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1. Számrendszerek

A számrendszer [numeral system - nem numeric system!] a szám (mint matematikai fogalom) ı́rott
formában történő megjeleńıtésére alkalmas módszer. Ebben a részben a helyiértéken (poźıción)
alapuló számrendszereket tárgyaljuk. Léteznek nem poźıción alapuló számrendszerek is, ilyenek
például a sorrendiségen alapuló római számok, de ezekkel a továbbiakban nem foglalkozunk.

1.1. A számrendszer alapja és a számjegyek

A helyiértéken alapuló számrendszerek két legfontosabb paramétere a számrendszer alapja [base,
radix] és az egyes poźıciókba ı́rható számjegyek [digit]. Ezek nem függetlenek: a számrendszer
alapja meghatározza az egyes poźıciókba ı́rható számjegyek maximumát: ha a számrendszer A

alapú, akkor a legkisebb felhasználható számjegy a 0, a legnagyobb az A− 1.

1.1.1. példa. A t́ızes számrendszerben a 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegyek szerepelhetnek, a
nyolcas számrendszerben a 0, 1, 2, 3, 4, 5, 6, 7 számjegyek közül választhatunk, mı́g a kettesben a
0, 1 a két lehetséges számjegy.

T́ıznél nagyobb alapú számrendszerek esetében a számjegyek halmazát 9 után az ABC betűivel
egésźıtjük ki. A kis és nagybetűk között általában nem teszünk különbséget, bár egyes nagy
alapú számrendszereknél erre mégis szükség lehet.
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1.1.2. példa. A tizenhatos számrendszerben használható
”
számjegyek”: 0, 1, 2, 3, 4, 5, 6, 7, 8,

9, a, b, c, d, e, f (vagy 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Ha az a szövegkörnyezetből nem egyértelmű, a számrendszer alapját szögletes zárójelben a jobb
alsó indexbe téve jelölhetjük. Például: 5221[10], 726[8] vagy 80[16].

A jól ismert t́ızes alapú decimális számrendszeren ḱıvül az informatikában a leggyakrabban
használtak a következők: a kettes alapú bináris, a nyolcas alapú oktális és a tizenhatos alapú
hexadecimális. Az előzőekben emĺıtett, indexben történő számrendszer megadás mellett biná-
ris számrendszer jelölésére használatos a b postfix, oktális esetben egy kezdő 0 szerepeltetése,
hexadecimális számok esetén a 0x, 0X prefixek vagy a h postfix. Az informatikában ezeket a
jelöléseket használjuk a leginkább. Például: 100b (bináris), 065 (oktális), 0x243 (hexadecimális),
0X331 (hexadecimális), 22h (hexadecimális). Ha sem a szám előtt, sem utána, sem az indexében
nincs jelölve, akkor decimális számrendszerben értelmezzük a léırtakat.

1.2. Alaki- és helyiérték

Egy adott számrendszerben léırt szám esetében egy számjegy értéke egyenlő a számjegy alaki

érték ének és helyiérték ének szorzatával. A számjegy alaki értéke a számjegyhez tartozó érték, a
helyiérték pedig a számrendszer alapjának a poźıció szerinti hatványa. A 0, 1, . . . , 9 esetében az
alaki érték egyértelmű, a betűkkel kiegésźıtett esetben ezek: a=10, b=11, c=12, d=13 stb.

1.2.1. példa. A t́ızes számrendszerben feĺırt 32 szám esetében a 3 helyiértéke 101 = 10, mivel
az jobbról a második poźıción szerepel (és a helyiértékeket a nulladik hatványtól ind́ıtjuk), ı́gy
ebben a példában a 3 számjegy értéke: 3 · 101 = 3 · 10 = 30.

