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1. Valós számok

1.1. Cantor-féle közöspont tétel

Adottak az I1, I2, . . . , In, · · · ⊂ R egymásba skatulyázott, zárt intervallumok, melyekre

In ⊂ In+1.

Ha limn→∞ |In| = 0, akkor ∃!x ∈ R amire x ∈ In ∀n esetén.

Bizonyítás

Indirekten bizonyítunk. Tegyük fel ugyanis, hogy két ilyen szám van, azaz legyen x, y ∈ In
∀n esetén. Legyen x − y = δ. Mivel limn→∞ |In| = 0 ezért |In| < δ tud teljesülni. Ez
viszont ellentmond azzal, hogy x, y ∈ In ∀n esetén.

1.2. Dedekind axióma

Legyen
Q = A ∪ B

ahol A ∩ B = ∅. Legyen továbbá ∀a ∈ A és ∀b ∈ B esetén a < b. Ekkor ∃x ∈ R, hogy
∀a ∈ A-ra és ∀b ∈ B-re

a ≤ x

és
x ≤ b

teljesül.

1.3. Alulról korlátos halmaz

Adott H ⊂ R alulról korlátos, ha ∃k ∈ R, melyre

k ≤ x ∀x ∈ H.

1.4. Felülről korlátos halmaz

Adott H halmaz felülről korlátos, ha ∃K, melyre

K ≥ x ∀x ∈ H.

1.5. Korlátos halmaz

Adott H halmaz korlátos, alulról és felülről is korlátos, azaz ∃K ∈ R, amire

K ≥ |x| ∀x ∈ H.
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1.6. Infimum

Adott H alulról korlátos halmaz. Ekkor a legnagyobb alsó korlát a halmaz infimuma,
inf(H).

1.7. Tétel

Adott H alulról korlátos halmaz esetén létezik inf(H).

Bizonyítás

Legyen a1 az alsó korlát. Ha a1 ∈ H akkor kész vagyunk. Tehát legyen a1 /∈ H, és legyen
b1 ∈ H egy tetszőleges elem, ahol b1 > a1. Legyen I1 = [a1, b1] és definiáljuk a c1 :=

a1+b1
2

számot.
Ha c1 alsó korlát, akkor legyen a2 := c1 és b2 := b1. Ha c1 nem alsó korlát, akkor legyen
a2 := a1 és b2 := c1. Legyen továbbá I2 = [a2, b2].
Ezt a lépést a végtelenségig ismételve egy egymásba skatulyázott, zárt intervallumrend-
szert kapunk, melyre limn→∞ |In| = 0, hiszen minden lépésben feleződik az intervallum
hossza. Tehát a Cantor-féle közöspont tétel miatt létezik egy darab közös pont. Ez a
közös pont nagyobb vagy egyenlő, mint az ak számok, tehát biztosan alsó korlát. Továb-
bá kisebb vagy egyenlő az összes bk számnál, így nincs nála nagyobb alsó korlát. Tehát
valóban létezik infimum.

1.8. Szuprémum

Adott H felülről korlátos halmaz. Ekkor a legkisebb felső korlát a halmaz szuprémuma,
sup(H).

1.9. Tétel

Adott H felülről korlátos halmaz esetén létezik sup(H).

Bizonyítás

Az 1.7. analógiájára.

1.10. Belső pont

Adott H halmaz belső pontja x0 ∈ R, ha ∃ǫ > 0 amire

(x0 − ǫ, x0 + ǫ) ⊂ H.

A belső pontok halmaza az int(H).
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1.11. Külső pont

Adott H halmaz külső pontja x0, ha ∃ǫ > 0 amire

(x0 − ǫ, x0 + ǫ) ∩H 6= ∅.

A külső pontok halmaza az ext(H).

1.12. Határpont

Adott H halmaz határpontja x0, ha ∀ǫ > 0

(x0 − ǫ, x0 + ǫ) ∩H 6= ∅

és
(x0 − ǫ, x− 0 + ǫ) ∩HC 6= ∅

ahol HC a H halmaz komplementere. A határpontok halmaza a ∂H.

1.13. Nyílt halmaz

Adott H halmaz nyílt, ha ∀x0 ∈ H x0 ∈ int(H).

1.14. Zárt halmaz

Adott H halmaz zárt, ha ∂H ⊂ H.

1.15. Lezárási pont

Adott H halmaz lezárási pontja x0 ∈ H, ha ∀ǫ > 0 esetén

(x0 − ǫ, x0 + ǫ) ∩H 6= ∅.

1.16. Torlódási pont

Adott H halmaz torlódási pontja x0 ∈ H, ha ∀ǫ > 0 esetén

(x0 − ǫ, x0 + ǫ) ∩H

tartalmaz legalább egy x0-tól különböző H-beli elemet.

1.17. Halmaz lezártja

Adott H halmaz lezártja tartalmazza H összes lezárási pontját, azaz a legkisebb olyan
halmaz, mely tartalmazza H-t, és H összes torlódási pontját. Fennáll továbbá, hogy

H = H ∪ ∂H

ahol H a H halmaz lezártja.
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1.18. Háromszög egyenlőtlenség

Legyen a1, a2, . . . , an ∈ R, ekkor
∣

∣

∣

∣

n
∑

i=1

ai

∣

∣

∣

∣

≤
n
∑

i=1

|ai|.

Egyenlőség, ha ∀i, j ai = aj.

Bizonyítás

Teljes indukcióval könnyen látható. Ugyanis n = 2-re triviális, hiszen

±a1 ≤ |a1| ± a2 ≤ |a2|

így ezeket összegezve
±(a1 + a2) ≤ |a1|+ |a2|

amiből |a1 + a2| ≤ |a1|+ |a2|.
Tegyük fel, hogy valamilyen n-re teljesül az állítás! Kéne, hogy n+ 1-re is teljesüljön.

n+1
∑

k=1

|ak| =
n
∑

k=1

|ak|+ |an+1| ≥

∣

∣

∣

∣

n
∑

k=1

ak

∣

∣

∣

∣

+ |an+1| ≥

∣

∣

∣

∣

n
∑

k=1

ak + an+1

∣

∣

∣

∣

=

∣

∣

∣

∣

n+1
∑

k=1

ak

∣

∣

∣

∣

Ezzel beláttuk az állítást.

1.19. Bernoulli-egyenlőtlenség

Legyen n ∈ N és h ∈ R, ekkor
(1 + h)n ≥ 1 + hn.

Egyenlőség, ha h = 0, n = 0 vagy n = 1.

