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1. Val6s szamok
1.1. Cantor-féle kozospont tétel
Adottak az Iy, Iy, ..., I,, -+ C R egymasba skatulyazott, zart intervallumok, melyekre
I, C Iy4q.
Ha lim,,_, |I,| = 0, akkor !z € R amire z € I,, Vn esetén.
Bizonyitas
Indirekten bizonyitunk. Tegyiik fel ugyanis, hogy két ilyen szam van, azaz legyen z,y € I,

Vn esetén. Legyen x —y = 6. Mivel lim,,_, |I,| = 0 ezért |[,| < 0 tud teljesiilni. Ez
viszont ellentmond azzal, hogy x,y € I, Vn esetén.

1.2. Dedekind axiéma

Legyen
Q=AUB

ahol AN B = (). Legyen tovabba Va € A és Vb € B esetén a < b. Ekkor 3z € R, hogy
Va € A-ra és Vb € B-re

és
teljesiil.

1.3. Alulrél korlatos halmaz
Adott H C R alulrél korlatos, ha dk € R, melyre

k<z VzeH.

1.4. Felulrsl korlatos halmaz

Adott H halmaz feliilr6l korlatos, ha 3K, melyre

K>x Vxe H.

1.5. Korlatos halmaz

Adott H halmaz korlatos, alulrél és feliilrél is korlatos, azaz 3K € R, amire

K > |z| VYxe€ H.



1.6. Infimum

Adott H alulrol korlatos halmaz. Ekkor a legnagyobb alsoé korlat a halmaz infimuma,
inf(H).

1.7. Tétel
Adott H alulrdl korlatos halmaz esetén létezik inf(H).

Bizonyitas
Legyen a; az also korlat. Ha a; € H akkor kész vagyunk. Tehat legyen a; ¢ H, és legyen
by € H egy tetszdleges elem, ahol by > ay. Legyen I = [ay, b;] és definidljuk a ¢ := “1241’1
szamot.
Ha ¢, also korlat, akkor legyen ay := ¢y és by := b;. Ha ¢y nem also korlat, akkor legyen
as := ay és by := ¢1. Legyen tovabba Iy = [ag, by).
Ezt a lépést a végtelenségig ismételve egy egymasba skatulyazott, zart intervallumrend-
szert kapunk, melyre lim,, ,, |,| = 0, hiszen minden lépésben felezédik az intervallum
hossza. Tehat a Cantor-féle kozospont tétel miatt létezik egy darab kozos pont. Ez a
kozos pont nagyobb vagy egyenld, mint az aj szamok, tehat biztosan alsé korlat. Tovab-
bé kisebb vagy egyenl§ az Gsszes b, szamnal, igy nincs nala nagyobb als6 korlat. Tehéat
valoban létezik infimum.

1.8. Szuprémum

Adott H feliilr6l korlatos halmaz. Ekkor a legkisebb fels6 korlat a halmaz szuprémuma,
sup(H).

1.9. Tétel

Adott H feliilrsl korlatos halmaz esetén létezik sup(H).

Bizonyitas
Az 1.7. analogidjara.

1.10. Bels6 pont

Adott H halmaz bels6 pontja zo € R, ha de > 0 amire
(xg —€,x9+€) C H.

A belsé pontok halmaza az int(H).



1.11. Kiils6 pont
Adott H halmaz kiilsé pontja xq, ha de > 0 amire

(xo — €,m0 +€) N H # 0.

A kiils6 pontok halmaza az ext(H).

1.12. Hatarpont
Adott H halmaz hatarpontja xg, ha Ve > 0
(o —€,x0+€)NH#

és
(xo—€, 2 —0+e)NHY £0(
ahol H® a H halmaz komplementere. A hatarpontok halmaza a 0H.

1.13. Nyilt halmaz
Adott H halmaz nyilt, ha Vag € H ¢ € int(H).

1.14. Zart halmaz
Adott H halmaz zart, ha 0H C H.

1.15. Lezarasi pont

Adott H halmaz lezarési pontja zo € H, ha Ve > 0 esetén

(xo — 6,20 +€) N H # .

1.16. Torlo6dasi pont
Adott H halmaz torlodasi pontja xg € H, ha Ve > 0 esetén

(ko —€,x0+€) NH

tartalmaz legalabb egy x(-t6l kiilonb6z6 H-beli elemet.

1.17. Halmaz lezartja

Adott H halmaz lezartja tartalmazza H Osszes lezarasi pontjat, azaz a legkisebb olyan
halmaz, mely tartalmazza H-t, és H Osszes torlodasi pontjat. Fennéll tovabbé, hogy

H=HUOH

ahol H a H halmaz lezértja.



1.18. Haromszog egyenlétlenség

Legyen aq,as, ..., a, € R, ekkor

n

>

i=1

n
< lail.
i=1

Egyenl6ség, ha Vi,j a; = a;.
Bizonyitas
Teljes indukciéval konnyen lathaté. Ugyanis n = 2-re trividlis, hiszen

ta; < |a| + ag < |ay|

igy ezeket Osszegezve
j:(al + Gz) < |a1\ + |a2\

amib6l |a; + az| < |aq] + |asl.
Tegyiik fel, hogy valamilyen n-re teljesiil az allitas! Kéne, hogy n + 1-re is teljestiljon.

n+1 n n n n+1
D larl = larl + lansal = | ak| + langa] = | D ak+ann| = | a
k=1 k=1 k=1 k=1 k=1

Ezzel belattuk az allitéast.

1.19. Bernoulli-egyenlétlenség

Legyen n € N és h € R, ekkor
(L+h)" >1+4 hn.

Egyenl6ség, ha h =0, n =0 vagy n = 1.
Bizonyitas
Lathato, hogyha h = 0 vagy n = 0, akkor teljesiil az egyenléség. Legyen tehéat h # 0, és

alkalmazzunk teljes indukciot! n = 1-re trivialis az egyenlGség. Tegytik fel, hogy teljestil
valamilyen n-re az allitds! Kéne, hogy n + 1-re is teljesiiljon.

(I+R)"™ =0+h)" - (1+h)>1+nh)(1+h)=1+n+1Dh+nh*>>1+ (n+1)h

Ezzel belattuk az allitast.

1.20. Szamtani és mértani kozép kozti egyenlStlenség

Legyen aq,as,...,a, >0 € R, ekkor
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Egyenléség, ha Vi,j a; = a;.

Bizonyitas
ElGszor egy gyengébb allitast fogunk bebizonyitani.
Legyen n > 2 € N, és legyenek az z, > 0 € R ahol £ = 1,2, ..., n olyan szamok, amelyek
kozott van legalabb kettd kiilonbo6zé és

EZ:l Lk = 1.

n

Ekkor .
HiL‘k < 1.
k=1

Alkalmazzunk teljes indukciot! n = 2 esetén az allitas trivialis. Tegyiik fel, hogy valami-
lyen n-re teljesiil az allitas! Kéne, hogy n + 1-re is teljesiiljon.