1.2.2. példa. A t́ızes számrendszerben feĺırt 32 szám esetében a 2 helyiértéke 100 = 1, mivel az
jobbról az első poźıción szerepel (és a helyiértékeket a nulladik hatványtól ind́ıtjuk), ı́gy ebben
a példában a 2 számjegy értéke: 2 · 100 = 2 · 1 = 2.

1.3. Egész számok léırása

Egész számokat általános esetben az anan−1 . . . a1a0 alakban ı́rhatunk fel, és az ı́gy feĺırt szám
értéke (A alapú számrendszert feltételezve):

(an ·An) + (an−1 ·A
n−1) + · · ·+ (a1 ·A

1) + (a0 ·A
0)

ami nem más, mint a léırt számjegyek (az előzőekben megismert módon kiszámolt) értékeinek
összege.

1.3.1. példa. Triviális példa: 405[10] = 4 · 102 + 0 · 101 + 5 · 100 = 400 + 5

1.3.2. példa. 405[8] = 4 · 82 + 0 · 81 + 5 · 80 = 256 + 5 = 261

1.3.3. példa. 1001101[2] = 1 ·26+0 ·25+0 ·24+1 ·23+1 ·22+0 ·21+1 ·20 = 64+8+4+1 = 77

1.3.4. példa. 0xA3 = 10 · 161 + 3 · 160 = 10 · 16 + 3 · 1 = 163

A negat́ıv egész számokat úgy ı́rjuk le, hogy abszolút értéküket az előző módon feĺırjuk valamely
számrendszerben, majd elé − jelet teszünk (bár ezt a jelölést a t́ızes számrendszeren ḱıvül a
gyakorlatban nem alkalmazzuk).

1.4. Nem egész számok léırása

Az egész számoknál megismert feĺırási módszert kiterjeszthetjük úgy, hogy a helyiértékek meg-
adásánál nem állunk meg a nulladik hatványnál, hanem folytatjuk azt a negat́ıv hatványokra
is, ı́gy lehetőségünk adódik nem egész számok léırására. Általános esetben tehát ennek alakja:
anan−1 . . . a1a0a−1 . . . a−k, és az ı́gy feĺırt szám értéke (A alapú számrendszert feltételezve):

an ·An + an−1 ·A
n−1 + · · ·+ a1 ·A

1 + a0 ·A
0 + a

−1 ·A
−1 + · · ·+ a

−k ·A−k
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Annak érdekében, hogy a mindkét végén (egész- illetve tört rész) tetszőlegesen bőv́ıthető feĺırás
egyértelmű legyen, ennek a két résznek a határát jelöljük tizedesvesszővel. Mi a magyar he-
lyeśırással ellentétben, a nem egész számok felsorolásának könnyebb olvashatósága érdekében a
továbbiakban a tizedespontos1 jelölést fogjuk alkalmazni. (Pl. 1,6, 2,4, 5,9 helyett 1.6, 2.4, 5.9)

1.4.1. példa. Triviális példa: 405.23[10] = 4 · 102 + 0 · 101 + 5 · 100 + 2 · 10−1 + 3 · 10−2 =

4 · 100 + 5 · 1 + 2 · 1
10 + 3 · 1

100

1.4.2. példa. 405.23[8] = 4 · 82 + 0 · 81 + 5 · 80 + 2 · 8−1 + 3 · 8−2 = 4 · 64 + 5 · 1 + 2 · 1
8 + 3 · 1

82 =

256 + 5 + 2
8 + 3

64 = 261 19
64 = 261.296875

1.4.3. példa. 1001101.01[2] = 1 ·26+0 ·25+0 ·24+1 ·23+1 ·22+0 ·21+1 ·20+0 ·2−1+1 ·2−2 =

64 + 8 + 4 + 1 + 1
4 = 77.25

Negat́ıv nem egész számok léırása a negat́ıv egész számok léırásához hasonlóan a − jel szám elé
ı́rásával történik (amit szintén csak a t́ızes számrendszer esetében használunk).

