls *l*

bzless getfacl lessecho lesspipe ls readlink tailf

chacl kill lessfile ln lsmod setfacl tempfile

false less lesskey login nc.traditional sleep zless

bercin@users:/bin$

A *l* mintának megfelel az összes olyan fájl, amiben legalább egy l betű szerepel. Hasonlóan
egyszerű kilistázni azokat a fájlokat, amelyekben legalább egy l és utána legalább egy s betű
szerepel:

bercin@users:/bin$ ls *l*s*

13

bzless less lessfile lesspipe lsmod

false lessecho lesskey ls zless

bercin@users:/bin$

Figyelem! A karakterek sorrendje fontos! Az előző minta nem ugyanaz, mint a *s*l*:

bercin@users:/bin$ ls *s*l*

lessfile setfacl sleep

bercin@users:/bin$

5.1.1. példa. Listázzuk ki azokat a fájlokat, amelyek második karaktere e:

bercin@users:/bin$ ls ?e*

getfacl lessecho lesskey netcat readlink setfacl zegrep

less lessfile lesspipe netstat sed tempfile

bercin@users:/bin$

5.1.2. példa. Listázzuk ki azokat a fájlokat, amelyek második karaktere e és a hatodik karaktere
c:

bercin@users:/bin$ ls ?e???c*

getfacl lessecho setfacl

bercin@users:/bin$

5.1.3. példa. Listázzuk ki azokat a fájlokat, amelyek pontosan három karakterből állnak:

bercin@users:/bin$ ls ???

cat dir ksh pwd sed tar zsh

bercin@users:/bin$

5.1.4. példa. Listázzuk ki azokat a fájlokat, amelyek az abcd karakterek közül valamelyikkel
kezdődnek és utolsó karakterük e:

bercin@users:/bin$ ls [acbd]*e

bzexe bzmore date dnsdomainname domainname

bercin@users:/bin$

A mintaillesztés természetesen nem csak a fájlok kilistázásánál, hanem másolásnál (cp), átmoz-
gatásnál (mv), törlésnél (rm) is hasznos, sőt – mivel a behelyetteśıtést a shell végzi – bármely más
program is felhasználhatja ezt a funkciót, ha fájlok neveit várja paraméterként.

5.2. Egyéb speciális karakterek

Eddig elhallgattuk, de a szemfüles olvasó már találkozhatott azzal a problémával, hogy (pél-
dául könyvtár létrehozásánál) a fentiek alapján nem tud szóköz karaktert tartalmazó nevet
használni, hiszen a szóköz karakter paraméter elválasztó karakter, ı́gy ha megpróbálunk egy
Kedves Hallgatok nevű könyvtárat létrehozni, akkor azt két külön könyvtárként fogja a shell
létrehozni:

bercin@users:~$ mkdir Kedves Hallgatok

bercin@users:~$ ls

bin Hallgatok Kedves public_html teszt ZHk

bercin@users:~$

Hasonló a probléma a mintaillesztő karakterek használatával is:

bercin@users:~$ mkdir ***K***

mkdir: cannot create directory ‘Kedves’: File exists

bercin@users:~$ ls

bin Hallgatok Kedves public_html teszt ZHk

bercin@users:~$

14

A hibaüzenet magyarázata, hogy a shell a ***K*** mintát behelyetteśıti az aktuális könyvtárban
található Kedves fájlnévvel (ez létező név, hiszen éppen az előbb hoztuk létre ezt a könyvtárat),
ı́gy az mkdir parancs a Kedves paramétert kapja, ami nyilván hibához vezet, hiszen nem hozható
létre egy már meglévő névvel új könyvtár.

A problémát úgy orvosolhatjuk, hogy a speciális karakterek speciális jelentését kikapcsoljuk,
azaz a kikapcsolás után a karakterek már önmagukat jelentik: a $ karaktert nem próbálja meg a
shell változó értékére cserélni, a mintaillesztő karaktereket nem próbálja meg fájlnevekre illeszte-
ni, stb. A speciális jelentés kikapcsolására a \ karakter használandó. Figyelem! Itt

”
balra dőlő”

perjelről van szó, nem a könyvtárakat elválasztó
”
jobbra dőlő” perjelről!