Tekintsiik az x; szamokat, ahol k = 1,2,...,n+1 és legyen x, := 1+1;. Legyen tovabba
az xj szamok szamtani kozepe 1. Ez azt jelenti, hogy ZZ:} tr = 0, azaz van koztiik pozi-
tiv és negativ is, hiszen nem mind egyforma. Az altalanossag sériilése nélkiil feltehetjiik,
hogy t, < 0 < t,41. Legyen ekkor x) =141, +t,r1 > 1+, +thp1 +tnlni1 = Tn - Ty
Ekkor azt latjuk, hogy

n—1 n+1
x1+x2+---+xn_1+x;:21+ti+1+tn+tn+1 :n+Z:n
k=1 k=1
azaz az T, To, ..., Tn_1, T, szamtani dtlaga 1 és nem mind egyforma. Ekkor az indukcios

feltevés miatt a szorzatok valoban kisebb, mint 1.
Konnyen lathato, hogyha az Osszes xp szdm egyenld, akkor x, = 1, igy a szorzatok is 1.
Tehat megfogalmazhatjuk, hogy tetszéleges ;. > 0 szamokra ahol k =1,2,...,n, és

ZZ:1 Lk

n

=1

teljestil, akkor
k=1

Legyenek adottak az ap szamok, ahol k = 1,2,...,n. Legyen tovabba

A _ ZZ:l Ak
n
és legyenek x, = %¢. Ekkor az x;, szdmok szdmtani kozepe 1, igy

ka Hk 1ak<1



azaz

Ha/k SA’R: (Zklak)
n

k=1

amibdl kapjuk is a bizonyitandot.

Megjegyzés: Az adott a; szamok k-adik hatvanykozepe

1
no e\ b
Ck(alyag,...,an) — (L)

Belathato egyrészt az, hogyha k; < ko, akkor

(a1, ag, ... a,) < cpylag,as, ..., ap).

Maésrészt hatarértékekkel belathato az is, hogy

Ez azért érdekes, mert £k = —1 esetén a harmonikus koézepet kapjuk, £ = 0 esetén
a mértani (geometriai) kozepet, k = 1 esetén a szamtani (aritmetikai) kozepet, illetve
k = 2 esetén a négyzetes (kvadratikus) kozepet.
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2. Sorozatok, végtelen sorok

2.1. Sorozat

Szamsorozat egy olyan N — R hozzarendelés, mely Vn € N-hez hozzarendel egy a,, € R
szamot. Ekkor a sorozatot (a,)-el jeloljik.

2.2. Korlatos sorozat

Az (a,) sorozat korlatos, hogyha H = {a,} korlatos.

2.3. Monoton sorozat

Az (a,) sorozat monoton né (csokken), ha n < m esetén a,, < a,, (a, > a,).

2.4. Konvergens sorozat

Azt mondjuk, hogy az (a,) sorozat konvergens, és

lim a, =A
n—oo

ha Ve > 0-hoz dng kiiszobindex, melyre Vn > ng esetén

la, — Al < e.
Ekkor

lim a, = A

n—oo
egyértelmd.

2.5. Divergens sorozat

Ha (a,) nem konvergens, akkor divergens.

2.6. Végtelenbe divergalas

Azt mondjuk, hogy

lim a, = o0
n—oo

ha VK € R-hez (Vk € R-hez) 3ng kiiszobindex, melyre ¥n > ng esetén a,, > K (a, < k).

2.7. Altalanos hatarérték

Altalanosan mondhatjuk, hogy

lim a, = A
n—oo

ha A tetszéleges U kornyezetéhez dng, melyre Vn > ng esetén a,, € U.

11



2.8. Tétel

Konvergens sorozat korlatos.
Bizonyitas
Rogzitsiink egy e-t, és a hozzatartozo ng kiiszobindexet. Legyen tovabba lim,, . a, = A.

Ekkor az (a,) sorozatnak az (A — €, A + ¢€) intervallumon kiviil véges sok eleme van, igy
ennek a véges sok elemnek létezik minimuma és maximuma, tehat létezik

m := min{a,|n < no} M := max{a,|n < ng}.

Ekkor fels6 korlatnak jo lesz max(M, A + €), also korlatnak pedig min(m, A — ¢).

2.9. Tétel

Ha egy sorozat monoton és korlatos, akkor konvergens.

Bizonyitas
Legyen H = {a,} feliilrd] (alulrol) korlatos halmaz. Ekkor létezik sup(H) = A (inf(H) =
A). A monotonitas miatt ez azt jelenti, hogy Ve > 0-hoz Ing kiiszobindex, melyre n > ny

esetén
A—e<a, <A< A+e

(A—6<A§an<A+€>

teljestil. Ekkor a hatarérték definiciojabol lim,, o a, = A.

2.10. Hatarértékek tulajdonsagai
1. Linearitas

lim (a-a,+f-b,) =« lim a, + § lim b,
n—00 n—00 n—00

lim a, - b, = lim a, - lim b,
n—oo n—o0 n—oo

3. Tegyiik fel, hogy lim,, . b, # 0. Ekkor

4. Monotonitas
Legyen a,, < b, valamilyen kiiszobindex utan. Ekkor (ha léteznek a hatarértékek)

lim a, < lim b,.
n—oo n—o0

12



5. Rendoér-elv
Legyen a,, < b, < ¢, valamilyen kiiszobindex utan. Legyen tovibba

lim a, = lim c,.
n—oo n—oo

Ekkor (ha léteznek a hatarértékek)

lim a, = lim b, = lim c,.
n—oo n—o0 n—oo

Bizonyitas
Legyen
lim a, = A lim b, = B.

n—o0 n—oo

1. Legyen o # 0 és 8 # 0. Legyen tovabba az (a,) sorozatnél az ﬁ szamhoz tartozo

kiiszobindex nq, a (b,) sorozatnal az szamhoz tartozo kiiszobindex pedig na.

27
Ekkor ng := max(ny, ny) mellett

’aan+ﬁbn — (ozA—i—ﬁB)‘ < ‘aan — ozA’ + |an—|—ﬁB| =

€ €
:|a||an_A|+|6||bn_B|<|a|' + - = €.
2|a 2|
2. Legyen A # 0. Mivel a (b,) sorozat konvergens, korlatos is, azaz 3K > 0, melyre
bn] < K ¥n € N. Legyen tovabbéd az (a,) sorozatnal az ;% szdmhoz tartozo

kiiszobindex nq, a (b,) sorozatnal az szamhoz tartozo kiiszobindex pedig ns.

4]
Ekkor ng := max(ny, ny) mellett

{anbn - (AB)| = ’(an - A)bn + (bn - B)A} = |an - Aan| + |bn - B||B| <

€ €
<— K+ — Al =¢
i K gy Al=e
3. Azt fogjuk belatni, hogy lim,, . b, = B # 0 mellett
i 1 1
im — = —
n—oo bn B
Legyen ugyanis a (b,) sorozatnal az @ szémhoz tartozo kiiszobindex ny, az @

szamhoz tartozo kiiszobindex pedig ny. Ekkor ng := max(nq, ny) mellett

|bw—B| |bo—B] 4B
T lb.B] T BE S BE TS
2 2

1 1‘_’B—bn

b, B| | b,B

4. Trivialis.

kiiszobindex utan
B—e<a,<b,<c,<B+e.

13



2.11. Részsorozat

Adott az (a,) sorozat, és az (ng) végtelen index-sorozat, ahol Vk € N esetén n, € N
teljesiil, és Vk < j esetén ny < n;. Ekkor az (a,,) az (a,) részsorozata.

2.12. Tétel

Ha (a,) monoton, korlatos, vagy konverges, akkor (a,, ) is monoton, korlatos, vagy kon-
vergens.

Bizonyitas
Trivialis.
2.13. Csucselem

Adott (a,) sorozatban a,, csucselem, ha Vn > m esetén a, < a,,.