1.5. Átváltás számrendszerek között

Az adott számrendszerből t́ızes számrendszerbe váltást az 1.3 és az 1.4 részek példáiban hallgató-
lagosan már bemutattuk. A ford́ıtott átváltásra nem térünk ki (a módszer könnyen kitalálható,
lásd 1.6.5. feladat).

Az átváltás nagymértékben egyszerűsödik, ha binárisból oktális vagy hexadecimális szám-
rendszerbe kell átváltani: egyszerűen hármasával (oktális esetben) vagy négyesével (hexadecimá-
lis esetben) kell a bináris számjegyeket csoportośıtani, és az ı́gy képzett csoportokat átváltani:

1.5.1. példa. 1010111001[2] = 001 010 111 001[2] = 1271[8]

Az átváltás ford́ıtott irányban is hasonlóan egyszerű: az egyes oktális vagy hexadecimális szám-
jegyeket kell átváltani és az ı́gy kapott hármas illetve négyes bináris csoportokat egymás után
ı́rni:

1.5.2. példa. 2b9[16] = 0010 1011 1001[2] = 1010111001[2]

Oktálisból hexadecimálisba vagy decimálisból hexadecimálisba illetve ford́ıtva a bináris szám-
rendszert közbeiktatva is átválthatunk ezzel a módszerrel:

1.5.3. példa. 2b9[16] = 0010 1011 1001[2] = 1010111001[2] = 001 010 111 001[2] = 1271[8]

1.6. Feladatok

1.6.1. feladat. 1010111001[2] = ?[8] = ?[16]

1.6.2. feladat. 54[8] = ?[16]

1.6.3. feladat. 962[10] = ?[8] = ?[16]

1.6.4. feladat. 9a2d[16] = ?[2] = ?[8] = ?[16]

1.6.5. feladat. Adjunk algoritmust (módszert) decimálisból a) oktális-, b) hexadecimális szám-
rendszerbe történő közvetlen (tehát nem a bináris számrendszer közbeiktatásával történő) átvál-
tásra!

1.6.6. feladat. Minden racionális szám (tört) léırható bármilyen alapú számrendszerben véges
számjegy felhasználásával?

A http://www.exploringbinary.com/binary-converter/ oldalon kipróbálhatók, ellenőrizhetők az
átváltások.

1Ha nagyon pontosak akarunk lenni, akkor tizedespontról csak a t́ızes számrendszer használata esetén beszél-
hetnénk, bináris esetben inkább bináris pontról van szó (és hasonlóan oktális, hexadecimális stb. esetben).
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1.7. Számrendszerek pontossága

Fontos kiemelni, hogy nem egész számok feĺırása esetén nem biztos, hogy a szám pontosan
léırható véges számjeggyel! Sőt, egy konkrét nem egész szám ábrázolásának pontossága függ
a számrendszer alapjától: például az 1

3 t́ızes számrendszerben nem ı́rható fel véges számjeggyel,
ugyanakkor hármas számrendszerben pontosan feĺırható: 1

3 = 0.1[3] = 0.33333 . . .[10]

1.7.1. feladat. Adjunk meg néhány példát arra, amikor az egyik számrendszerben véges szám-
jeggyel feĺırható szám a másik számrendszerben nem ı́rható fel véges számjeggyel!

1.7.2. feladat. a) Adjunk meg néhány példát olyan számra, ami egyetlen számrendszerben sem
ı́rható fel véges számjeggyel! b) Feĺırhatók ezek a számok tört alakban? c) Milyen számhalmazt
alkotnak ezek a számok?

1.7.3. feladat. Kiválasztható olyan alapú számrendszer, amiben minden racionális szám pon-
tosan ábrázolható véges hosszú karaktersorozattal? Indokoljuk meg!

