
Lebegőpontos számok ábrázolása

(jegyzet)

Bérci Norbert

2015. szeptember 17-i óra anyaga

Tartalomjegyzék

1. A lebegőpontos számábrázolás 1

1.1. Normalizált alak . 1
1.2. Bináris normalizált alak . 2
1.3. A lebegőpontos szám elemeinek tárolási mérete 2
1.4. Lebegőpontos számábrázolás határai és pontossága 3
1.5. Alulcsordulás . 4

2. Az IEEE 754 lebegőpontos számábrázolás 5

2.1. Tárolási sorrend . 5
2.2. Subnormált ábrázolás . 5
2.3. Végtelenek és a NaN . 6
2.4. Numerikus matematika . 6

1. A lebegőpontos számábrázolás

Nem egész számok gépi ábrázolására a lebegőpontos [floating point] ábrázolást használjuk: a
számot először átalaḱıtjuk normalizált alakba, és az ı́gy kapott alak különböző részeit külön-
külön tároljuk.

1.1. Normalizált alak

Egy szám normalizált alakján olyan szorzatra bontását értjük (lásd 1. ábra), ahol a második tag a
számrendszer alapjának valamely hatványa (amit a szám nagyságrendjének is nevezünk), az első
tag értéke pedig annyi, hogy a második taggal megszorozva az eredeti számot kapjuk. További
feltétel, hogy az első tag egyetlen nem nulla számjegyet tartalmazzon a tizedespont előtt, ami
garantálja, hogy a normalizált alakban történő feĺırás egyértelmű legyen.

1.1.1. példa. T́ızes számrendszerben a 380 normalizált alakja: 3.8 · 102, a 3.875 normalizált
alakja 3.875 · 100, a 0.00000651 normalizált alakja 6.51 · 10−6, a −53.75 normalizált alakja:
−5.375 · 101.

Az előzőekben definiált első tagot a szám mantisszájának [mantissa, significand, coefficient],
a hatványkitevőt (a nagyságrendet) a szám karakterisztikájának vagy exponens ének [exponent]
nevezzük. Negat́ıv számok tárolásához szükség van még az előjelre is (lásd 1. ábra).

A lebegőpontos elnevezés abból adódik, hogy az ábrázolható számok nem fix helyiértékű tize-
desjegyekkel kerülnek tárolásra1, hanem az exponens alapján a mantissza tizedespontja változik
(
”
lebeg”).

1.1.2. feladat. Adjunk arra példát, hogy az
”
első tag egyetlen nem nulla számjegyet tartalmaz-

zon a tizedespont előtt” feltétel hiányában egy számot többféleképpen is fel lehet ı́rni normalizált
alakban!

1ezt a módot fixpontos ábrázolásnak nevezzük

1

1

előjel mantissza exponens

− 3.775 ⋅10

1. ábra. A −37.75 normalizált alakja t́ızes számrendszerben
és ennek elemei (bekarikázva).

1.1.3. feladat. Adjuk meg a nulla normalizált alakját!

1.2. Bináris normalizált alak

1.2.1. A mantissza

Kettes számrendszerben ábrázolva a számot, a normalizált alak tovább egyszerűsödik, hiszen a
mantissza tizedespontja előtt mindig 1 áll (

”
az első tag egyetlen nem nulla számjegyet tartal-

mazzon a tizedespont előtt” feltétel miatt), amit ı́gy nem kell eltárolni (lásd 2. ábra), és ezt a
megtakaŕıtott bitet a mantissza pontosabb tárolására lehet ford́ıtani.

Fontos, hogy a lebegőpontos szám értelmezésekor ezt az el nem tárolt számjegyet is figyelembe
vegyük, továbbá, hogy az első (nem tárolt) egyes után már fontosak az azt követő nullák, azaz
például a 0010111 mantissza helyett nem tárolhatjuk el az 10111 értéket!

−1.0010111 ⋅2
5

előjel mantissza exponens

[2]

2. ábra. A -37.75 normalizált alakja kettes számrendszerben
és ennek tárolandó elemei (bekarikázva).