2.14. Tétel

Minden sorozatnak van monoton részsorozata.

Bizonyitas
Legyen el6szor az (a,) sorozatnak végtelen sok csticseleme. Ekkor legyen e csticselemek
indexe ny ahol n; < n; ha i < j. Ekkor az (a,,) sorozat monoton fogyo.
Tegyiik fel, hogy az (a,) sorozatnak csak véges sok csicseleme van. Legyen ekkor az
utolsod cstcs indexe n, és legyen n; :=n+ 1. Mivel a,,, mar nem lehet csics, ezért létezik
nala nagyobb elem, legyen ez a,,. Mivel a,, sem cstcs, ennél is létezik nagyobb elem.
Ezt a végtelenségig folytatva tudunk konstrualni egy (a,,) monoton névs sorozatot.

2.15. Bolzano-Weierstrass tétel
Minden korlatos sorozatnak van konvergens részsorozata.
Bizonyitas

Belattuk, hogy korlatos sorozatnak létezik monoton részsorozata. Mivel ez a részsorozat
korlatos és monoton, konvergens is.

2.16. Nullsorozat

Az (a,) sorozat nullsorozat, ha

lim a, = 0.
n—oo
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2.17. Tétel

1. Lathato, hogy (a,) nullsorozat akkor és csak akkor, hogyha (]a,|) nullsorozat.
2. Azt mondjuk, hogy
lim a, =A
n—oo
ha az (a, — A) sorozat nullsorozat.
3. Legyen (a,) nullsorozat, és (b,) korlatos sorozat. Ekkor (a, - b,) is nullsorozat.

4. Legyen (a,) és (b,) nullsorozat, ekkor (a, £ b,) is nullsorozat. Legyen tovabba
c € R, ekkor (c- a,) is nullsorozat.

5. Legyen lim,, ,, a, = 00 és

. i, ha a, >0
e 0, ha a, <0.
Ekkor lim,, b, = 0, azaz (b,) nullsorozat.

6. Legyen lim,, ,,, a, = oo és (b,) alulrél korlatos sorozat. Ekkor

lim a, - b, = oco.

n—oo

Hasonloan, ha lim,, ., a, = —o0 és (b,,) feliilr6l korlatos sorozat, akkor
lim a, - b, = —o0.
n—0o0

7. Legyen lim,,_,, a,, = 0 és lim,_,, b, = co. Ekkor lim,,_, a, - b, lehet 0, konstans,
vagy =£00.

2.18. Osszehasonlité kritériumok

1. Legyen (a,) nullsorozat és (b,) egy olyan sorozat, melyre |b,| < |a,| teljesiil Vn € N
(adott kiszobindex utan). Ekkor (b,,) is nullsorozat.

2. Legyen lim,,_,o, a, = oo és (b,) egy olyan sorozat, melyre b, > a,, teljesill Vn € N
(adott kiiszobindex utén). Ekkor lim, ., b, = o0.

2.19. Nagysagrendek
Belathato, hogy az aldbbi sorrend all fenn:

n">n!l>E > nk( > logn)
Ez azt jelenti, hogy példaul

lim — = oo
n—oo k"
és N
.oon
lim — =0
n—oo k"



2.20. Cauchy kritérium

Azt mondjuk, hogy az (a,) Cauchy sorozat, vagy teljesiti a Cauchy kritériumot, hogyha
Ve > 0-hoz dng kiiszobindex, melyre Vn, m > ng esetén

|, — am| < €

teljestil.

2.21. Tétel

Az (a,) sorozat akkor és csak akkor konvergens, hogyha teljesiti a Cauchy kritériumot.

Bizonyitas
Legyen (a,) konvergens. Azt fogjuk belatni, hogy ekkor Cauchy sorozat.
Tudjuk, hogy valamilyen kiiszbindex utan

€ €
n— Al < = m— Al < =.
=A< S an—Al<S
Ekkor
lan — am| = |a, — A+ A — ap| <|a, — A| + |am — A] <e.

Legyen (a,) Cauchy sorozat. Azt fogjuk belatni, hogy ekkor konvergens.

Elgszor lassuk be, hogy egy Cauchy sorozat korlatos!

Tudjuk, hogy valamilyen ng kiiszobindex utan |a,, — a,,| < €, azaz a,, € (an, — €, a,, + €.
Ekkor ezen az invertvallumon kiviil csak véges sok eleme van a sorozatnak, azaz

K := max{|a,| + €, |ax||k < no}

jo korlat. Tehat az (a,,) Cauchy sorozat korlatos, emiatt van konvergens részsorozata.
Legyen a részsorozat (ay, ) ahol lim_, a,, = A.
Tudjuk, hogy valamilyen kiiszobindex utan

€

la, — an| < )

€
|a’nk - A| < 5
teljesiil. Ekkor

an = Al = an = @y + n, — Al = [an — ] + lan, — A <.

2.22. Torlédasi pont

Az adott (a,) sorozatban ¢ € R torlodasi pont, ha Ve > O-ra a (t — €,t + €) intervallum
végtelen sok elemét tartalmazza az (a,) sorozatnak.
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2.23. Limesz inferior

Az (a,) sorozat torlodasi pontjainak infimuma a liminf, . a,, vagy lim, . ..a,.

2.24. Limesz szuperior

Az (a,) sorozat torlodasi pontjainak szuprémuma a limsup,, .. a,, vagy lim, ,..a,.

2.25. Tétel

Legyen lim, . a, = A. Ekkor az (a,) sorozatnak az A az egyetlen torl6dasi pontja.

2.26. Tétel

Ha az (a,) sorozatnak ketts, vagy tobb torlodasi pontja van, akkor a sorozat divergens.

2.27. SzAmtani atlag sorozat

Adott (a,) sorozat szamtani atlag sorozata az

A, = —Z?:l ai.
n

2.28. Tétel

Ha (a,) nullsorozat, akkor (A, ) is nullsorozat.
Bizonyitas
A haromszog-egyenlGtlenség miatt

n

>

k=1

1
|An| = —
n

1 n
<52 ol
nk:l
€

Legyen az (ay) sorozatnal az § szamhoz tartozo kiiszobindex n;. Legyen tovabba a

Ng = 2”€1K ahol |a,| < K. Vilagos, hogy létezik ilyen K, hiszen a sorozat konvergens.
Ekkor
|A|<1Xn:| | 1%, |+1Zn:’ ‘<n1 K—|—€ n-mo_m K+e
nl < — ag| = — a — ag| < —- — - —- =,
n = F na— F n, = F n 2 ny n 2
= = =ni

Vilagos, hogy n > max(n;, ny) = max (nl, 2”611() esetén

|An|<ﬂ-K+§§ ti=e
n

[NRINe
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2.29. Tétel

Ha (a,) konvergens, akkor (A,) is konvergens, és

lim a, = lim A,.
n—oo n—oo

Bizonyitas
Felhasznélva az el6z6 tételt egybdl kapjuk a bizonyitandot.

2.30. Végtelen sor
Adott egy (a,) sorozat, ekkor

)
> an
n=1

egy végtelen sor.

2.31. N-edik részletosszeg

Egy végtelen sor n-edik részletosszege

n
Snp — E a;
i=1
ahol

n o
lim s, = lim g a; = E Q-
n—oo n—0o0

i=1 n=1

Ekkor a (Zan) sorozat konvergens, ha Jlim, ,. s, = S. Azt mondjuk, hogy S a
> o | ay sor Osszege.
Ha (s,) divergens, akkor azt mondjuk, hogy a »° | a, végtelen sor divergens.