2. Mértékegységek

Az informatikában használatos legkisebb egység a bit [bit] (sok esetben b-vel rövid́ıtik, de a
legfrissebb szabvány2 a rövid́ıtés nélküli formát ajánlja, ami kézenfekvő a számrendszerek részben
tárgyaltak miatt, hiszen a b postfix a bináris számrendszert jelöli). Értéke 0 vagy 1 lehet.
Használhatjuk tárolókapacitás vagy információmennyiség jelölésére. Az utóbbi egy felsőbb éves
tárgy, az Információ és kódelmélet témája, mi itt csak a tárolási vonatkozásával foglalkozunk.

A bájt [byte] az informatika másik legfontosabb egysége, jele: B. Mi az általánosan elfogadott,
a gyakorlatban majdnem kizárólagosan használt 1 B = 8 bit átváltást használjuk, bár egyes
(egzotikus) architektúrák esetében ennél több vagy kevesebb bit is alkothat egy bájtot.

Az SI mértékegységrendszerben használatos k (kilo), M (mega), G (giga), T (tera), P (peta)
stb. prefixek mellett a bit és a bájt esetében használatosak a Ki (kibi), Mi (mebi), Gi (gibi), Ti
(tebi), Pi (pebi) stb. bináris prefixek is (lásd az 1. ábrán).

Fontos kiemelni, hogy az egyre nagyobb prefixek esetében egyre nagyobb a különbség az SI
és a bináris prefixek között. Például a G (10003) és Gi (10243) között a különbség kb. 7%, a T
(10004) és Ti (10244) között már kb. 10%.3

A kapcsolat a prefixek és a számrendszerek között ott fedezhető fel, hogy a használt prefixek
mindig a számrendszer alapja valamely hatványának hatványai. Az SI esetben ez a t́ız harmadik
hatványa (illetve ennek további hatványai), de ugyanez igaz a bináris prefixekre is, amikor is ez
a kettő tizedik hatványa (illetve ennek további hatványai).

SI bináris
prefix szorzó prefix szorzó

k (kilo) 1000 Ki (kibi) 1024
M (mega) 10002 Mi (mebi) 10242

G (giga) 10003 Gi (gibi) 10243

T (tera) 10004 Ti (tebi) 10244

P (peta) 10005 Pi (pebi) 10245

1. ábra. SI és bináris prefixek

3. Egész számok gépi ábrázolása

A gépi számábrázolás a számok (számı́tó)gépek memóriájában vagy egyéb egységében történő
tárolását vagy valamely adathálózaton történő tovább́ıtás formátumát adja meg.

2ISO/IEC 80000, Part 13 - Information science and technology
3Különösen fontos ez a háttértárak esetében, ahol a gyártók inkább az SI prefixeket használják, mert ı́gy egy

1000000000000 B méretű lemezegység esetében 1 TB-ot tüntethetnek fel, mı́g ugyanez a bináris prefixekkel csupán
0.9 TiB
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3.1. Nem negat́ıv egész számok ábrázolása

Egy nem negat́ıv (előjel nélküli) egész szám [unsigned integer] ábrázolása megegyezik a bináris
számrendszernél megismert léırással, azaz egy nem negat́ıv egész számot a kettes számrendszerbe
átváltott formájában tárolunk. A tömörebb ı́rásmód miatt ugyanakkor ezt legtöbbször nem
bináris, hanem hexadecimális formában ı́rjuk le. (Ne feledjük, hogy a binárisból hexadecimálisba
váltás nem más, mint négy bitesével csoportośıtás, ahogy azt az előzőekben láthattuk.)

A kapott értékeket általában valamilyen fix hosszon tároljuk (a nem használt helyiértékekre

nullát ı́runk), ami a gyakorlatban kizárólag egész byte méretű ábrázolást jelent. Így az előjel

nélküli egészek is legtöbbször 1, 2, 4, 8, . . . byte (8, 16, 32, 64, . . . bit) hosszúak lehetnek. Így is
h́ıvjuk ezeket: 8 bites előjel nélküli egész, 16 bites előjel nélküli egész stb.