Bizonyítás

Látható, hogyha h = 0 vagy n = 0, akkor teljesül az egyenlőség. Legyen tehát h 6= 0, és
alkalmazzunk teljes indukciót! n = 1-re triviális az egyenlőség. Tegyük fel, hogy teljesül
valamilyen n-re az állítás! Kéne, hogy n+ 1-re is teljesüljön.

(1 + h)n+1 = (1 + h)n · (1 + h) ≥ (1 + nh)(1 + h) = 1 + (n+ 1)h+ nh2 ≥ 1 + (n+ 1)h

Ezzel beláttuk az állítást.

1.20. Számtani és mértani közép közti egyenlőtlenség

Legyen a1, a2, . . . , an ≥ 0 ∈ R, ekkor

n

√

√

√

√

n
∏

i=1

ai ≤

∑n

i=1 ai
n

.
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Egyenlőség, ha ∀i, j ai = aj.

Bizonyítás

Először egy gyengébb állítást fogunk bebizonyítani.
Legyen n ≥ 2 ∈ N, és legyenek az xk ≥ 0 ∈ R ahol k = 1, 2, . . . , n olyan számok, amelyek
között van legalább kettő különböző és

∑n

k=1 xk

n
= 1.

Ekkor
n
∏

k=1

xk < 1.

Alkalmazzunk teljes indukciót! n = 2 esetén az állítás triviális. Tegyük fel, hogy valami-
lyen n-re teljesül az állítás! Kéne, hogy n+ 1-re is teljesüljön.
Tekintsük az xk számokat, ahol k = 1, 2, . . . , n+1 és legyen xk := 1+ tk. Legyen továbbá
az xk számok számtani közepe 1. Ez azt jelenti, hogy

∑n+1
k=1 tk = 0, azaz van köztük pozi-

tív és negatív is, hiszen nem mind egyforma. Az általánosság sérülése nélkül feltehetjük,
hogy tn < 0 < tn+1. Legyen ekkor x∗

n = 1+ tn + tn+1 > 1+ tn + tn+1 + tntn+1 = xn · xn+1.
Ekkor azt látjuk, hogy

x1 + x2 + · · ·+ xn−1 + x∗
n =

n−1
∑

k=1

1 + ti + 1 + tn + tn+1 = n+
n+1
∑

k=1

= n

azaz az x1, x2, . . . , xn−1, x
∗
n számtani átlaga 1 és nem mind egyforma. Ekkor az indukciós

feltevés miatt a szorzatok valóban kisebb, mint 1.
Könnyen látható, hogyha az összes xk szám egyenlő, akkor xk = 1, így a szorzatok is 1.
Tehát megfogalmazhatjuk, hogy tetszőleges xk ≥ 0 számokra ahol k = 1, 2, . . . , n, és

∑n

k=1 xk

n
= 1

teljesül, akkor
n
∏

k=1

xk ≤ 1.

Legyenek adottak az ak számok, ahol k = 1, 2, . . . , n. Legyen továbbá

A =

∑n

k=1 ak
n

és legyenek xk =
ak
A

. Ekkor az xk számok számtani közepe 1, így

n
∏

k=1

xk =

∏n

k=1 ak
An

≤ 1
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azaz
n
∏

k=1

ak ≤ An =

(

∑n

k=1 ak
n

)n

amiből kapjuk is a bizonyítandót.

Megjegyzés: Az adott ai számok k-adik hatványközepe

ck(a1, a2, . . . , an) =

(

∑n

i=1 a
k
i

n

)
1

k

.

Belátható egyrészt az, hogyha k1 < k2, akkor

ck1(a1, a2, . . . , an) ≤ ck2(a1, a2, . . . , an).

Másrészt határértékekkel belátható az is, hogy

c0(a1, a2, . . . , an) =
n

√

√

√

√

n
∏

i=1

ai.

Ez azért érdekes, mert k = −1 esetén a harmonikus közepet kapjuk, k = 0 esetén
a mértani (geometriai) közepet, k = 1 esetén a számtani (aritmetikai) közepet, illetve
k = 2 esetén a négyzetes (kvadratikus) közepet.
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2. Sorozatok, végtelen sorok

2.1. Sorozat

Számsorozat egy olyan N 7→ R hozzárendelés, mely ∀n ∈ N-hez hozzárendel egy an ∈ R

számot. Ekkor a sorozatot (an)-el jelöljük.

2.2. Korlátos sorozat

Az (an) sorozat korlátos, hogyha H = {an} korlátos.

2.3. Monoton sorozat

Az (an) sorozat monoton nő (csökken), ha n < m esetén an ≤ am (an ≥ an).

2.4. Konvergens sorozat

Azt mondjuk, hogy az (an) sorozat konvergens, és

lim
n→∞

an = A

ha ∀ǫ > 0-hoz ∃n0 küszöbindex, melyre ∀n > n0 esetén

|an − A| < ǫ.

Ekkor
lim
n→∞

an = A

egyértelmű.

2.5. Divergens sorozat

Ha (an) nem konvergens, akkor divergens.

2.6. Végtelenbe divergálás

Azt mondjuk, hogy
lim
n→∞

an = ±∞

ha ∀K ∈ R-hez (∀k ∈ R-hez) ∃n0 küszöbindex, melyre ∀n > n0 esetén an > K (an < k).

2.7. Általános határérték

Általánosan mondhatjuk, hogy
lim
n→∞

an = A

ha A tetszőleges U környezetéhez ∃n0, melyre ∀n > n0 esetén an ∈ U .
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2.8. Tétel

Konvergens sorozat korlátos.

Bizonyítás

Rögzítsünk egy ǫ-t, és a hozzátartozó n0 küszöbindexet. Legyen továbbá limn→∞ an = A.
Ekkor az (an) sorozatnak az (A− ǫ, A + ǫ) intervallumon kívül véges sok eleme van, így
ennek a véges sok elemnek létezik minimuma és maximuma, tehát létezik

m := min{an
∣

∣n < n0} M := max{an
∣

∣n < n0}.

Ekkor felső korlátnak jó lesz max(M,A+ ǫ), alsó korlátnak pedig min(m,A− ǫ).

2.9. Tétel

Ha egy sorozat monoton és korlátos, akkor konvergens.

Bizonyítás

Legyen H = {an} felülről (alulról) korlátos halmaz. Ekkor létezik sup(H) = A (inf(H) =
A). A monotonitás miatt ez azt jelenti, hogy ∀ǫ > 0-hoz ∃n0 küszöbindex, melyre n > n0

esetén
A− ǫ < an ≤ A < A+ ǫ

(

A− ǫ < A ≤ an < A+ ǫ

)

teljesül. Ekkor a határérték definíciójából limn→∞ an = A.