2.32. Tétel

Ha ()" a,) konvergens, akkor (a,) nullsorozat.

Bizonyitas
1
Legyen s, 11 = Y pty g 68 S, = > r_, aj. Ekkor

lim a, = lim s,,; — s, = 0.
n—0o0 n—o0

2.33. Divergencia-teszt

Ha (a,) nem nullsorozat, akkor (" a,) divergens.
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2.34. Mértani sor
Legyen a, = ¢" !, ekkor (Z an) egy mértani sor.

2.35. Cauchy kritérium végtelen sorokra

Azt mondjuk, hogy a (Z an) végtelen sor teljesiti a Cauchy kritériumot, hogyha Ve > 0-
hoz dng kiiszobindex, melyre Vn > m > ng esetén

n

2

1=m+1

‘sn—sm| = < €.

2.36. Tétel
(Z an) akkor és csak akkor konvergens, hogyha teljesiti a Cauchy feltételt.

2.37. Osszehasonlit6é kritériumok végtelen sorokra

1. Majorans kritérium
Adott két sor, melyekre 0 < b, < a, teljesiil Vn € N. Tegyiik fel, hogy (Zan)
konvergens. Ekkor (Y b,) is konvergens.

2. Minorans kritérium
Adott két sor melyekre a,, < b, teljesiil Vn € N. Tegyiik fel, hogy

[e%s)
E a, = 0OQ.
n=1

Ekkor Y | b, = oc.

n=1"n

2.38. Abszolut konvergencia

Azt mondjuk, hogy a (E an) sor abszolut konvergens, ha (E ]an]) konvergens.

2.39. Tétel

Ha a (Z an) abszolut konvergens, akkor konvergens is.
Bizonyitas
A haromszog-egyenlStlenség miatt

n n
D ak— )
k=1 k=m

n

> o

k=m+1

n

< D

k=m+1
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Mivel ('} a,) abszolut konvergens,

n n
> lal = > lax]
k=1 k=m

<€

azaz

<€

n n
PSP I
k=1 k=m

tehét (3 a,) konvergens.

2.40. Feltételes konvergencia

Azt mondjuk, hogy a (Zan) feltételesen konvergens, ha konvergens, de nem abszolit
konvergens.

2.41. Hanyados-kritérium (d’Alembert féle)
1. Tegyiik fel, hogy d¢ < 1, amire

an+1

<g<l
an

teljesiil Vn € N esetén. Ekkor a sor abszolut konvergens.

2. Tegyiik fel, hogy
An+1
Qn

>1

teljesiil Vn € N esetén. Ekkor a sor divergens.

Bizonyitas

1. Tudjuk, hogy
a2

a1

Qp41
G,

a3

a2

<gq <q

Ezeket Osszeszorozva kapjuk, hogy

Ap+1
ay

<q" = |ant1] < ¢"[aq].

Ez azt jelenti, hogy a sort majoralhatjuk egy 1-nél kisebb kvéciensti mértani sorral,
ami nyilvan konvergens.

2. A divergencia-teszt miatt egybdl kapjuk a bizonyitandot.
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2.42. Gyenge hanyados-kritérium

Tegyiik fel, hogy 1étezik a
(41
Qn

lim

n—oo

=A

hatarérték. Ekkor
1. ha A < 1, akkor a sor abszolit konvergens
2. ha A > 1, akkor a sor divergens

3. ha A =1, akkor a sor lehet konvergens és divergens is.
Bizonyitas

1. Legyen az <a’;—:1> sorozatnal az % szamhoz tartozé kiiszébindex ngy. Ekkor

1-A

1-A 14 A

2 2

An+1 Ap+1

— A < A+ <1

Ap, Qn
igy a hanyados-kritérium miatt a sor abszolut konvergens.

2. Trivialis.

3. Jo példa a (Z %) és a (Z #) sorozatok.

2.43. Gyokkritérium (Cauchy féle)

1. Tegyiik fel, hogy 30 < ¢ < 1 € R, melyre {/|a,| < q teljesiil Vn € N esetén. Ekkor
a (" a,) sor abszolit konvergens.

2. Tegyiik fel, hogy {/|a,| > 1 teljesiil Vn € N. Ekkor a (Z an) sor divergens.
Bizonyitas

1. Tudjuk, hogy
la,| < ¢" <1

azaz a sort majoralhatjuk egy 1-nél kisebb kvocienst mértani sorral, ami nyilvan
konvergens.

2. A divergencia-teszt miatt egybdl kapjuk a bizonyitandot.
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2.44. Gyenge gyokkritérium

Tegyiik fel, hogy 1étezik a
sz, aal =4
hatéarérték. Ekkor
1. ha A <1, akkor a (Z an) sor abszolut konvergens
2. ha A > 1, akkor a (" a,) sor divergens

3. ha A =1, akkor a sor lehet konvergens és divergens is.
Bizonyitas

1. Legyen az (\"/ |an|) sorozatnal az % szamhoz tartozo kiiszébindex ng. Ekkor

1—A 1-A
\”/|an|—A‘<T — Yol < A+ =<1

igy a gyokkritérium miatt a sor abszolit konvergens.
2. Trivialis.

3. Jo példa a (Z %) és a (Z #) sorozatok.

2.45. Leibniz-tipust sor

Azt mondjuk, hogy (Y a,) Leibniz-tipust sor, ha az (a,) sorozatra
1. oszcillalo sorozat, azaz a,, - a,11 < 0 teljesiil Vn € N esetén
2. (Ja,|) monoton fogyd

3. (a,) nullsorozat.

2.46. Tétel

A Leibniz-tipusu sorok konvergensek.
Bizonyitas

Legyen a; > 0. Ekkor a paratlan indexd tagok pozitivak, a paros indexu tagok pedig
negativak. Legyen tovabba
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2k—1

Br == Z a;
i=1

Iy, = [a, Bl

Ekkor az I, intervallumsorozat teljesiti a Cantor-féle kozospont tétel feltételeit, igy 1étezik
egy kozos pont, azaz

oo
lim o, = lim G, = g G-
n—o0 n—oo 1
n—=

2.47. Tétel

Ha a (Z an) abszolut konvergens, akkor a sor 0sszege fliggetlen a sorrendtsl.

2.48. Riemann tétel

Ha a (Z an) feltételesen konvergens, akkor Ve € R-hez létezik olyan atrendezés, amikor
a sor Osszege c-vel egyenld.

23



3. Valo6s fiiggvények

3.1. Fuggvény

Adott az f : X — Y leképezés, mely soran Vo € X elemhez hozzarendeliink egy y € Y
elemet. Ekkor ezt a leképezést fiiggvénynek nevezziik.

3.2. Ertelmezési tartomany

Egy fiiggvény értelmezési tartomanyat D¢-el jeloljiik.

3.3. Ertékkeészlet
Egy fliggvény értékkészletét Ry-el jeloljiik.

3.4. Injektiv fiiggvény
Adott f fiiggvény injektiv, ha Vo, # 29 € Dy esetén f(z1) # f(x2) teljesiil.

3.5. Sziirjektiv fliggvény
Adott f fiiggvény sziirjektiv, ha Vy € Ry-hez dz € X, amire f(x) = y.

3.6. Bijektiv fiiggvény
Adott f fliggvény bijektiv, ha injektiv és sziirjektiv.

3.7. Inverz fiiggvény

Adott egy f : X — Y bijekcio. Ekkor az f fiiggvény inverze egy olyan f~!: Y — X
bijekci6, melyre f~'(f(z)) = .