3.1.1. példa. A 46[10] számot a memóriában a következőképpen tároljuk 1 bájton: 00101110
(=0x2E).

3.1.2. feladat. Az összeadás művelet hogyan végezhető el az előjel nélküli egész számok bináris
tárolása esetén? Adjunk erre módszert (algoritmust)!

3.1.3. feladat. Hogyan dönthető el két előjel nélküli egész számról, hogy melyik a nagyobb?
Adjunk rá algoritmust!

3.2. Negat́ıv egész számok ábrázolása

Ebben a részben a negat́ıv egészek ábrázolásának változatait tekintjük át.

3.2.1. Előjelbites ábrázolás

A legegyszerűbb módszer az előjeles egészek ábrázolására, ha az előjel nélküli egészek ábrázolá-
sához egy előjelet jelentő bitet adunk (ami 0, ha pozit́ıv az előjel és 1, ha negat́ıv az előjel) és az
ábrázolásból fennmaradó többi biten tároljuk a szám abszolút értékét az előzőekben tárgyaltak
szerint.

3.2.1. példa. A −32 előjelbites ábrázolása 8 biten (1 bit előjel + 7 bit érték): 10100000

3.2.2. példa. A 18 előjelbites ábrázolása 8 biten (1 bit előjel + 7 bit érték): 00010010

Ez a megoldás sok szempontból nem megfelelő: a legkézenfekvőbb probléma, hogy ezzel a mód-
szerrel lehetséges a +0 és a −0 ábrázolása is (8 biten ezek a következők: +0 = 00000000, -0
= 10000000), ami zavarhoz vezet (például a

”
nulla-e” vizsgálatot ı́gy két különböző értékre kell

megtenni), továbbá az ilyen módon feĺırt számokkal végzett műveletek bonyolultabbak, mint
amennyire az feltétlenül szükséges lenne.

3.2.3. feladat. A 3.1.2. feladatban kitalált összeadás művelet elvégezhető-e módośıtás nélkül az
előjelbites számábrázolási módszer használatával? Adjunk meg egy példát!

3.2.4. feladat. Módośıtsuk a 3.1.3. feladatban kitalált algoritmust, hogy az két előjeles szám
közül is ki tudja választani a nagyobbikat!

3.2.2. Kettes komplemens ábrázolás

Sokkal jobb eredményre vezet a kettes komplemens ábrázolás: ahelyett, hogy egy előjelbittel jelöl-
nénk az előjelet, a következő módon járunk el: a negat́ıv számhoz egyet hozzáadunk, az eredmény
abszolút értékét binárisan ábrázoljuk a megadott számú biten (az előzőekben tárgyaltak szerint,
mivel ez nem negat́ıv), végül az ı́gy kapott számjegyeket invertáljuk. Ebből a számı́tási módból
következik az ábrázolás neve: kettes komplemens.

A kettes komplemens számábrázolási módszert előjeles egész [signed integer] számábrázolás-
nak nevezzük.

3.2.5. példa. A −2 kettes komplemens ábrázolása 8 biten: −2+ 1 = −1 ennek abszolút értéke:
1, ábrázolva: 00000001, invertálva: 11111110.
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3.2.6. példa. A −19 kettes komplemens ábrázolása 8 biten: −19 + 1 = −18 ennek abszolút
értéke: 18, ábrázolva: 00010010, invertálva: 11101101.

Fontos tudnivalók:

• Kettes komplemens ábrázolásban is lehetséges nem negat́ıv számok ábrázolása, aminek
módja megegyezik az előjel nélküli egészek tárolási módjával. (Azaz ebben az esetben nem
kell az előzőekben ismertetett műveleteket elvégezni.)

• A kettes komplemens ábrázolásban már csak egyetlen ábrázolási módja van a nullának.