1.2.2. Az exponens

A normalizálásból adódóan az exponens is lehet pozit́ıv vagy negat́ıv. Ennek tárolásához az eltolt
tárolási módszert használjuk.

1.2.3. Az előjel

Az előjelet 1 biten tároljuk; ha értéke 1: a szám negat́ıv, ha 0: a szám pozit́ıv.

1.2.1. példa. A 380[10] = 101111100[2] normalizált alakja 1.011111[2] · 2
8, azaz tárolandó a 0

előjelbit, a 011111 mantissza és a 8 karakterisztika (a megfelelő eltolással).

1.2.2. példa. A −3.375[10] = −11.011[2] normalizált alakja −1.1011[2] · 2
1, azaz tárolandó az 1

előjelbit, a 1011 mantissza és az 1 karakterisztika (a megfelelő eltolással).

1.3. A lebegőpontos szám elemeinek tárolási mérete

Az előjelet mindig egy biten, a mantisszát és az exponenst megadott számú biten tároljuk. Ha
az előzőekben kiszámolt mantissza vagy exponens mérete nem egyezik meg a tárolási mérettel,
akkor az exponenst balról, a mantisszát jobbról egésźıthetjük ki nullákkal (ha szükséges)!

1.3.1. példa. A mantissza 10 biten, az exponens 5 biten történő excess-15 ábrázolása esetén a
t́ızezer ábrázolása: 10000 = 10011100010000[2] = 1.001110001[2] · 2

13, azaz tárolandó a 0 előjel,

2

a 0011100010 mantissza (figyelem, kiegésźıtettük 10 bites hosszra nullákkal jobbról!) és a 13
exponens, utóbbi az excess-15 ábrázolás miatt 11100 formában.

1.3.2. példa. A mantissza 10 biten, az exponens 5 biten történő excess-15 ábrázolása esetén a
−0.078125 ábrázolása: −0.078125 = −0.000101[2] = −1.01[2] · 2

−4, azaz tárolandó az 1 előjel,
a 0100000000 mantissza (figyelem, kiegésźıtettük 10 bites hosszra nullákkal jobbról!) és a −4
exponens, utóbbi az excess-15 ábrázolás miatt 01011 formában (figyelem, kiegésźıtettük 5 bites
hosszra egy nullával balról!).

1.3.3. feladat. A mantisszát miért jobbról, az exponenst miért balról egésźıthetjük csak ki
nullákkal?

1.4. Lebegőpontos számábrázolás határai és pontossága

Az előjeles vagy előjel nélküli egész és a lebegőpontos számábrázolás esetében is csak fix érté-
kek tárolhatók, de mı́g ezek az egészek esetében pontosan megegyeznek a tárolni ḱıvánt egész
számokkal, a lebegőpontos számábrázolás esetében ez nincs ı́gy, mivel bárhogy válasszuk is meg
a számábrázolás határait, az ezek között lévő végtelen sok valós szám nyilván nem ábrázolható
véges helyen. Ezt úgy is értelmezhetjük, hogy a lebegőpontos tárolás során kényszerű kereḱıtés
történik. Mindezek miatt az ábrázolási határok mellett a pontosság is jellemez egy-egy konkrét
lebegőpontos számábrázolást, ami megadja, hogy egy adott szám tárolása esetén a tárolni ḱıvánt
és a tárolt szám értéke legfeljebb milyen távol lehet egymástól. A lebegőpontos számok norma-
lizált alakú tárolásából következik, hogy a pontosságot a mantissza tárolási mérete határozza
meg, az ábrázolási határok pedig elsődlegesen a karakterisztika ábrázolási méretéből adódnak.
Fontos azt is kiemelni, hogy a pontosság az ábrázolási tartományban abszolút értelemben nem
egyenletes, azaz függ az ábrázolni ḱıvánt számtól (lásd a 3. ábra):

0

1−1

3. ábra. Lebegőpontos számábrázolás határai és a pontosan ábrázolható számok
(2 bites mantissza, 3 bites exponens excess-4 módon tárolva).