3.8. Tétel

f invertalhato akkor és csak akkor, ha szigortian monoton.

3.9. Fiiggvénykompozicio

Adott f: X — Y ésg:Y — Z. Ekkor a két fiiggvény kompozicidja

h=gof=g(f): X— Z.
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3.10. Folytonossag pontban

Adott f : X — R folytonos az xy € D; pontban, ha Ve > 0-hoz 36 > 0, melyre
Y|z — x0| < 6 esetén

|f(2) = f(wo)| <e.

Megjegyzés: Egy masik megfogalmazas, hogy adott f fliggvény folytonos az zy pont-
ban, ha f(x¢) VUj(z,) C R kornyezetére U, C R kdrnyezet, melyre Vo, € U,, esetén

f(xl) € Uf(wo)'

3.11. Sorozatfolytonossiag pontban

Adott f : X — R folytonos az zy € D; pontban, ha V(z,) C X sorozatra, melyre
hmn—)oo Iy = o,

lim f(z,) = f(zo)

n—o0

teljestil.

3.12. Tétel

Adott f : X — R folytonos az o € D; pontban akkor és csak akkor, ha f sorozatfolytonos
az xo € Dy pontban.

Bizonyitas
Tegyiik fel, hogy f folytonos az z pontban. Legyen tovabba (z,,) C Dy egy olyan sorozat,
amelyre lim,, o, z, = 9. Ekkor Ve > 0-hoz 3§ > 0, melyre V|z — x¢| < § esetén

|f(z) = f(zo)| < e
Mivel z, — z¢, valamilyen kiiszobindex utan
‘xn — xg‘ <) = !f(xn) — f(x0)| < €.

Tehat valoban lim, . f(z,) = f(x0).

Most tegyiik fel, hogy f sorozatfolytonos az xy pontban, azonban nem folytonos, tehat
de > 0, melyre V6 > 0-hoz Jz, melyre |z — x¢| < 0, de |f(x) — f(xo)] > €. Ez azt
jelenti, hogy § = +-hez is Jx,, melyre |z, — 20| < 6, mégis |f(x,) — f(x0)] > e. Ekkor
erre az (x,) sorozatra x, — xg, de lim, , f(x,) # f(zo), ami ellentmondas, hiszen f
sorozatfolytonos xg-ban. Tehéat f folytonos is xg-ban.

3.13. Folytonossag intervallumon

Azt mondjuk, hogy az f : X — R folytonos adott Y C Dy intervallumon folytonos, ha
Vo € Y pontban folytonos.
Ha Dy = [a, b], akkor f folytonos Dy-en, ha Vz, € (a,b) pontban folytonos, és

lm = f(a)  lim = f(0)

r—a+
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3.14. Folytonossag tulajdonsagai

1. Legyen f,g : R — R, és legyen f és g folytonos az xy pontban, ahol g(xy) # 0.
Ekkor f+ g, f-g és § folytonos zg-ban.

2. Legyen f folytonos xg-ban, és g folytonos f(zg)-ban. Ekkor go f folytonos xp-ban.

3.15. Fiiggvények hatarértéke

Adott f: D — R fiiggvény és tegyiik fel, hogy ¢ olyan U,, = (¢ —r, o + 1) kirnyezete,
amire

U\ {0} C D
teljesiil. Ha zq = +o00, akkor legyen U, = (a, 00), illetve U,, = (—00, a).

1. (a) limy ., f(z) = @ ha Ve > 0-hoz 3§ > 0, melyre Vo € D, 0 < |z — z¢| < §
esetén

|f(z) —a| <e
teljesiil.
(b) limg ., f(z) = 0o ha VK &€ R-hez 30 > 0, melyre V0 < |z — x| < & esetén

flz)> K
teljestl.
(c) lim, ., f(z) = —00 ha Vk € R-hez 30 > 0, melyre V0 < |z — xo| < 0 esetén
flz) <k
teljesiil.

2. (a) lim, e f(x) = o ha Ve > 0-hoz 3L € R, melyre Vo > L esetén
‘f($) — a‘ <e€

teljesiil.
(b) lim, e f(z) = 00 ha VK € R-hez 3L € R, melyre Va > L esetén

flx) > K

teljesiil.
(¢) lim, o f(z) = —o0 ha Vk € R-hez 3L € R, melyre Vo > L esetén

flz) <k
teljestl.
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3. (a) lim,_ f(z) = a ha Ve > 0-hoz 3l € R, melyre Vo < [ esetén

‘f(x) — a‘ <e€
teljesiil.

(b) lim,,_ f(x) = 00 ha VK € R-hez 3l € R, melyre Vx < [ esetén
flz) > K

teljestl.

(¢) lim,,_ f(x) = —oo ha Vk € R-hez 3l € R, melyre Vx < [ esetén
flx) <k

teljestl.

Megjegyzés: Mindegyik fenti definiciot ki lehet mondani kornyezetek segitségével is.

3.16. Atviteli elv fiiggvények hatarértékére

Adott f: D — R fiiggvény és tegyiik fel, hogy g olyan U,, = (xg—r,zo + r) kornyezete,
amire

Uno\{z0} C D

teljestil. Ha zg = £o0, akkor legyen U,, = (a, 00), illetve U,, = (—00, a).

1. (a) limg_,, f(z) = « akkor és csak akkor, ha V(z,,) C D sorozatra, ahol x, # x,
lim,,_, o T,, = o €setén

g flem) =

teljesiil.
(b) lim, ., f(z) = oo akkor és csak akkor, ha V(z,) C D sorozatra, ahol x,, # o,
lim,, o T,, = To esetén
lim f(x,) = o0

n—oo
teljesiil.
(¢) limg ., f(x) = —oo akkor és csak akkor, ha V(z,) C D sorozatra, ahol z,, #
xg, lim, o T, = (¢ esetén
15, §(en) = o0

teljesiil.
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2. (a) lim,_o f(z) = a akkor és csak akkor, ha V(x,) C D sorozatra lim,,_,, x, = 0o
esetén

lim f(z,) =«

teljesiil.

(b) lim, . f(z) = oo akkor és csak akkor, ha V(x,) C D sorozatra lim, ., x, =

00 esetén
g, f (@) = 00
teljesiil.
(¢) lim, o f(z) = —o0 akkor és csak akkor, ha V(x,,) C D sorozatra lim,, .. x, =
oo esetén
lim f(x,) =—00
n—oo
teljesiil.

3. (a) lim,—,_ f(z) = a akkor és csak akkor, ha V(x,) C D sorozatra lim,,_,., x, =
—00 esetén

g flem) =

teljesiil.

(b) lim, , o f(x) = oo akkor és csak akkor, ha V(z,) C D sorozatra lim,, .., x, =

—00 esetén
lim f(x,) = o0
n—oo
teljesiil.
(c) lim,,_ f(x) = —o0 akkor és csak akkor, ha V(z,) C D sorozatra lim,,_, z, =
—00 esetén
lim f(x,) =—00
n—oo
teljesiil.