2.10. Határértékek tulajdonságai

1. Linearitás
lim
n→∞

(α · an + β · bn) = α lim
n→∞

an + β lim
n→∞

bn

2.
lim
n→∞

an · bn = lim
n→∞

an · lim
n→∞

bn

3. Tegyük fel, hogy limn→∞ bn 6= 0. Ekkor

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

.

4. Monotonitás
Legyen an < bn valamilyen küszöbindex után. Ekkor (ha léteznek a határértékek)

lim
n→∞

an ≤ lim
n→∞

bn.
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5. Rendőr-elv
Legyen an < bn < cn valamilyen küszöbindex után. Legyen továbbá

lim
n→∞

an = lim
n→∞

cn.

Ekkor (ha léteznek a határértékek)

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

Bizonyítás

Legyen
lim
n→∞

an = A lim
n→∞

bn = B.

1. Legyen α 6= 0 és β 6= 0. Legyen továbbá az (an) sorozatnál az ǫ
2|α|

számhoz tartozó
küszöbindex n1, a (bn) sorozatnál az ǫ

2|β|
számhoz tartozó küszöbindex pedig n2.

Ekkor n0 := max(n1, n2) mellett
∣

∣αan + βbn − (αA+ βB)
∣

∣ ≤
∣

∣αan − αA
∣

∣+
∣

∣βbn + βB
∣

∣ =

= |α||an − A|+ |β||bn − B| < |α| ·
ǫ

2|α|
+ β ·

ǫ

2|β|
= ǫ.

2. Legyen A 6= 0. Mivel a (bn) sorozat konvergens, korlátos is, azaz ∃K > 0, melyre
|bn| ≤ K ∀n ∈ N. Legyen továbbá az (an) sorozatnál az ǫ

2K
számhoz tartozó

küszöbindex n1, a (bn) sorozatnál az ǫ
2|A|

számhoz tartozó küszöbindex pedig n2.
Ekkor n0 := max(n1, n2) mellett

∣

∣anbn − (AB)
∣

∣ =
∣

∣(an − A)bn + (bn − B)A
∣

∣ = |an − A||bn|+ |bn − B||B| <

<
ǫ

2K
·K +

ǫ

2|A|
· |A| = ǫ.

3. Azt fogjuk belátni, hogy limn→∞ bn = B 6= 0 mellett

lim
n→∞

1

bn
=

1

B
.

Legyen ugyanis a (bn) sorozatnál az |B|
2

számhoz tartozó küszöbindex n1, az ǫ|B|2

2

számhoz tartozó küszöbindex pedig n2. Ekkor n0 := max(n1, n2) mellett
∣

∣

∣

∣

1

bn
−

1

B

∣

∣

∣

∣

=

∣

∣

∣

∣

B − bn
bnB

∣

∣

∣

∣

=
|bn − B|

|bnB|
<

|bn − B|
|B|2

2

<
ǫ|B|2

2
|B|2

2

= ǫ.

4. Triviális.

5. Legyen limn→∞ an = limn→∞ cn = B. Ekkor a határérték definíciójából valamilyen
küszöbindex után

B − ǫ < an < bn < cn < B + ǫ.
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2.11. Részsorozat

Adott az (an) sorozat, és az (nk) végtelen index-sorozat, ahol ∀k ∈ N esetén nk ∈ N

teljesül, és ∀k < j esetén nk < nj. Ekkor az (ank
) az (an) részsorozata.

2.12. Tétel

Ha (an) monoton, korlátos, vagy konverges, akkor (ank
) is monoton, korlátos, vagy kon-

vergens.

Bizonyítás

Triviális.

2.13. Csúcselem

Adott (an) sorozatban am csúcselem, ha ∀n > m esetén an ≤ am.

2.14. Tétel

Minden sorozatnak van monoton részsorozata.

Bizonyítás

Legyen először az (an) sorozatnak végtelen sok csúcseleme. Ekkor legyen e csúcselemek
indexe nk ahol ni < nj ha i < j. Ekkor az (ank

) sorozat monoton fogyó.
Tegyük fel, hogy az (an) sorozatnak csak véges sok csúcseleme van. Legyen ekkor az
utolsó csúcs indexe n, és legyen n1 := n+1. Mivel an1

már nem lehet csúcs, ezért létezik
nála nagyobb elem, legyen ez an2

. Mivel an2
sem csúcs, ennél is létezik nagyobb elem.

Ezt a végtelenségig folytatva tudunk konstruálni egy (ank
) monoton növő sorozatot.

2.15. Bolzano-Weierstrass tétel

Minden korlátos sorozatnak van konvergens részsorozata.

Bizonyítás

Beláttuk, hogy korlátos sorozatnak létezik monoton részsorozata. Mivel ez a részsorozat
korlátos és monoton, konvergens is.

2.16. Nullsorozat

Az (an) sorozat nullsorozat, ha
lim
n→∞

an = 0.
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2.17. Tétel

1. Látható, hogy (an) nullsorozat akkor és csak akkor, hogyha (|an|) nullsorozat.

2. Azt mondjuk, hogy
lim
n→∞

an = A

ha az (an − A) sorozat nullsorozat.

3. Legyen (an) nullsorozat, és (bn) korlátos sorozat. Ekkor (an · bn) is nullsorozat.

4. Legyen (an) és (bn) nullsorozat, ekkor (an ± bn) is nullsorozat. Legyen továbbá
c ∈ R, ekkor (c · an) is nullsorozat.

5. Legyen limn→∞ an = ∞ és

bn :=

{

1
an
, ha an > 0

0, ha an ≤ 0.

Ekkor limn→∞ bn = 0, azaz (bn) nullsorozat.

6. Legyen limn→∞ an = ∞ és (bn) alulról korlátos sorozat. Ekkor

lim
n→∞

an · bn = ∞.

Hasonlóan, ha limn→∞ an = −∞ és (bn) felülről korlátos sorozat, akkor

lim
n→∞

an · bn = −∞.

7. Legyen limn→∞ an = 0 és limn→∞ bn = ∞. Ekkor limn→∞ an · bn lehet 0, konstans,
vagy ±∞.

2.18. Összehasonlító kritériumok

1. Legyen (an) nullsorozat és (bn) egy olyan sorozat, melyre |bn| ≤ |an| teljesül ∀n ∈ N

(adott küszöbindex után). Ekkor (bn) is nullsorozat.

2. Legyen limn→∞ an = ∞ és (bn) egy olyan sorozat, melyre bn ≥ an teljesül ∀n ∈ N

(adott küszöbindex után). Ekkor limn→∞ bn = ∞.