1.4.1. példa. A mantissza 10 biten, az exponens 5 biten történő excess-15 ábrázolása esetén

• a t́ızezernél nagyobb, pontosan ábrázolható számok közül a legkisebb (lásd az 1.3.1. felada-
tot a 10000 ábrázolásához) a 0011100011 tárolt mantisszájú és a 11100 tárolt exponensű
szám: 1.0011100011[2] · 2

13 = 1.2216796875 · 8192 = 10008

• a t́ızezernél kisebb, pontosan ábrázolható számok közül a legnagyobb a 0011100001 tárolt
mantisszájú és a 11100 tárolt exponensű szám: 1.0011100001[2] ·2

13 = 1.2197265625·8192 =
9992

Az előzőekből adódik, hogy t́ızezer körül a hiba 8 (ami a t́ızezer 0.08%-a).

1.4.2. példa. A mantissza 10 biten, az exponens 5 biten történő excess-15 ábrázolása esetén

• az egy t́ızezrednél kisebb, pontosan ábrázolható számok közül a legnagyobb a 1010001101
tárolt mantisszájú és 00001 tárolt exponensű szám: 1.1010001101 · 2−14 = 1.6376953125 ·
0.00006103515625 = 0.00009995698929

• a t́ızezrednél nagyobb, pontosan ábrázolható számok közül a legkisebb a 0 előjelű, a
1010001110 tárolt mantisszájú és a 00001 tárolt exponensű szám: 1.1010001110 · 2−14 =
1.638671875 · 0.00006103515625 = 0.000100016593933

Az előzőekből adódik, hogy egy t́ızezred körül a hiba kevesebb, mint egy t́ızmilliomod (ami az
egy t́ızezred 0.1%-a).

3

1.4.3. feladat. A mantissza 10 biten, az exponens 5 biten történő excess-15 ábrázolása esetén
adjuk meg (az előző két példához hasonló módon) az ezernél, a száznál, a t́ıznél, az egy tizednél, az
egy századnál és az egy ezrednél nagyobb számok közül a legkisebb ábrázolhatót illetve a kisebb
számok közül a legnagyobb ábrázolhatót, és számı́tsuk ki az abszolút, relat́ıv hibát. Hogyan
változik a relat́ıv hiba az eltárolt szám függvényében?

A nem pontos tárolás akkor is látható, ha meggondoljuk, hogy a bináris normalizált alak
feĺırásakor nem minden számjegy tárolható el, ı́gy azt kénytelenek vagyunk a tárolási méretre
csökkenteni.

1.4.4. példa. A mantissza 10 biten, az exponens 5 biten történő excess-15 ábrázolása esetén a
10000.125 ábrázolása (lásd az 1.3.1. feladatot a 10000 ábrázolásához):
10000.125 = 10011100010000.001[2] = 1.0011100010000001[2] · 2

13, azaz tárolni kellene a 0 elő-
jelet, a 00111000 10000001 mantisszát és a 13 exponenst, utóbbi az excess-15 ábrázolás mi-
att 11100 formában. Jól látszik azonban, hogy a mantissza 10 biten történő tárolása miatt
a 0011100010000001 első t́ız karaktere tárolható csak el, ı́gy kényszerű kereḱıtés történik: a
10000.125 helyett a 10000 kerül tárolásra. (Ezen nem csodálkozhatunk, hiszen az 1.4.1 példában
láthattuk, hogy 10000 és 10008 között nem tárolható el más szám.)

1.4.5. feladat. Mi történik a lebegőpontos szám ábrázolási határaival ill. pontosságával, ha a

• mantissza méretét 1 bittel növelem?

• exponens méretét 1 bittel növelem?

1.5. Alulcsordulás

A túlcsorduláshoz (ami pozit́ıv vagy negat́ıv irányban túl nagy szám ábrázolásának ḱısérletét
jelenti, azaz a számábrázolási intervallumból lépünk ki) hasonló az alulcsordulás [underflow]:
olyan kis abszolút értékű számot akarunk ábrázolni, ami már nem ábrázolható.