• Az esetek túlnyomó többségében a gépi számábrázolás során az előjeles egészek ábrázolására
a kettes komplemens ábrázolást használjuk.

3.2.7. feladat. Adjuk meg a 0 kettes komplemens ábrázolását 8, 16, 32, 64 biten!

3.2.8. feladat. Adjuk meg a −1 kettes komplemens ábrázolását 8, 16, 32, 64 biten!

3.2.9. feladat. Adjuk meg az 1 kettes komplemens ábrázolását 8 biten!

3.2.10. feladat. A 3.1.2. feladatban kitalált összeadás művelet elvégezhető-e módośıtás nélkül a
kettes komplemens számábrázolási módszer használatával? Adjuk össze az előző két feladatban
kiszámolt, 8 bites −1 és 1 értéket, és ellenőrizzük, hogy nullát kaptunk-e!

3.2.11. feladat. Két, kettes komplemens módon ábrázolt számról hogyan dönthető el, hogy me-
lyik a nagyobb? Alkalmazható módośıtás nélkül ugyanaz az algoritmus, mint a 3.1.3 feladatban?

3.2.3. Eltolt ábrázolás

Soroljuk fel egy listában az n biten történő előjel nélküli számábrázolással feĺırható értékeket
növekvő sorrendben. Az eltolt [excess] számábrázolási módszer ezeket az eltolás mértékében lefelé
tolja úgy, hogy az újonnan belépő elemek az érték szerint csökkenő negat́ıv számok legyenek (lásd
2. ábra).

tárolt adat adat értelmezése
3 biten előjel nélküli egész excess-2 excess-4

000 0 −2 −4
001 1 −1 −3
010 2 0 −2
011 3 1 −1
100 4 2 0
101 5 3 1
110 6 4 2
111 7 5 3

2. ábra. A 3 biten tárolható értékek előjel nélküli egész
és excess-2 illetve excess-4 szerinti értelmezése

3.2.12. feladat. Létezik olyan excess ábrázolás, ami a negat́ıv számok esetében megegyezik a
kettes komplemens ábrázolással?

A lista eltolása helyett az ábrázolandó értékeket úgy is megkaphatjuk, hogy az ábrázolandó
számhoz hozzáadjuk az eltolás mértékét, és az eredményül kapott számot ábrázoljuk az előjel
nélküli egész számábrázolási módszere szerint.

3.2.13. feladat. Mi biztośıtja, hogy az előző módszer működik? (Mi garantálja, hogy nem
negat́ıv számot kapunk, ha az ábrázolandó számhoz hozzáadjuk az eltolás mértékét?) Ha mégsem
működik, az mit jelent?
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3.2.14. példa. A −2 excess-2 ábrázolása 3 biten: −2 + 2 = 0, tehát ábrázolandó a 0 a nem
negat́ıv egészek ábrázolása szerint: 000 (lásd 2. ábra első sora).

3.2.15. példa. A −3 excess-4 ábrázolása 3 biten: −3 + 4 = 1, tehát ábrázolandó az 1 a nem
negat́ıv egészek ábrázolása szerint: 001 (lásd 2. ábra második sora).

3.2.16. példa. Az 5 excess-2 ábrázolása 3 biten: 5+2 = 7, tehát ábrázolandó a 7 a nem negat́ıv
egészek ábrázolása szerint: 111 (lásd 2. ábra utolsó sora).

3.3. Egész számok adatábrázolásainak összehasonĺıtása

3.3.1. feladat. Hasonĺıtsuk össze az előzőekben ismertetett, negat́ıv számok ábrázolására is
alkalmas módszereket az alábbi szempontok alapján:

• Az összeadás művelet elvégezhető ugyanúgy, mint a nem negat́ıv egészek ábrázolásánál?

• Két ábrázolt szám esetében a kisebb/nagyobb eldöntése (rendezés) elvégezhető ugyanúgy,
mint a nem negat́ıv egészeknél?