2.19. Nagyságrendek

Belátható, hogy az alábbi sorrend áll fenn:

nn ≫ n! ≫ kn ≫ nk
(

≫ log n
)

Ez azt jelenti, hogy például

lim
n→∞

n!

kn
= ∞

és

lim
n→∞

nk

kn
= 0.
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2.20. Cauchy kritérium

Azt mondjuk, hogy az (an) Cauchy sorozat, vagy teljesíti a Cauchy kritériumot, hogyha
∀ǫ > 0-hoz ∃n0 küszöbindex, melyre ∀n,m > n0 esetén

|an − am| < ǫ

teljesül.

2.21. Tétel

Az (an) sorozat akkor és csak akkor konvergens, hogyha teljesíti a Cauchy kritériumot.

Bizonyítás

Legyen (an) konvergens. Azt fogjuk belátni, hogy ekkor Cauchy sorozat.
Tudjuk, hogy valamilyen küszbindex után

|an − A| <
ǫ

2
|am − A| <

ǫ

2
.

Ekkor
|an − am| = |an − A+ A− am| ≤ |an − A|+ |am − A| < ǫ.

Legyen (an) Cauchy sorozat. Azt fogjuk belátni, hogy ekkor konvergens.
Először lássuk be, hogy egy Cauchy sorozat korlátos!
Tudjuk, hogy valamilyen n0 küszöbindex után |an − am| < ǫ, azaz an ∈ (am − ǫ, am + ǫ.
Ekkor ezen az invertvallumon kívül csak véges sok eleme van a sorozatnak, azaz

K := max{|am|+ ǫ, |ak|
∣

∣k < n0}

jó korlát. Tehát az (an) Cauchy sorozat korlátos, emiatt van konvergens részsorozata.
Legyen a részsorozat (ank

) ahol lim→∞ ank
= A.

Tudjuk, hogy valamilyen küszöbindex után

|an − am| <
ǫ

2
|ank

− A| <
ǫ

2

teljesül. Ekkor

|an − A| = |an − ank
+ ank

− A| = |an − ank
|+ |ank

− A| ≤ ǫ.

2.22. Torlódási pont

Az adott (an) sorozatban t ∈ R torlódási pont, ha ∀ǫ > 0-ra a (t − ǫ, t + ǫ) intervallum
végtelen sok elemét tartalmazza az (an) sorozatnak.
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2.23. Limesz inferior

Az (an) sorozat torlódási pontjainak infimuma a lim infn→∞ an, vagy limn→∞an.

2.24. Limesz szuperior

Az (an) sorozat torlódási pontjainak szuprémuma a lim supn→∞ an, vagy limn→∞an.

2.25. Tétel

Legyen limn→∞ an = A. Ekkor az (an) sorozatnak az A az egyetlen torlódási pontja.

2.26. Tétel

Ha az (an) sorozatnak kettő, vagy több torlódási pontja van, akkor a sorozat divergens.

2.27. Számtani átlag sorozat

Adott (an) sorozat számtani átlag sorozata az

An :=

∑n

i=1 ai
n

.

2.28. Tétel

Ha (an) nullsorozat, akkor (An) is nullsorozat.

Bizonyítás

A háromszög-egyenlőtlenség miatt

|An| =
1

n

∣

∣

∣

∣

∣

n
∑

k=1

ak

∣

∣

∣

∣

∣

≤
1

n

n
∑

k=1

|ak|.

Legyen az (an) sorozatnál az ǫ
2

számhoz tartozó küszöbindex n1. Legyen továbbá a
n2 = 2n1K

ǫ
ahol |an| ≤ K. Világos, hogy létezik ilyen K, hiszen a sorozat konvergens.

Ekkor

|An| ≤
1

n

n
∑

k=1

|ak| =
1

n

n1
∑

k=1

|ak|+
1

n

n
∑

k=n1+1

|ak| ≤
n1

n
·K +

ǫ

2
·
n− n1

n1

<
n1

n
·K +

ǫ

2
.

Világos, hogy n ≥ max(n1, n2) = max
(

n1,
2n1K

ǫ

)

esetén

|An| <
n1

n
·K +

ǫ

2
≤

ǫ

2
+

ǫ

2
= ǫ.
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2.29. Tétel

Ha (an) konvergens, akkor (An) is konvergens, és

lim
n→∞

an = lim
n→∞

An.

Bizonyítás

Felhasználva az előző tételt egyből kapjuk a bizonyítandót.

2.30. Végtelen sor

Adott egy (an) sorozat, ekkor
∞
∑

n=1

an

egy végtelen sor.

2.31. N-edik részletösszeg

Egy végtelen sor n-edik részletösszege

sn =
n
∑

i=1

ai

ahol

lim
n→∞

sn = lim
n→∞

n
∑

i=1

ai =
∞
∑

n=1

an.

Ekkor a
(
∑

an
)

sorozat konvergens, ha ∃ limn→∞ sn = S. Azt mondjuk, hogy S a
∑∞

n=1 an sor összege.
Ha (sn) divergens, akkor azt mondjuk, hogy a

∑∞
n=1 an végtelen sor divergens.

2.32. Tétel

Ha
(
∑

an
)

konvergens, akkor (an) nullsorozat.

Bizonyítás

Legyen sn+1 =
∑n+1

k=1 ak és sn =
∑n

k=1 ak. Ekkor

lim
n→∞

an = lim
n→∞

sn+1 − sn = 0.

2.33. Divergencia-teszt

Ha (an) nem nullsorozat, akkor
(
∑

an
)

divergens.

18



2.34. Mértani sor

Legyen an = qn−1, ekkor
(
∑

an
)

egy mértani sor.

2.35. Cauchy kritérium végtelen sorokra

Azt mondjuk, hogy a
(
∑

an
)

végtelen sor teljesíti a Cauchy kritériumot, hogyha ∀ǫ > 0-
hoz ∃n0 küszöbindex, melyre ∀n > m ≥ n0 esetén

∣

∣sn − sm
∣

∣ =

∣

∣

∣

∣

n
∑

i=m+1

ai

∣

∣

∣

∣

< ǫ.

2.36. Tétel
(
∑

an
)

akkor és csak akkor konvergens, hogyha teljesíti a Cauchy feltételt.

2.37. Összehasonlító kritériumok végtelen sorokra

1. Majoráns kritérium
Adott két sor, melyekre 0 ≤ bn ≤ an teljesül ∀n ∈ N. Tegyük fel, hogy

(
∑

an
)

konvergens. Ekkor
(
∑

bn
)

is konvergens.

2. Minoráns kritérium
Adott két sor melyekre an ≤ bn teljesül ∀n ∈ N. Tegyük fel, hogy

∞
∑

n=1

an = ∞.

Ekkor
∑∞

n=1 bn = ∞.

2.38. Abszolút konvergencia

Azt mondjuk, hogy a
(
∑

an
)

sor abszolút konvergens, ha
(
∑

|an|
)

konvergens.