3.17. Egyoldali hatarérték

Adott az f : D +— R fliggvény és tegyiik fel, hogy 3U,, = (xg — r,x¢) C D (3U,, =
(0,20 + 1) C D). Ekkor f baloldali (jobboldali) hatarértéke az xy pontban «, azaz

lim f(z) =«

T—To—

(L st =e

ha Ve > 0-hoz 3§ > 0, melyre Vo € (zg — d,x0) (Vo € (z0, 20 + §)) esetén

|f(x)—a|<e
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teljesiil.
Megjegyzés: Egy méasik jelolés az egyoldali hatarértékre

lim () = f(xo—0)

illetve
Jim ) = flzo+0),
3.18. Tétel

lim, ., f(x) = a akkor és csak akkor, ha

li = i = a.
Jm () =1, fw) = o

3.19. Atviteli elv egyoldali hatarértékekre

lim, .- f(z) = o (limy_y,,+ f(z) = a) akkor és csak akkor, ha V(z,) C D sorozatra,
ahol =, < xy (x, > x¢) és lim,_, x, = xo esetén

Jim J(an) =

teljesiil.

3.20. Szakadasok

1. Az f fiiggvénynek els6faju szakadasa van xg-ban, ha léteznek a

lim f(z) < o0 lim f(z) < o0

r—x0+ T—x0—

hatarértékek. Ha
lim f(z)= lim f(x)

T—x0+ T—x0—

akkor megsziintetheté a szakadas.

2. Az f figgvénynek masodfaju szakadésa van xo-ban, ha nem elséfaju a szakadas.

3.21. Tétel
Ha f folytonos xq € int(D)-ben, akkor

lim f(z) = f(zo).

T—rx0
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3.22. Hatarértékek tulajdonsagai

1. Linearitas

lim (a- f(z) 4+ Bg(z)) = - lim f(z)+ 8- lim g(z)

T—rT0 T—T0 T—T0

Jim f-g(z) = lim f(z) - lim g(z)
Tegyiik fel, hogy lim,_,,, g(x) # 0. Ekkor

3. Kompozicié hatarértéke
Legyen lim,_,,, f(z) = « és lim,_,, g(z) = 3. Ekkor
lim go f(x) = f.

T—rT0

4. Monotonitas
Legyen f(x) < g(z) Vx # zg-ra. Ekkor (ha léteznek a hatéarértékek)

e, o) < Jlig gle).
5. Rendér-elv
Legyen f : Dy — R, g : Dy — R és h : Dy — R. Tegyiik fel, hogy 3U,,, amire
Vo # xy € Uy, esetén
fz) < g(x) < h(z).
Ekkor ha
lim f(x) = lim h(x)

T—rT0 T—rT0

akkor

lim f(z) = lim g(z) = lim h(z).

T—rIT0 T—rT0 T—rx0

6. Monoton fiiggvények hatarértéke
Legyen f : D — R olyan fliggvény, amire tegyiik fel, hogy JU,, kornyezet, ahol a
fiiggvény monoton né (csokken), azaz Vi, < xo € U,,, ahol x; # xy és xa # X
esetén f(z1) < f(z2) (f(z1) = f(CBQ))- Ekkor 3f(zo — 0), f(xo + 0), ahol
lim f(x 1nf{f ‘x>x0}

T—To+

hm flx —Sup{f |35<:B0}

T—T0
(illetve
lim f(x —sup{f |x>x0}

T—T0+

lim f(x mf{f ‘x<m0}.)

T—To—
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3.23. Darboux-tulajdonsag

Egy f fliggvény Darboux-tulajdonsagt, ha barmely két fiiggvényértéke koézott minden
értéket felvesz. Tehéat az f : D — R fliggvény Darboux-tulajdonsagt, ha Va < b € D

és fa) < f(8) (f(a) > F(B)) eseten Ve € [f(a), (b)) hez (Ve € [£(b), f(a)]) % € [a,1],
melyre f(§) = c.

3.24. Tétel
Darboux-tulajdonsigi szigortian monoton fiiggvény folytonos.
Bizonyitas

Legyen f : [a,b] — R szigorian monoton fiiggvény, mely teljesiti a Darboux feltételt.
Legyen xy € (a,b) és € > 0 tetszoleges. Legyen tovabba

f(&2) = min (f(xo) + ¢, £(D))
f(&) = max (f(x0) — €, f(a)).
Ekkor
(5 = min (ZEO — 51, 52 — LEQ)

valasztéassal Vo — x| < § esetén

(@) = f(zo)| <€

teljesiil.

3.25. Bolzano-tétel

Legyen f : [a,b] — R folytonos fiiggvény, ahol f(a) < 0 és f(b) > 0. Ekkor 3¢ € |[a, b],
amire f(£) = 0.

Tehat zart intervallumon folytonos fiiggvénynek, amelyik pozitiv és negativ értékeket is
folvesz, van zérushelye.

Bizonyitas
Legyen ¢, := “T“’ Legyen tovabba
as = aq by =1
ha f(c1) >0, és
a9 ‘= C1 bg = bl
ha f(cy) > 0. Hasonléan konstrualjuk az I := [ay, b] intervallumsorozatot. Nyilvan

az Ij, invervallumsorozat teljesiti a Cantor-féle kdzospont tétel feltételeit, igy 1étezik egy
koz6s pont, azaz
lim a, = lim b, =&

n—o0 n—o0
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tehat

n—oo

Mivel f(a,) <0< f(b,) ezért f(§) <0< f(£). Emiatt nyilvan f(£) = 0.

3.26. Bolzano-Darboux-tétel

Legyen f : [a,b] — R folytonos fiiggvény, ahol f(a) < f(b). Ekkor Ve € [f(a), f(b)]-hez
3¢ € [a, b], amire f(§) = c.
Ugy is kimondhatjuk a tételt, hogy minden folytonos fiiggvény Darboux-tulajdonsagu.

Bizonyitas
Az €l6z8 tételbdl trivialis.

3.27. Darboux-tétel

Ha f differencialhato, akkor f/ Darboux-tulajdonsagu.

Bizonyitas
Legyen f : [a,b] — R differencialhato fiiggvény. Tegyiik fel, hogy f'(a) < ¢ < f'(b).
Legyen tovabba
F(z) = f(z) — cx.

Ekkor nyilvan

azaz

F'(a)<0  F'(b) > 0.
Ekkor a Bolzano-tétel miatt 3¢ € (a,b) amire F'(§) = 0, azaz f'(§) = c.

3.28. Weierstrass tétel
Adott f: [a,b] — R folytonos fiiggvény. Ekkor Ry korlatos és zart.

Megjegyzés: Szoktuk ezt kiilon is megfogalmazni, az els6 tétel azt mondja ki, hogy R
korlatos, a méasik pedig azt, hogy felveszi a szélsGértékeit.

Bizonyitas
Tegyiik fel, hogy f feliilr6l nem korlatos. Ekkor Vn-hez 3z, € [a,b], melyre f(z,) > n.
Ez az (x,) sorozat korlatos, hiszen a < z,, < b, igy a Bolzano-Weierstrass tétel miatt
3(x,, ) konvergens részsorozata, melyre

lim z,, =¢§
Ng—00

ahol £ € [a, b]. Mivel a fiiggvény folytonos, sorozatfolytonos is, tehat

lim f(zn,) = f(£).