A kettes számrendszerben történő normalizált ábrázolásnak köszönhető megtakaŕıtás (azaz
hogy a mantissza első számjegye fixen 1, ı́gy a mantisszának csak az 1-től jobbra lévő részét
tároljuk el, ezzel 1 bitet megtakaŕıtva) hátrányos hatása itt jelentkezik: a legkisebb tárolható
mantissza 1.0 . . . 0, a legkisebb karakterisztika AKmin (ahol A jelenti a számrendszer alapját,
Kmin pedig a legkisebb ábrázolható karakterisztikát), a legkisebb tárolható pozit́ıv szám ezek
szorzata: 1.0 . . . 0 ·AKmin = AKmin .

1.5.1. példa. 10 bites mantissza és 5 bites excess-15 exponens tárolás esetén a legkisebb ábrá-
zolható pozit́ıv szám: 1.0 . . . 0 · 2−15 = 1

215 = 0.000030517578125.

1.5.2. példa. 10 bites mantissza és 5 bites excess-15 exponens tárolás esetén a legnagyobb
ábrázolható negat́ıv szám: −1.0 . . . 0 · 2−15 = −

1
215 = −0.000030517578125.

Az előző két példa eredményéből következik, hogy a nullát sem tudjuk ábrázolni!
Sajnos a legkisebb pozit́ıv és a legnagyobb negat́ıv érték között a szomszédos távolságokhoz

képest nagy ábrázolhatatlan tartomány húzódik, amit alulcsordulási résnek [underflow gap] ne-
vezünk (lásd a 4. ábrán). A kis számok ábrázolhatatlansága mellett sokkal nagyobb probléma
az, hogy ha az eddigiek alapján járnánk el, akkor bármely két ábrázolható lebegőpontos szám
különbsége nem biztos, hogy ábrázolható maradna, azaz nullával helyetteśıtődne. Ez óriási prob-
léma a kis abszolút értékű számokkal dolgozó algoritmusok esetében: ha egy kivonás után nem
garantálható, hogy az eredmény ábrázolható (azaz nem nulla), akkor hogyan lehetnénk abban
biztosak, hogy a következő számı́tás nem fog hibához vezetni? Példák: Ha egy számot elosztunk
másik két, nem nulla szám különbségével, lehet, hogy nullával fogunk osztani? Ha egy nem nulla
számból kivonunk egy másik nem nulla számot, majd később ugyanezt hozzáadjuk, akkor nem
fogjuk visszakapni az eredeti számunkat?

1.5.3. példa. Számı́tsuk ki 10 bites mantissza és 5 bites exponens excess-15 tárolása esetében
a második legkisebb pozit́ıv számot: 1.0000000001 · 2−15 = 2−15 + 2−25. Ha ebből kivonjuk a
legkisebb ábrázolható számot (lásd Az 1.5.1. példát) az eredmény 2−25 lesz, ami nyilván nem
ábrázolható 10 bites mantisszán és 5 bites exponensen excess-15 formában (az eddig ismertetettek
szerint).

4

0

1−1

0

1−1

4. ábra. Lebegőpontos számábrázolás esetén
a nulla körüli alulcsordulási rés

(2 bites mantissza, 3 bites exponens excess-4 módon tárolva).

2. Az IEEE 754 lebegőpontos számábrázolás

A lebegőpontos számok ábrázolásának a gyakorlatban is alkalmazott nemzetközi szabványa a
az IEEE 754 = IEC 599 = ISO/IEC 60559. Az ebben definiált konkrét bináris lebegőpontos
ábrázolások közül néhány látható az 5. ábrán. A szabvány a tárgyaltakon ḱıvül még sok más
tulajdonságot, funkciót is definiál, például a kereḱıtés szabályait, műveleteket, kivételkezelést, sőt
t́ızes alapú lebegőpontos számábrázolást is, de ezekkel jelen tárgy keretében nem foglalkozunk.

elnevezés mantissza karakterisztika karakterisztika
mérete [bit] mérete [bit] eltolás

binary16 10 5 15
binary32 23 8 127
binary64 52 11 1023
binary128 112 15 16383

5. ábra. IEEE 754 = IEC 599 = ISO/IEC 60559
szabványos bináris lebegőpontos t́ıpusok jellemzői

2.1. Tárolási sorrend

A lebegőpontos szám tárolási sorrendje a következő: előjel, exponens, mantissza.