2.39. Tétel

Ha a
(
∑

an
)

abszolút konvergens, akkor konvergens is.

Bizonyítás

A háromszög-egyenlőtlenség miatt
∣

∣

∣

∣

∣

n
∑

k=1

ak −
n
∑

k=m

ak

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

k=m+1

ak

∣

∣

∣

∣

∣

≤
n
∑

k=m+1

|ak|.
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Mivel
(
∑

an
)

abszolút konvergens,

∣

∣

∣

∣

∣

n
∑

k=1

|ak| −
n
∑

k=m

|ak|

∣

∣

∣

∣

∣

< ǫ

azaz
∣

∣

∣

∣

∣

n
∑

k=1

ak −
n
∑

k=m

ak

∣

∣

∣

∣

∣

< ǫ

tehát
(
∑

an
)

konvergens.

2.40. Feltételes konvergencia

Azt mondjuk, hogy a
(
∑

an
)

feltételesen konvergens, ha konvergens, de nem abszolút
konvergens.

2.41. Hányados-kritérium (d’Alembert féle)

1. Tegyük fel, hogy ∃q < 1, amire
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ q < 1

teljesül ∀n ∈ N esetén. Ekkor a sor abszolút konvergens.

2. Tegyük fel, hogy
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≥ 1

teljesül ∀n ∈ N esetén. Ekkor a sor divergens.

Bizonyítás

1. Tudjuk, hogy
∣

∣

∣

∣

a2
a1

∣

∣

∣

∣

≤ q

∣

∣

∣

∣

a3
a2

∣

∣

∣

∣

≤ q . . .

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ q.

Ezeket összeszorozva kapjuk, hogy
∣

∣

∣

∣

an+1

a1

∣

∣

∣

∣

≤ qn =⇒ |an+1| ≤ qn|a1|.

Ez azt jelenti, hogy a sort majorálhatjuk egy 1-nél kisebb kvóciensű mértani sorral,
ami nyilván konvergens.

2. A divergencia-teszt miatt egyből kapjuk a bizonyítandót.
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2.42. Gyenge hányados-kritérium

Tegyük fel, hogy létezik a

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= A

határérték. Ekkor

1. ha A < 1, akkor a sor abszolút konvergens

2. ha A > 1, akkor a sor divergens

3. ha A = 1, akkor a sor lehet konvergens és divergens is.

Bizonyítás

1. Legyen az
(

an+1

an

)

sorozatnál az 1−A
2

számhoz tartozó küszöbindex n0. Ekkor

∣

∣

∣

∣

∣

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

− A

∣

∣

∣

∣

∣

<
1− A

2
=⇒

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< A+
1− A

2
=

1 + A

2
< 1

így a hányados-kritérium miatt a sor abszolút konvergens.

2. Triviális.

3. Jó példa a
(

∑

1
n

)

és a
(

∑

1
n2

)

sorozatok.

2.43. Gyökkritérium (Cauchy féle)

1. Tegyük fel, hogy ∃0 < q < 1 ∈ R, melyre n

√

|an| ≤ q teljesül ∀n ∈ N esetén. Ekkor
a
(
∑

an
)

sor abszolút konvergens.

2. Tegyük fel, hogy n

√

|an| ≥ 1 teljesül ∀n ∈ N. Ekkor a
(
∑

an
)

sor divergens.

Bizonyítás

1. Tudjuk, hogy
|an| ≤ qn < 1

azaz a sort majorálhatjuk egy 1-nél kisebb kvóciensű mértani sorral, ami nyilván
konvergens.

2. A divergencia-teszt miatt egyből kapjuk a bizonyítandót.
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2.44. Gyenge gyökkritérium

Tegyük fel, hogy létezik a
lim
n→∞

n

√

|an| = A

határérték. Ekkor

1. ha A < 1, akkor a
(
∑

an
)

sor abszolút konvergens

2. ha A > 1, akkor a
(
∑

an
)

sor divergens

3. ha A = 1, akkor a sor lehet konvergens és divergens is.

Bizonyítás

1. Legyen az
(

n

√

|an|
)

sorozatnál az 1−A
2

számhoz tartozó küszöbindex n0. Ekkor

∣

∣

∣

n

√

|an| − A
∣

∣

∣
<

1− A

2
=⇒ n

√

|an| < A+
1− A

2
< 1

így a gyökkritérium miatt a sor abszolút konvergens.

2. Triviális.

3. Jó példa a
(

∑

1
n

)

és a
(

∑

1
n2

)

sorozatok.

2.45. Leibniz-típusú sor

Azt mondjuk, hogy
(
∑

an
)

Leibniz-típusú sor, ha az (an) sorozatra

1. oszcilláló sorozat, azaz an · an+1 < 0 teljesül ∀n ∈ N esetén

2. (|an|) monoton fogyó

3. (an) nullsorozat.

2.46. Tétel

A Leibniz-típusú sorok konvergensek.

Bizonyítás

Legyen a1 > 0. Ekkor a páratlan indexű tagok pozitívak, a páros indexú tagok pedig
negatívak. Legyen továbbá

αk :=
2k
∑

i=1

ai
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βk :=
2k−1
∑

i=1

ai

Ik := [αk, βk].

Ekkor az Ik intervallumsorozat teljesíti a Cantor-féle közöspont tétel feltételeit, így létezik
egy közös pont, azaz

lim
n→∞

αn = lim
n→∞

βn =
∞
∑

n=1

an.

2.47. Tétel

Ha a
(
∑

an
)

abszolút konvergens, akkor a sor összege független a sorrendtől.

2.48. Riemann tétel

Ha a
(
∑

an
)

feltételesen konvergens, akkor ∀c ∈ R-hez létezik olyan átrendezés, amikor
a sor összege c-vel egyenlő.
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3. Valós függvények

3.1. Függvény

Adott az f : X 7→ Y leképezés, mely során ∀x ∈ X elemhez hozzárendelünk egy y ∈ Y
elemet. Ekkor ezt a leképezést függvénynek nevezzük.

3.2. Értelmezési tartomány

Egy függvény értelmezési tartományát Df -el jelöljük.

3.3. Értékkészlet

Egy függvény értékkészletét Rf -el jelöljük.

3.4. Injektív függvény

Adott f függvény injektív, ha ∀x1 6= x2 ∈ Df esetén f(x1) 6= f(x2) teljesül.

3.5. Szürjektív függvény

Adott f függvény szürjektív, ha ∀y ∈ Rf -hez ∃x ∈ X, amire f(x) = y.

3.6. Bijektív függvény

Adott f függvény bijektív, ha injektív és szürjektív.