Egy szóközt tartalmazó könyvtár létrehozására használható tehát a következő módszer:

bercin@users:~$ mkdir Ez\ itt\ egy\ teljes\ mondat

bercin@users:~$ ls

bin Ez itt egy teljes mondat Hallgatok Kedves public_html teszt ZHk

bercin@users:~$

Egy kicsit problémás minden speciális karakter elé beszúrni a \ jelet, de ez a probléma is meg
van oldva: ha több karakter speciális jelentését akarjuk kikapcsolni, akkor a sztringet ’ jelek közé
kell tenni:

bercin@users:~$ mkdir ’Ez itt egy masik hosszu nevu konyvtar’

bercin@users:~$ ls

bin Hallgatok teszt

Ez itt egy masik hosszu nevu konyvtar Kedves ZHk

Ez itt egy teljes mondat public_html

bercin@users:~$

Néha azonban mégis szükség lenne arra, hogy környezeti változókat is tudjunk idézőjelek között
megadott sztringekben szerepeltetni:

bercin@users:~$ szamlaszam=123456789

bercin@users:~$ mkdir ’A bankszamlam szama: $szamlaszam’

bercin@users:~$ ls

A bankszamlam szama: $szamlaszam Ez itt egy teljes mondat public_html

bin Hallgatok teszt

Ez itt egy masik hosszu nevu konyvtar Kedves ZHk

bercin@users:~$

A könyvtárnévben nem helyetteśıtődött be a szamlaszam környezeti változó értéke. Megoldás:
ha a sztinget " jelek közé tesszük, akkor a shell a $ értelmezését továbbra is meg fogja tenni:

bercin@users:~$ mkdir "A bankszamlam szama: $szamlaszam"

bercin@users:~$ ls

A bankszamlam szama: 123456789 Ez itt egy teljes mondat teszt

A bankszamlam szama: $szamlaszam Hallgatok ZHk

bin Kedves

Ez itt egy masik hosszu nevu konyvtar public_html

bercin@users:~$

Természetesen magának a környezeti változónak is adható a fenti módon szóközt (vagy egyéb
más speciális karaktert) tartalmazó érték:

bercin@users:~$ telefonszam="+36 12 345 6789"

bercin@users:~$ mkdir "A telefonszamom: $telefonszam"

bercin@users:~$ ls

A bankszamlam szama: 123456789 Hallgatok

A bankszamlam szama: $szamlaszam Kedves

A telefonszamom: +36 12 345 6789 public_html

bin teszt

15

Ez itt egy masik hosszu nevu konyvtar ZHk

Ez itt egy teljes mondat

bercin@users:~$

A promptot most már átálĺıthatjuk úgy, hogy az sokkal szebben nézzen ki, mint az első példában
(lásd a 4.3. részt):

bercin@users:~$ PS1="Ez az en promptom: "

Ez az en promptom: echo szia

szia

Ez az en promptom: ls

A bankszamlam szama: 123456789 Hallgatok

A bankszamlam szama: $szamlaszam Kedves

A telefonszamom: +36 12 345 6789 public_html

bin teszt

Ez itt egy masik hosszu nevu konyvtar ZHk

Ez itt egy teljes mondat

Ez az en promptom:

A prompt beálĺıtásakor használhatunk speciális értékeket is, amiket a shell értelmezni fog, és a
megfelelő értékre cserél. Ezek közül a leggyakrabban használtak a 2. táblázatban láthatóak.

speciális karakter karakterek, amelyek megfelelnek a mintának

\u felhasználónév
\h a gép neve, amire be vagyunk jelentkezve
\H a gép teljes neve, amire be vagyunk jelentkezve
\w az aktuális könyvtár teljes elérési úttal
\W az aktuális könyvtár elérési útjának utolsó eleme
\$ egyszerű felhasználó esetében $ jel, rendszergazda esetében # jel

2. táblázat. Prompt beálĺıtásához használható legfontosabb speciális karakterek

Ahogy a táblázatból látszik, a \ karakter egyes esetekben speciális értelmezésű karakterek
speciális értelmezésének kikapcsolására, más esetekben normál értelmezésű karakterek speciális
értelmezésének bekapcsolására szolgál. Figyelem! A táblázatban szereplő karakterek a prompt
beálĺıtásában értelmezettek csak a táblázat szerint!

5.2.1. példa. A prompt

felhasználó: <felhasználó> gép: <gép> könyvtár: <könyvtár> $

-ra történő beálĺıtása a következő módon végezhető el:

bercin@users:~$ PS1="felhasználó: \u gép: \h könyvtár: \w $ "

felhasználó: bercin gép: www-users könyvtár: ~ $ echo szia

szia

felhasználó: bercin gép: www-users könyvtár: ~ $

6. Átiránýıtás

Linuxban (UNIX-ban) minden elind́ıtott programnak az induláskor három különböző ki-bemeneti
(I/O) csatornája létezik: a 0 számmal, a C nyelvben stdin-nel, a C++ nyelvben cin-nel jelölt
sztenderd bemenet, az 1 számmal, a C nyelvben stdout-tal, a C++ nyelvben cout-tal jelölt szten-
derd kimenet és a 2 számmal, a C nyelvben stderr-rel, a C++ nyelvben cerr-rel jelölt hiba

kimenet. Ezeket a csatornákat át lehet iránýıtani. A sztenderd kimenetet átiránýıthatjuk egy
fájlba a parancs után > jelet végül a fájl nevét megadva:

16

bercin@users:~$ ls /bin/c*

/bin/cat /bin/chgrp /bin/chown /bin/cpio

/bin/chacl /bin/chmod /bin/cp

bercin@users:~$ ls /bin/c* > kimenet

bercin@users:~$

A > speciális karakter az ls parancs kimenetét a kimenet fájlba iránýıtotta át (létrehozva a
fájlt, ha az addig nem létezett), emiatt nem látszik a parancs eredménye a képernyőn. Egy fájl

tartalmát a cat paranccsal ı́rathatjuk ki. Írassuk ki a kimenet fájl tartalmát:

bercin@users:~$ cat kimenet

/bin/cat

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cp

/bin/cpio

bercin@users:~$

Egy parancs nem csak a sztenderd kimenetére ı́rhat ki üzeneteket, hanem a hiba kimenetén is
megjeleńıthet szöveget: ehhez a következő példában a c-vel kezdődő fájlokat és a asadadads nevű
fájlt is megpróbáljuk kilistázni, de az utóbbi nem létezik:

bercin@users:~$ ls asadadads /bin/c*

ls: cannot access asadadads: No such file or directory

/bin/cat /bin/chgrp /bin/chown /bin/cpio

/bin/chacl /bin/chmod /bin/cp

bercin@users:~$

A hiba kimenet átiránýıtására a 2> karaktereket kell használnunk:

bercin@users:~$ ls asadadads /bin/c* 2> kimenet

/bin/cat /bin/chgrp /bin/chown /bin/cpio

/bin/chacl /bin/chmod /bin/cp

bercin@users:~$ cat kimenet

ls: cannot access asadadads: No such file or directory

bercin@users:~$

Jól látható, hogy a sztenderd kimenet (átiránýıtás hiányában) továbbra is megjelent a képernyőn,
de a hibaüzenetet már a fájlban tároltuk el. Ha mind a hiba, mind a sztenderd kimenetet át
akarjuk iránýıtani, akkor az előzőek természetesen egymás után is alkalmazhatók:

bercin@users:~$ ls asadadads /bin/c* > kimenet.sima 2> kimenet.hiba

bercin@users:~$ cat kimenet.sima

/bin/cat

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cp

/bin/cpio

bercin@users:~$ cat kimenet.hiba

ls: cannot access asadadads: No such file or directory

bercin@users:~$

Ha a két kimenetet ugyanabba a fájlba akarjuk átiránýıtani akkor arra a következő módszert kell
használni:

17

bercin@users:~$ ls asadadads /bin/c* > kimenet 2>&1

bercin@users:~$ cat kimenet

ls: cannot access asadadads: No such file or directory

/bin/cat

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cp

/bin/cpio

bercin@users:~$

A 2>&1 azt jelenti, hogy a sztenderd error kimenetet (2) ugyanoda akarjuk átiránýıtani, ahova a
sztenderd kimenet (1) aktuálisan iránýıtva van a feldolgozás pillanatában.

6.0.1. feladat. Mi a különbség az alábbiak között?
parancs 2>&1 > fajlnev

parancs > fajlnev 2>&1

Próbáljuk ki, és értelmezzük az eredményt!

Az előzőekben a kimenetet úgy iránýıtottuk át, hogy ha a fájl nem létezett, akkor azt a
shell létrehozta, ha létezett, akkor törölte annak tartalmát, és ezután ı́rta bele az átiránýıtás
eredményét. Ha arra van szükségünk, hogy a fájl tartalmát ne törölje, hanem a már meglévő fájl
végéhez ı́rja hozzá az átiránýıtás tartalmát, akkor a >> karaktereket kell használni:

bercin@users:~$ ls /bin/cp* > kimenet

bercin@users:~$ cat kimenet

/bin/cp

/bin/cpio

bercin@users:~$ ls /bin/ch* > kimenet

bercin@users:~$ cat kimenet

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

bercin@users:~$ ls /bin/ca* >> kimenet

bercin@users:~$ cat kimenet

/bin/chacl

/bin/chgrp

/bin/chmod

/bin/chown

/bin/cat

bercin@users:~$

18

	1 Egy kis történelem
	1.1 A kezdetek
	1.2 A GNU projekt
	1.3 A Linux

	2 Programok futtatása
	2.1 Paraméterek

	3 Könyvtárak és elérési utak
	4 Környezeti változók
	4.1 Összefűzés
	4.2 PATH
	4.3 PS1
	4.4 LANG

	5 Fájlok kezelése
	5.1 Mintaillesztés
	5.2 Egyéb speciális karakterek

	6 Átirányítás