2.1.1. példa. Az 1.3.1. példa esetében (binary16 formátum) tárolandó: 0 11100 0011100010.

2.1.2. példa. Az 1.3.2. példa esetében (binary16 formátum) tárolandó: 1 01011 0100000000.

2.1.3. példa. A binary16 formátumban tárolt 0000 0100 0000 0000 bitminta értelmezése: előjel:
0, exponens: 00001, exponens értéke: 1 − 15 = −14, mantissza: 0000000000, kiegésźıtve a nem
tárolt bittel: 1.0000000000, azaz a tárolt szám: 1.0000000000 · 2−14 = 2−14.

2.1.4. példa. A binary16 formátumban tárolt 0000 0100 0000 0001 bitminta értelmezése: előjel:
0, exponens: 00001, exponens értéke: 1 − 15 = −14, mantissza: 0000000001, kiegésźıtve a nem
tárolt bittel: 1.0000000001 azaz a tárolt szám: 1.0000000001 · 2−14 = 2−14 + 2−24.

2.1.5. feladat. Mondjuk példát olyan műveletre vagy relációra, amelyet könnyebb elvégezni,
ha az eltolt számábrázolást használjuk az exponens tárolására és a tárolási sorrend: exponens,
mantissza (azaz nem a normalizált alak sorrendje: mantissza, exponens)

2.2. Subnormált ábrázolás

Az alulcsordulási hiba megszüntetéséhez – az IEEE 754 szabványnak megfelelve – az előzőekben
tárgyaltakkal ellentétben a nullaként tárolt exponens értéket speciálisan kell kezelni: ebben az

5

esetben a mantissza legnagyobb helyiértékű bitjét az előzőekben megismert fix 1 helyett nullának
kell értelmezni, és az exponens eltolását is eggyel csökkenteni kell (azaz például excess-15-ről
excess-14-re):

2.2.1. példa. Az IEEE binary16 formátumban tárolt 0000 0000 0000 0001 bitminta értelmezése:
előjel: 0, exponens: 00000, exponens értéke: mivel az exponens tárolt értéke 0, az eredeti (excess-
15) értelmezés (0− 15 = −15) helyett a módośıtott számı́tási mód (excess-14) szerint: 0− 14 =
−14, mantissza: 0000000001, kiegésźıtve a nem tárolt bittel: 0.0000000001, azaz a tárolt szám:
0.0000000001 · 2−14 = 2−24. Ez az IEEE binary16 formátumban tárolható legkisebb érték.

2.2.2. példa. Az IEEE binary16 formátumban tárolt 0000 0000 0000 0010 bitminta értelmezése:
előjel: 0, exponens: 00000, exponens értéke: mivel az exponens tárolt értéke 0, az eredeti (excess-
15) értelmezés (0− 15 = −15) helyett a módośıtott számı́tási mód (excess-14) szerint: 0− 14 =
−14, mantissza: 0000000010, kiegésźıtve a nem tárolt bittel: 0.0000000010, azaz a tárolt szám:
0.0000000010 · 2−14 = 2−23 = 2 · 2−24.

2.2.3. példa. Az IEEE binary16 formátumban tárolt 0000 0000 0000 0011 bitminta értelmezése:
előjel: 0, exponens: 00000, exponens értéke: mivel az exponens tárolt értéke 0, az eredeti (excess-
15) értelmezés (0− 15 = −15) helyett a módośıtott számı́tási mód (excess-14) szerint: 0− 14 =
−14, mantissza: 0000000011, kiegésźıtve a nem tárolt bittel: 0.0000000011, azaz a tárolt szám:
0.0000000011 · 2−14 = 3 · 2−24.