3.7. Inverz függvény

Adott egy f : X 7→ Y bijekció. Ekkor az f függvény inverze egy olyan f−1 : Y 7→ X
bijekció, melyre f−1

(

f(x)
)

= x.

3.8. Tétel

f invertálható akkor és csak akkor, ha szigorúan monoton.

3.9. Függvénykompozíció

Adott f : X 7→ Y és g : Y 7→ Z. Ekkor a két függvény kompozíciója

h = g ◦ f = g(f) : X 7→ Z.
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3.10. Folytonosság pontban

Adott f : X 7→ R folytonos az x0 ∈ Df pontban, ha ∀ǫ > 0-hoz ∃δ > 0, melyre
∀|x− x0| < δ esetén

∣

∣f(x)− f(x0)
∣

∣ < ǫ.

Megjegyzés: Egy másik megfogalmazás, hogy adott f függvény folytonos az x0 pont-
ban, ha f(x0) ∀Uf(x0) ⊂ R környezetére ∃Ux0

⊂ R környezet, melyre ∀x1 ∈ Ux0
esetén

f(x1) ∈ Uf(x0).

3.11. Sorozatfolytonosság pontban

Adott f : X 7→ R folytonos az x0 ∈ Df pontban, ha ∀(xn) ⊂ X sorozatra, melyre
limn→∞ xn = x0,

lim
n→∞

f(xn) = f(x0)

teljesül.

3.12. Tétel

Adott f : X 7→ R folytonos az x0 ∈ Df pontban akkor és csak akkor, ha f sorozatfolytonos
az x0 ∈ Df pontban.

Bizonyítás

Tegyük fel, hogy f folytonos az x0 pontban. Legyen továbbá (xn) ⊂ Df egy olyan sorozat,
amelyre limn→∞ xn = x0. Ekkor ∀ǫ > 0-hoz ∃δ > 0, melyre ∀|x− x0| < δ esetén

∣

∣f(x)− f(x0)
∣

∣ < ǫ.

Mivel xn → x0, valamilyen küszöbindex után
∣

∣xn − x0

∣

∣ < δ =⇒
∣

∣f(xn)− f(x0)
∣

∣ < ǫ.

Tehát valóban limx→∞ f(xn) = f(x0).
Most tegyük fel, hogy f sorozatfolytonos az x0 pontban, azonban nem folytonos, tehát
∃ǫ > 0, melyre ∀δ > 0-hoz ∃x, melyre |x − x0| < δ, de |f(x) − f(x0)| ≥ ǫ. Ez azt
jelenti, hogy δ = 1

n
-hez is ∃xn, melyre |xn − x0| < δ, mégis |f(xn) − f(x0)| ≥ ǫ. Ekkor

erre az (xn) sorozatra xn → x0, de limn→∞ f(xn) 6= f(x0), ami ellentmondás, hiszen f
sorozatfolytonos x0-ban. Tehát f folytonos is x0-ban.

3.13. Folytonosság intervallumon

Azt mondjuk, hogy az f : X 7→ R folytonos adott Y ⊂ Df intervallumon folytonos, ha
∀x0 ∈ Y pontban folytonos.
Ha Df = [a, b], akkor f folytonos Df -en, ha ∀x0 ∈ (a, b) pontban folytonos, és

lim
x→a+

= f(a) lim
x→b−

= f(b).
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3.14. Folytonosság tulajdonságai

1. Legyen f, g : R 7→ R, és legyen f és g folytonos az x0 pontban, ahol g(x0) 6= 0.
Ekkor f ± g, f · g és f

g
folytonos x0-ban.

2. Legyen f folytonos x0-ban, és g folytonos f(x0)-ban. Ekkor g ◦ f folytonos x0-ban.

3.15. Függvények határértéke

Adott f : D 7→ R függvény és tegyük fel, hogy x0 olyan Ux0
= (x0− r, x0+ r) környezete,

amire
Ux0

\{x0} ⊂ D

teljesül. Ha x0 = ±∞, akkor legyen Ux0
= (a,∞), illetve Ux0

= (−∞, a).

1. (a) limx→x0
f(x) = α ha ∀ǫ > 0-hoz ∃δ > 0, melyre ∀x ∈ D, 0 < |x − x0| < δ

esetén
∣

∣f(x)− α
∣

∣ < ǫ

teljesül.

(b) limx→x0
f(x) = ∞ ha ∀K ∈ R-hez ∃δ > 0, melyre ∀0 < |x− x0| < δ esetén

f(x) > K

teljesül.

(c) limx→x0
f(x) = −∞ ha ∀k ∈ R-hez ∃δ > 0, melyre ∀0 < |x− x0| < δ esetén

f(x) < k

teljesül.

2. (a) limx→∞ f(x) = α ha ∀ǫ > 0-hoz ∃L ∈ R, melyre ∀x > L esetén
∣

∣f(x)− α
∣

∣ < ǫ

teljesül.

(b) limx→∞ f(x) = ∞ ha ∀K ∈ R-hez ∃L ∈ R, melyre ∀x > L esetén

f(x) > K

teljesül.

(c) limx→∞ f(x) = −∞ ha ∀k ∈ R-hez ∃L ∈ R, melyre ∀x > L esetén

f(x) < k

teljesül.
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3. (a) limx→−∞ f(x) = α ha ∀ǫ > 0-hoz ∃l ∈ R, melyre ∀x < l esetén
∣

∣f(x)− α
∣

∣ < ǫ

teljesül.

(b) limx→−∞ f(x) = ∞ ha ∀K ∈ R-hez ∃l ∈ R, melyre ∀x < l esetén

f(x) > K

teljesül.

(c) limx→−∞ f(x) = −∞ ha ∀k ∈ R-hez ∃l ∈ R, melyre ∀x < l esetén

f(x) < k

teljesül.

Megjegyzés: Mindegyik fenti definíciót ki lehet mondani környezetek segítségével is.

3.16. Átviteli elv függvények határértékére

Adott f : D 7→ R függvény és tegyük fel, hogy x0 olyan Ux0
= (x0− r, x0+ r) környezete,

amire
Ux0

\{x0} ⊂ D

teljesül. Ha x0 = ±∞, akkor legyen Ux0
= (a,∞), illetve Ux0

= (−∞, a).

1. (a) limx→x0
f(x) = α akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra, ahol xn 6= x0,

limn→∞ xn = x0 esetén
lim
n→∞

f(xn) = α

teljesül.

(b) limx→x0
f(x) = ∞ akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra, ahol xn 6= x0,

limn→∞ xn = x0 esetén
lim
n→∞

f(xn) = ∞

teljesül.