N —00
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Azonban ez ellentmondas, hiszen f(z,,) > ng. Tehat valoban korlatos.
Legyen § = sup { f(z)|z € [a,b]}. Ekkor nyilvan Vn-hez 3z,, € [a,b], melyre

B < fla) <6
azZaz

lim f(z,) = 6.

n—oo

Azonban a Bolzano-Weierstrass tétel miatt 3(x,,, ) konvergens részsorozat, amelyre

lim z, =¢
N —r00

ahol £ € [a,b]. Azonban a sorozatfolytonossag miatt

lim f(x,,) = f(§)-

Nj—>00

Tehat 3 = f(€), azaz 8 = max { f(z)|z € [a,0]}.

3.29. Nevezetes hatarértékek

1.
limz® =1
x—0
2.
) 1
lim z= =1
r—r00
3. 1
lim 08T _ 0
r—o00 I
Megjegyzés: A logaritmus alapja itt nem relevans.
4.
) 1\"*
lim <1 + —) =e
T—00 x
5. N
lim (1 + g) = e
T—00 €T
6. )
lim(l+z)= =e
x—0
7.
limzsin— =0
z—0 x
8.
lim zsin— =1
Tr—r00 X
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3.30. Egyenletes folytonossag

Adott f : D — R egyenletesen folytonos D-ben, ha Ve > 0-hoz 39, ami e-ra jellemzd,
melyre Vay, z9 € D-re |11 — 23| < J esetén

| f(z1) — f(x2)] <€

teljesiil.

3.31. Tétel

Ha f egyenletesen folytonos, akkor folytonos is.

3.32. Heine-tétel
Adott f : [a,b] — R folytonos fiiggvény. Ekkor f egyenletesen folytonos.

Bizonyitas
Tegyiik fel, hogy f folytonos, de nem egyenletesen folytonos, azaz Je > 0, melyre Vo > 0-
hoz Jx,y € [a, b], melyekre |x — y| < § esetén

[f(@) = fy)] = e

teljesiil. Legyenek a 6 = %—hez tartoz6 szamok x, és y,. Ezek a sorozatok nyilvan kor-
latosak, tehat a Bolzano-Weierstrass tétel miatt 3(x,,, ), (y,, ) konvergens részsorozataik,
amikre

lim z,, = 2o
Np—>00

és
lim y,, = vyo.

N —00

Mivel |z, — yn| < %, nyilvan xg = yo. A sorozatfolytonossag miatt

lim f(z,,)= lim f(yn,)

Ng—r00 N —r00

tehét
| f(@n,) = fyn,)| <€

ami ellentmondéas. Tehéat valoban egyenletesen folytonos a fliggvény:.

3.33. Lipschitz-folytonossag
Adott f Lipschitz-folytonos D¢-en, ha 3L > 0, amire Yz, 25 € Dy esetén

| f21) = flao)| < L- |y — 2

teljestl.

34



3.34. Tétel
Ha f Lipschitz-folytonos, akkor folytonos is.

3.35. Differenciahanyados
Adott f : D — R flggvény és z( € int(D). Ekkor az x € Dy ponthoz tartozo differen-

ciahanyados
F(x) = f(ro)

T — 29

3.36. Differencidlhdnyados
Azt mondjuk f differencialhatoé xg-ban, ha létezik

f/(l’g) — lim f(I) — f(fl,‘0>

T—T0 T — X

azaz létezik és véges a differencidlhanyados.

3.37. Egyoldali derivalt
Adott f jobboldali (baloldali) derivaltja az zy pontban

F@) = fwo)

fi (o) = Jim pr—
Co @) = f(o)
(Wo) = im _—>

3.38. Tétel
Adott f fiiggvény differencialhato xg-ban akkor és csak akkor, ha

fi(xo) = f2(w0) = f'(20).

3.39. Differencidlhatésag intervallumon

Azt mondjuk, hogy f : [a,b] — R differencialhato, hogy Vzg € (a,b) differencialhatoé és
@@ @)=

r—a+ xr—a z—b— x—0b
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3.40. Tétel

Ha f differencialhato zg-ban, akkor folytonos xg-ban.

Bizonyitas
f differencialhatosiaga azt jelenti, hogy
T—x0 T — X
azaz Ve > 0-hoz 39 > 0, melyre |x — x¢| < J esetén
Fllag) — € < f(@) = f(=zo) < (o) + e
r — T
Ekkor
’f(x)—f(xo) <K
T — X9
ahol

K =max {|f(zo) — €|,|f"(z0) + €| }.
Ekkor nyilvan
|f(x) = f(w0)| < K|z — o).
Ez azt jelenti, hogy 6 = & esetén

€

K

= €

|f(z) = fzo)| < K|z — 20| < K -

tehéat valoban folytonos.

3.41. Differencialasi szabalyok
Legyenek f és g differencidlhato fliggvények.

1. Linearitas

(of + Bg)'(x) = af (x) + By (x)

2. Szorzat derivaltja

3. Reciprok derivaltja
Legyen g(x) # 0.
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4. Hanyados derivaltja
Legyen g(x) # 0.

<M)’ _ ['(@)g(x) — f(x)g'(x)
g(x)

5. Kompozici6 derivaltja
Legyen f differencialhaté g(z)-ben.

(fog)(z)=f(9(x))g (x)

6. Inverz derivaltja
Legyen f szigortian monoton, és legyen f'(z) # 0.

3.42. LokAalis szélsGérték

Adott f : D — R. Ekkor zy € int(D) lokalis maximum (minimum), ha 3U,, amire
Vo € Uy, esetén

teljestil.

3.43. GlobAlis szélsGérték

Adott f: D — R. Ekkor 2y € D globélis maximum (minimum), ha Vz € D esetén

f(x) < flxo)

(f(x) > f(%))

teljestl.

3.44. Tétel

Ha f-nek lokalis szélsGértéle van xy € int(Dy)-ben, akkor

f,(l'o) = O
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3.45. Kozépérték tételek

1. Rolle-tétel
Legyen f : [a,b] — R folytonos, (a, b)-n differencialhaté fiiggvény, ahol f(a) = f(b).
Ekkor 3¢ € (a,b) amire
f'€)=o.

2. Lagrange-féle kozépérték-tétel
Legyen f : [a,b] — R folytonos, (a,b)-n differencialhato fiiggvény. Ekkor 3¢ € (a,b)
amire

3. Cauchy-féle kozépérték-tétel
Legyen f, g : [a,b] — R folytonos, (a,b)-n differencialhatoé fiiggvények. Tegytik fel,
hogy g(a) # g(b) és ¢'(x) # 0. Ekkor 3¢ € (a,b) amire

f) = fa) _ '€
g(b) —gla) g€

3.46. Tétel

Legyen f : [a,b] — R olyan differencialhaté fiiggvény, melyre f'(x) = 0 Va € (a, b) esetén.
Ekkor f(z) konstans fiiggvény.

3.47. Integralszamitas els6 alaptétele

Adottak g, f : [a,b] — R differenciadlhato fliggvények, melyekre f'(z) = ¢'(x) Va € (a,b)
esetén. Ekkor

flx) =g(z)+c

3.48. L’Hospital-szabaly

Adott g, f : I — R differencialhatoak az zq € int(I) pont egy U,, kornyezetében. Tegyiik
fel, hogy
lim f(z) = lim g(z) =0 (vagy %+ 00).

T—rxT0 T—rT0

Ekkor ha létezik a

)
2 )

hatarérték, akkor
/
lim _f(:v) = lim fz)

s glz) v g(z)
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3.49. Tétel

Legyen f : D — R differencialhato fiiggvény. Ekkor f monoton névs (csokkens) I C D-
ben akkor és csak akkor, ha f'(x) >0 (f'(x) <0) Vo € I esetén.