Ha az IEEE binary16 formátumban tárolható második legkisebb pozit́ıv számból (lásd a 2.2.2.
feladatot) kivonjuk az ábrázolható legkisebb pozit́ıv számot (lásd a 2.2.1. feladatot), akkor ered-

ményül 2−24-et kapunk, ami szintén ábrázolható. Így az IEEE 754 számábrázolási módszerrel
bármely két nem nulla ábrázolható szám különbsége kizárólag akkor nulla, ha a két szám meg-
egyezik. Ez egy nagyon fontos numerikus tulajdonság!

2.2.4. példa. Az IEEE binary16 formátumban tárolt 0000 0000 0000 0000 bitminta értelmezése:
előjel: 0, exponens: 00000, exponens értéke: mivel az exponens tárolt értéke 0, az eredeti (excess-
15) értelmezés (0− 15 = −15) helyett a módośıtott számı́tási mód (excess-14) szerint: 0− 14 =
−14, mantissza: 0000000000, kiegésźıtve a nem tárolt bittel: 0.0000000000, azaz a tárolt szám:
0.0000000000 · 2−14 = 0.

2.2.5. példa. Az IEEE binary16 formátumban tárolt 1000 0000 0000 0000 bitminta értelmezése:
előjel: 1, exponens: 00000, exponens értéke: mivel az exponens tárolt értéke 0, az eredeti (excess-
15) értelmezés (0− 15 = −15) helyett a módośıtott számı́tási mód (excess-14) szerint: 0− 14 =
−14, mantissza: 0000000000, kiegésźıtve a nem tárolt bittel: 0.0000000000, azaz a tárolt szám:
−0.0000000000 · 2−14 = −0.

A nulla kétfajta tárolási módjának az a jelentősége, hogy jelezhető, hogy az alulcsordult szám
milyen irányból közeĺıtette meg a nullát. (Hasonlóan jelezzük például a határérték számı́tásnál,
hogy a nullát milyen irányból közeĺıtjük meg: limx→0− f(x) illetve limx→0+ f(x))

A http://babbage.cs.qc.cuny.edu/IEEE-754/index.xhtml oldalon kipróbálhatók, ellenőrizhe-
tők az átváltások.

2.3. Végtelenek és a NaN

Az IEEE 754 lebegőpontos számábrázolások a valós számokon ḱıvül képesek tárolni a ∞-t és
−∞-t, továbbá a speciális NaN (Not a Number) értéket. Ez utóbbit kapjuk eredményül (többek
között) akkor, ha nullát nullával osztunk vagy ha negat́ıv számból vonunk négyzetgyököt.

Ha az exponens minden bitje 1 és a mantissza nulla, akkor az (előjeltől függően) ±∞ az
ábrázolt érték, ha a mantissza nem nulla, akkor NaN az ábrázolt érték.

2.3.1. feladat. Adjuk meg a legnagyobb binary16-ban ábrázolható számot!

2.4. Numerikus matematika

A numerikus matematika foglalkozik már meglévő számı́tási algoritmusok vizsgálatával illetve
olyan új algoritmusok tervezésével, amelyek figyelembe veszik, hogy a számı́tógépen végrehajtott

6

számı́tás során az előzőekben ismertetett hibák az egymás után végzett műveletek során ne
nőjenek olyan nagyra, hogy magának az eredménynek a használhatóságát veszélyeztetnék.

7

	1 A lebegőpontos számábrázolás
	1.1 Normalizált alak
	1.2 Bináris normalizált alak
	1.3 A lebegőpontos szám elemeinek tárolási mérete
	1.4 Lebegőpontos számábrázolás határai és pontossága
	1.5 Alulcsordulás

	2 Az IEEE 754 lebegőpontos számábrázolás
	2.1 Tárolási sorrend
	2.2 Subnormált ábrázolás
	2.3 Végtelenek és a NaN
	2.4 Numerikus matematika