(c) limx→x0
f(x) = −∞ akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra, ahol xn 6=

x0, limn→∞ xn = x0 esetén

lim
n→∞

f(xn) = −∞

teljesül.
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2. (a) limx→∞ f(x) = α akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra limn→∞ xn = ∞
esetén

lim
n→∞

f(xn) = α

teljesül.

(b) limx→∞ f(x) = ∞ akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra limn→∞ xn =
∞ esetén

lim
n→∞

f(xn) = ∞

teljesül.

(c) limx→∞ f(x) = −∞ akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra limn→∞ xn =
∞ esetén

lim
n→∞

f(xn) = −∞

teljesül.

3. (a) limx→−∞ f(x) = α akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra limn→∞ xn =
−∞ esetén

lim
n→∞

f(xn) = α

teljesül.

(b) limx→−∞ f(x) = ∞ akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra limn→∞ xn =
−∞ esetén

lim
n→∞

f(xn) = ∞

teljesül.

(c) limx→−∞ f(x) = −∞ akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra limn→∞ xn =
−∞ esetén

lim
n→∞

f(xn) = −∞

teljesül.

3.17. Egyoldali határérték

Adott az f : D 7→ R függvény és tegyük fel, hogy ∃Ux0
= (x0 − r, x0) ⊂ D (∃Ux0

=
(x0, x0 + r) ⊂ D). Ekkor f baloldali (jobboldali) határértéke az x0 pontban α, azaz

lim
x→x0−

f(x) = α

(

lim
x→x0+

f(x) = α

)

ha ∀ǫ > 0-hoz ∃δ > 0, melyre ∀x ∈ (x0 − δ, x0) (∀x ∈ (x0, x0 + δ)) esetén
∣

∣f(x)− α
∣

∣ < ǫ
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teljesül.

Megjegyzés: Egy másik jelölés az egyoldali határértékre

lim
x→x0−

f(x) = f(x0 − 0)

illetve
lim

x→x0+
f(x) = f(x0 + 0).

3.18. Tétel

limx→x0
f(x) = α akkor és csak akkor, ha

lim
x→x0−

f(x) = lim
x→x0+

f(x) = α.

3.19. Átviteli elv egyoldali határértékekre

limx→x0− f(x) = α (limx→x0+ f(x) = α) akkor és csak akkor, ha ∀(xn) ⊂ D sorozatra,
ahol xn < x0 (xn > x0) és limn→∞ xn = x0 esetén

lim
n→∞

f(xn) = α

teljesül.

3.20. Szakadások

1. Az f függvénynek elsőfajú szakadása van x0-ban, ha léteznek a

lim
x→x0+

f(x) < ∞ lim
x→x0−

f(x) < ∞

határértékek. Ha
lim

x→x0+
f(x) = lim

x→x0−
f(x)

akkor megszüntethető a szakadás.

2. Az f függvénynek másodfajú szakadása van x0-ban, ha nem elsőfajú a szakadás.

3.21. Tétel

Ha f folytonos x0 ∈ int(D)-ben, akkor

lim
x→x0

f(x) = f(x0).
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3.22. Határértékek tulajdonságai

1. Linearitás

lim
x→x0

(

α · f(x) + βg(x)
)

= α · lim
x→x0

f(x) + β · lim
x→x0

g(x)

2.
lim
x→x0

f · g(x) = lim
x→x0

f(x) · lim
x→x0

g(x)

Tegyük fel, hogy limx→x0
g(x) 6= 0. Ekkor

lim
x→x0

f

g
(x) =

limx→x0
f(x)

limx→x0
g(x)

.

3. Kompozíció határértéke
Legyen limx→x0

f(x) = α és limx→α g(x) = β. Ekkor

lim
x→x0

g ◦ f(x) = β.

4. Monotonitás
Legyen f(x) < g(x) ∀x 6= x0-ra. Ekkor (ha léteznek a határértékek)

lim
x→x0

f(x) ≤ lim
x→x0

g(x).

5. Rendőr-elv
Legyen f : Df 7→ R, g : Dg 7→ R és h : Dh 7→ R. Tegyük fel, hogy ∃Ux0

, amire
∀x 6= x0 ∈ Ux0

esetén
f(x) < g(x) < h(x).

Ekkor ha
lim
x→x0

f(x) = lim
x→x0

h(x)

akkor
lim
x→x0

f(x) = lim
x→x0

g(x) = lim
x→x0

h(x).

6. Monoton függvények határértéke
Legyen f : D 7→ R olyan függvény, amire tegyük fel, hogy ∃Ux0

környezet, ahol a
függvény monoton nő (csökken), azaz ∀x1 < x2 ∈ Ux0

, ahol x1 6= x0 és x2 6= x0

esetén f(x1) ≤ f(x2) (f(x1) ≥ f(x2)). Ekkor ∃f(x0 − 0), f(x0 + 0), ahol

lim
x→x0+

f(x) = inf
{

f(x)
∣

∣x > x0

}

lim
x→x0−

f(x) = sup
{

f(x)
∣

∣x < x0

}

(illetve
lim

x→x0+
f(x) = sup

{

f(x)
∣

∣x > x0

}

lim
x→x0−

f(x) = inf
{

f(x)
∣

∣x < x0

}

.

)
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3.23. Darboux-tulajdonság

Egy f függvény Darboux-tulajdonságú, ha bármely két függvényértéke között minden
értéket felvesz. Tehát az f : D 7→ R függvény Darboux-tulajdonságú, ha ∀a < b ∈ D
és f(a) < f(b)

(

f(a) > f(b)
)

esetén ∀c ∈ [f(a), f(b)]-hez
(

∀c ∈ [f(b), f(a)]
)

∃ξ ∈ [a, b],
melyre f(ξ) = c.

3.24. Tétel

Darboux-tulajdonságú szigorúan monoton függvény folytonos.

Bizonyítás

Legyen f : [a, b] 7→ R szigorúan monoton függvény, mely teljesíti a Darboux feltételt.
Legyen x0 ∈ (a, b) és ǫ > 0 tetszőleges. Legyen továbbá

f(ξ2) = min
(

f(x0) + ǫ, f(b)
)

és
f(ξ1) = max

(

f(x0)− ǫ, f(a)
)

.

Ekkor
δ = min

(

x0 − ξ1, ξ2 − x0

)

választással ∀|x− x0| < δ esetén
∣

∣f(x)− f(x0)
∣

∣ < ǫ

teljesül.

3.25. Bolzano-tétel

Legyen f : [a, b] 7→ R folytonos függvény, ahol f(a) < 0 és f(b) > 0. Ekkor ∃ξ ∈ [a, b],
amire f(ξ) = 0.
Tehát zárt intervallumon folytonos függvénynek, amelyik pozitív és negatív értékeket is
fölvesz, van zérushelye.