3.50. Tétel

Legyen f : D +— R kétszer differencialhato, és legyen f’(xy) = 0 valamilyen xy-ra. Ekkor
xo lokalis szélséérték, ha f"(zg) # 0. Tovabba zy lokalis maximum (minimum), ha

f"(zo) <0 (f"(z0) > 0).
Ha f'(xzo) = 0 és f'(x) elGjelet valt xo-ban, akkor zq lokalis szélsGérték.
3.51. Konvexitas

Egy f : D — R fiiggvény (a,b) C D-ben konvex (konkav), ha Va < z7 < x9 < b és
Vt € [0, 1] esetén
[tz + (1= t)zs) < tf(z1) + (1 —1) f(22)

teljesiil. Egy f fiiggvény konkav, ha — f konvex.

3.52. Tétel

Legyen f : D +— R differencialhato fiigvény. Ekkor f konvex (konkav) I C D-ben akkor
és csak akkor, ha f”(z) >0 (f"(z) <0) Yz € D esetén.

3.53. Inflexiés pont

Az xy € Dy inflexios pont, ha itt a fliggvény konvexbdl konkavba, vagy konkévbol kon-
vexbe valt.

3.54. Tétel

Legyen f : D — R haromszor differencialhato, és legyen f”(z¢) = 0 valamilyen xz¢-ra.
Ekkor z( inflexiés pont, ha f”'(xq) # 0.
Ha f"(z) = 0 és f"(z) elGjelet valt xy-ban, akkor zy inflexiés pont.

3.55. Els6foktu Taylor-polinom
Legyen az f fliggvény az xo € Ds-ben differencialhat6. Ekkor

17 (x) := f(xo) + f'(zo) (2 — o)

az f xo-hoz tartozo elséfoku Taylor-polinomja.
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3.56. Tétel
o f@) = Tiw)

x—x0 Xr — ],’0

3.57. Tétel

Legyen f kétszer differencialhato fiiggvény egy xy € Dy pont U,, kérnyezetében. Ekkor
Vx € Uy,-hoz 3¢ x és zy kozott, amire

£) Tl = T a2

3.58. Taylor-polinom
Tegyiik fel, hogy az f fliggvény n-szer differencidlhat6 az xy € Dy pontban. Ekkor

") (g .
T, (z) ::Zf k(' >(x—x0)

az f fiiggvény xo-hoz tartozoé n-edik Taylor-polinomja.

3.59. Tétel
Pontosan egy olyan P,(x) polinom létezik, amire
P (wg) = [ (o)

ha k <n és
Pé”“)(:co) =0

ez a polinom pedig T,,(z).

3.60. Lagrange-féle maradéktag
Az L,(x) := f(x) — T,,(x) a Lagrange-féle maradéktag.

3.61. Tétel

Legyen f (n+ 1)-szer differencialhato xq egy U,, kornyezetében. Ekkor Vo € U,,-hoz 3¢
T és xg kozott, amire

_ 0 ntl
= m(x—xo) L
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4. Integralszamitas

4.1. Primitiv fuggvény

Adott egy f : I — R fiiggvény, ahol I C R. Ekkor az F : I — R differencidlhatoé fiiggvény
az f primitiv fiiggvénye, ha Vo € I esetén

teljestil.

4.2. Tétel

Ha F és G az f fiiggvény primitiv fiiggvényei, akkor dc € R konstans, amire
F(z)=G(x)+c

teljesiil.

4.3. Hatarozatlan integral

Az f: I — R fiiggvény primitiv fliiggvényeinek halmaza az f hatarozatlan integralja,
/f(a:)d:z: ={F:1~R|F(z)=f(z)}.

4.4. Hatarozatlan integral tulajdonsagai

1.
/(af(a:)—l—ﬂg(x))dx:a/f(x)d:v—i—ﬁ/g(x)dx
2.
/ F(0(@)) - ¢ (@)da = f(p(x)) + ¢
3. ot
/f(ﬂf)“‘f’(x)dxz féxjrl te  a#-1
4. ( )
P, (@), b f@) >0
[ T =mlstol + ( {ln(—ﬂx)), ha f(fv><0>

5.
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4.5. Felosztas
Adott [a, b] intervallum egy felosztésa az
F={a=xzy<z; <+ <z, =0}

Az Osszes lehetséges felosztas halmaza F.

4.6. Felosztas finomsaga

Adott [a, b] intervallum F felosztés finomsaga

(F) = max{zy — 1}

4.7. Als6 kozelits Osszeg

Adott f : [a,b] — R korlatos fiiggvény. Legyen F az [a,b] intervallum egy felosztasa, és
legyen

my = inf { f(z)|z € [z4_1, 2] }-
Ekkor a felosztashoz tartozo also kozelits dsszeg

4.8. Fels6 kozelit6 osszeg

Adott f : [a,b] — R korlatos fliggvény. Legyen F az [a,b] intervallum egy felosztasa, és
legyen
M, = sup {f(x)|x € [xk,l,xk]}.

Ekkor a felosztashoz tartozo felsé kozelits Osszeg

S(F) =Y M(zy —zp1) = Y MpAuy.
k=1 k=1

4.9. Tétel
1. Tetsz6leges F felosztas esetén

s(F) < S(F).

2. Uj osztopont felvételekor az also kozelits dsszeg nem csokken, a felss kozelits dsszeg
pedig nem né. Legyen tehat az F felosztashol egy osztopont felvételével képzett
felosztas F'. Ekkor

s(F) < s(F') < S(F') < S(F).

3. Legyen F és F' két felosztas. Ekkor
s(F) < S(F.
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4.10. Riemann-integral

Adott f : [a,b] — R korlatos fiiggvény. Azt mondjuk, hogy f Riemann-integralhat6 az
[a, b] intervallumon, ha

sup {s(F)|F € F} = inf {S(F)|F € F}.
Ekkor ,
/ f(x)dz = sup {s(F)|F € F} = inf {S(F)|F € F}.

4.11. Oszcillacios Osszeg

Adott f : [a,b] — R egy F felosztasa. Ekkor a felosztashoz tartozo oszcillacios Osszeg

k=1

4.12. Riemann-0sszeg

Adott f : [a,b] — R egy F felosztasa. Ekkor a felosztashoz tartozo egyik Riemann-osszeg
o(F) =Y f(&) Az
k=1
ahol & € [x_1, k).

4.13. Tétel
Adott f : [a,b] — R integralhato akkor és csak akkor, ha V(F,) felosztas sorozatra
JNim 0(Fn) =0

esetén
lim o(F,) =0 ( lim s(F,) = lim S(]:n)>
n—oo n—oo n—oo
teljesiil.
4.14. Tétel
Adott f : [a,b] — R integralhato akkor és csak akkor, ha V(F,) felosztés sorozatra
lim 6(F,) =0
n—oo
esetén )
lim o(F,) :/ f(z)dx
n—oo a
teljestl.
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4.15. Tétel
Adott f : [a,b] — R folytonos fiiggvény integralhato.

4.16. Tétel

Adott f : [a,b] — R korlatos, és véges sok szakadasi helytdl eltekintve folytonos fiiggvény
integralhato.

4.17. Newton-Leibniz-formula

Adott f : [a,b] — R integralhato figgvény. Legyen f egy primitiv fiiggvénye F'. Ekkor

b

[ e = r0) - Fla) = [F(x)T - F(x)

a
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