• Hányféleképpen ábrázolható a nulla?

• Hogyan végezhető el az invertálás (diszkrét matematikai nyelven az addit́ıv inverz számı́-
tása)?

• Hogyan végezhető el a kivonás művelet?

3.3.2. feladat. Hasonĺıtsuk össze a 8 bites számábrázolások esetén az előjel nélküli egész, az
előjelbites egész, a kettes komplemens, a 127-tel eltolt, a 255-tel eltolt és a 256-tal eltolt szám-
ábrázolásokat! (Táblázatosan foglaljuk össze: egy sor legyen a tárolt 8 bit, az oszlopok legyenek
a vizsgált ábrázolási módok, egy adott mezőbe ı́rjuk be a mező sorának megfelelő bitsorozat
értelmezését az oszlopnak megfelelő számábrázolás esetében, hasonlóan a 2. ábrához!)

3.4. Egész számok ábrázolási határai és pontossága

3.4.1. Előjel nélküli egész tárolás ábrázolási határai és pontossága

Az N biten történő, előjel nélküli egész számábrázolás esetén a tárolható legkisebb érték: 0, a
tárolható legnagyobb érték: 2N − 1.

Előjel nélküli egész számábrázolás esetében a tárolás pontos, hiszen csak egész számokat kell
tárolni, és a határokon belül minden egész szám pontosan tárolható. Ebből adódóan az ábrázolási
intervallumot az ábrázolható számok egyenletesen töltik ki (lásd a 3. ábrán).

0 2
N
−1 = 31

1

3. ábra. 5 bites előjel nélküli egész számábrázolás esetén
az ábrázolási intervallum és az ezen belül ábrázolható számok.

3.4.1. példa. Ha 8 bites előjel nélküli egész ábrázolást használunk, akkor a legkisebb ábrázolható
szám a 00000000 (értéke 0), a legnagyobb ábrázolható szám az 11111111 (értéke 255).

3.4.2. feladat. Mennyi a legnagyobb tárolható érték 8, 16, 32, 64 bites előjel nélküli egész
esetében?

3.4.3. feladat. Összesen hány különböző érték tárolható 8, 16, 32, 64 biten, előjel nélküli egész
számábrázolás esetében?
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3.4.2. Kettes komplemens tárolás ábrázolási határai és pontossága

Ha kettes komplemens módon ábrázolunk egy egész számot és ehhezN bit áll rendelkezésre, akkor
a tárolható legkisebb érték: −2N−1, a tárolható legnagyobb érték: 2N−1

−1. Kettes komplemens
számábrázolás esetében a tárolás pontos, hiszen csak egész számokat kell tárolni, és a határokon
belül minden egész szám pontosan tárolható. Ebből adódóan az ábrázolási intervallumot az
ábrázolható számok egyenletesen töltik ki (lásd a 4. ábrán).

0 2
N−1

−1 = 15− 2
N−1

 = − 16

1−1

4. ábra. 5 bites kettes komplemens számábrázolás esetén
az ábrázolási intervallum és az ezen belül ábrázolható számok.

3.4.4. példa. Ha 8 bites kettes komplemens ábrázolást használunk, akkor a legkisebb ábrázol-
ható szám az 10000000 (értéke -128), a legnagyobb ábrázolható szám a 01111111 (értéke 127).

3.4.5. feladat. Kettes komplemens ábrázolás esetén miért nem ugyanannyi szám tárolható a
pozit́ıv és a negat́ıv tartományban? (Azaz miért nem -127 és 127 vagy -128 és 128 a két határ?)

3.4.6. feladat. Mennyi az értéke a kettes komplemens ábrázolással, 8 biten tárolt 11111111
illetve a 00000000 számoknak?

3.4.7. feladat. Eldönthető egyszerűen (ránézésre) egy kettes komplemens módon ábrázolt szám-
ról, hogy az negat́ıv vagy pozit́ıv?

3.4.8. feladat. Összesen hány különböző érték tárolható 8, 16, 32, 64 biten, kettes komplemens
számábrázolás esetében?

3.4.9. feladat. Mi a kapcsolat a 3.4.3. feladat és a 3.4.8. feladatban kapott eredmények között?

3.4.3. Eltolt tárolás ábrázolási határai és pontossága

Az N biten történő eltolt-M ábrázolás esetén a legkisebb ábrázolható szám a −M , a legnagyobb
ábrázolható szám a −M + 2N − 1. Eltolt számábrázolás esetében a tárolás pontos, hiszen csak
egész számokat kell tárolni, és a határokon belül minden egész szám pontosan tárolható. Ebből
adódóan az ábrázolási intervallumot az ábrázolható számok egyenletesen töltik ki (lásd az 5.
ábrán).

0−M = −16 −M+2
N
−1 = 15

−1 1

5. ábra. 6 bites excess-16 számábrázolás esetén
az ábrázolási intervallum és az ezen belül ábrázolható számok.

3.4.4. Túlcsordulás

Az egész számok véges biten történő ábrázolása miatt mindig van legkisebb és legnagyobb áb-
rázolható szám. Amikor műveletet végzünk, elképzelhető, hogy a művelet eredménye már nem
ábrázolható az operandusokkal megegyező méretben. Ezt a jelenséget túlcsordulásnak [overflow]
nevezzük. Túlcsordulás tehát lehetséges pozit́ıv és negat́ıv irányban is! Figyelem, az alulcsordulás
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(lásd a ??. részt) nem a negat́ıv irányban történő túlcsordulást jelenti! Könnyebben megjegyez-
hető, ha úgy tekintünk a túlcsordulásra, hogy a szám abszolút értéke túl nagy és emiatt nem
ábrázolható.

Túlcsordulás esetén – megvalóśıtástól függően – lehetséges

• levágás: a túlcsordult eredmény még ábrázolható részét tároljuk, a nem ábrázolható részt
egyszerűen

”
elfelejtjük”. 4 A legtöbb architektúra ı́gy működik.

• szaturáció: a túlcsordult eredmény helyett a legnagyobb illetve legkisebb ábrázolható ér-
téket tároljuk.

3.4.10. példa. Túlcsordulás pozit́ıv irányban: ha 8 bites előjel nélküli egészekkel dolgozunk,
a 156+172=328 összeget már nem tudjuk 8 biten tárolni (mert a legnagyobb tárolható érték a
255).

3.4.11. példa. Túlcsordulás negat́ıv irányban: ha 8 bites előjeles egészekkel dolgozunk, a -84+(-
79)=-163 összeget már nem tudjuk 8 biten tárolni (mert a legkisebb tárolható érték a -127).

3.4.12. példa. Levágás: ha 8 bites előjel nélküli egészekkel dolgozunk, a 156[10] = 10011100[2]
és a 172[10] = 10101100[2] valódi összege (328[10] = 101001000[2]) helyett annak a 8 utolsó bitjét
tároljuk: 01001000.

3.4.13. példa. Szaturáció: ha 8 bites előjel nélküli egészekkel dolgozunk, a 156[10] = 10011100[2]
és a 172[10] = 10101100[2] valódi összege (328[10] = 101001000[2]) helyett az ábrázolható legna-
gyobb számot tároljuk: 11111111.

3.4.14. feladat. Mi (volt) az Y2K probléma? Mi a kapcsolat a túlcsordulás és az Y2K probléma
között?

4Például mechanikus gázóránál vagy régebbi autók kilométer számlálójánál figyelhető meg ilyen jelenség, mert
fix számú helyiértéken történik a mérés. A kilométer számlálók tekintetében ezt a tulajdonságot kihasználva
tekerik körbe egyes nepperek az órát, hogy a kocsi kevesebbet futottnak tűnjön.
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