Bizonyítás

Legyen c1 :=
a+b
2

. Legyen továbbá

a2 := a1 b2 := c1

ha f(c1) > 0, és
a2 := c1 b2 := b1

ha f(c2) > 0. Hasonlóan konstruáljuk az Ik := [ak, bk] intervallumsorozatot. Nyilván
az Ik invervallumsorozat teljesíti a Cantor-féle közöspont tétel feltételeit, így létezik egy
közös pont, azaz

lim
n→∞

an = lim
n→∞

bn = ξ
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tehát
lim
n→∞

f(an) = lim
n→∞

f(bn) = f(ξ).

Mivel f(an) ≤ 0 ≤ f(bn) ezért f(ξ) ≤ 0 ≤ f(ξ). Emiatt nyilván f(ξ) = 0.

3.26. Bolzano-Darboux-tétel

Legyen f : [a, b] 7→ R folytonos függvény, ahol f(a) < f(b). Ekkor ∀c ∈ [f(a), f(b)]-hez
∃ξ ∈ [a, b], amire f(ξ) = c.
Úgy is kimondhatjuk a tételt, hogy minden folytonos függvény Darboux-tulajdonságú.

Bizonyítás

Az előző tételből triviális.

3.27. Darboux-tétel

Ha f differenciálható, akkor f ′ Darboux-tulajdonságú.

Bizonyítás

Legyen f : [a, b] 7→ R differenciálható függvény. Tegyük fel, hogy f ′(a) < c < f ′(b).
Legyen továbbá

F (x) = f(x)− cx.

Ekkor nyilván
F ′(x) = f ′(x)− c

azaz
F ′(a) < 0 F ′(b) > 0.

Ekkor a Bolzano-tétel miatt ∃ξ ∈ (a, b) amire F ′(ξ) = 0, azaz f ′(ξ) = c.

3.28. Weierstrass tétel

Adott f : [a, b] 7→ R folytonos függvény. Ekkor Rf korlátos és zárt.

Megjegyzés: Szoktuk ezt külön is megfogalmazni, az első tétel azt mondja ki, hogy Rf

korlátos, a másik pedig azt, hogy felveszi a szélsőértékeit.

Bizonyítás

Tegyük fel, hogy f felülről nem korlátos. Ekkor ∀n-hez ∃xn ∈ [a, b], melyre f(xn) > n.
Ez az (xn) sorozat korlátos, hiszen a ≤ xn ≤ b, így a Bolzano-Weierstrass tétel miatt
∃(xnk

) konvergens részsorozata, melyre

lim
nk→∞

xnk
= ξ

ahol ξ ∈ [a, b]. Mivel a függvény folytonos, sorozatfolytonos is, tehát

lim
nk→∞

f(xnk
) = f(ξ).
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Azonban ez ellentmondás, hiszen f(xnk
) > nk. Tehát valóban korlátos.

Legyen β = sup
{

f(x)
∣

∣x ∈ [a, b]
}

. Ekkor nyilván ∀n-hez ∃xn ∈ [a, b], melyre

β −
1

n
< f(xn) ≤ β

azaz
lim
n→∞

f(xn) = β.

Azonban a Bolzano-Weierstrass tétel miatt ∃(xnk
) konvergens részsorozat, amelyre

lim
nk→∞

xnk
= ξ

ahol ξ ∈ [a, b]. Azonban a sorozatfolytonosság miatt

lim
nk→∞

f(xnk
) = f(ξ).

Tehát β = f(ξ), azaz β = max
{

f(x)
∣

∣x ∈ [a, b]
}

.

3.29. Nevezetes határértékek

1.
lim
x→0

xx = 1

2.
lim
x→∞

x
1

x = 1

3.

lim
x→∞

log x

x
= 0

Megjegyzés: A logaritmus alapja itt nem releváns.

4.

lim
x→∞

(

1 +
1

x

)x

= e

5.

lim
x→∞

(

1 +
a

x

)x

= ea

6.
lim
x→0

(1 + x)
1

x = e

7.

lim
x→0

x sin
1

x
= 0

8.

lim
x→∞

x sin
1

x
= 1
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3.30. Egyenletes folytonosság

Adott f : D 7→ R egyenletesen folytonos D-ben, ha ∀ǫ > 0-hoz ∃δ, ami ǫ-ra jellemző,
melyre ∀x1, x2 ∈ D-re |x1 − x2| < δ esetén

∣

∣f(x1)− f(x2)
∣

∣ < ǫ

teljesül.

3.31. Tétel

Ha f egyenletesen folytonos, akkor folytonos is.

3.32. Heine-tétel

Adott f : [a, b] 7→ R folytonos függvény. Ekkor f egyenletesen folytonos.

Bizonyítás

Tegyük fel, hogy f folytonos, de nem egyenletesen folytonos, azaz ∃ǫ > 0, melyre ∀δ > 0-
hoz ∃x, y ∈ [a, b], melyekre |x− y| < δ esetén

∣

∣f(x)− f(y)
∣

∣ ≥ ǫ

teljesül. Legyenek a δ = 1
n
-hez tartozó számok xn és yn. Ezek a sorozatok nyilván kor-

látosak, tehát a Bolzano-Weierstrass tétel miatt ∃(xnk
), (ynk

) konvergens részsorozataik,
amikre

lim
nk→∞

xnk
= x0

és
lim

nk→∞
ynk

= y0.

Mivel |xn − yn| <
1
n
, nyilván x0 = y0. A sorozatfolytonosság miatt

lim
nk→∞

f(xnk
) = lim

nk→∞
f(ynk

)

tehát
∣

∣f(xnk
)− f(ynk

)
∣

∣ < ǫ

ami ellentmondás. Tehát valóban egyenletesen folytonos a függvény.

3.33. Lipschitz-folytonosság

Adott f Lipschitz-folytonos Df -en, ha ∃L > 0, amire ∀x1, x2 ∈ Df esetén
∣

∣f(x1)− f(x2)
∣

∣ ≤ L · |x1 − x2|

teljesül.
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3.34. Tétel

Ha f Lipschitz-folytonos, akkor folytonos is.

3.35. Differenciahányados

Adott f : D 7→ R függvény és x0 ∈ int(D). Ekkor az x ∈ Df ponthoz tartozó differen-
ciahányados

f(x)− f(x0)

x− x0

.

3.36. Differenciálhányados

Azt mondjuk f differenciálható x0-ban, ha létezik

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

azaz létezik és véges a differenciálhányados.

3.37. Egyoldali derivált

Adott f jobboldali (baloldali) deriváltja az x0 pontban

f ′
+(x0) = lim

x→x0+

f(x)− f(x0)

x− x0

(

f ′
−(x0) = lim

x→x0−

f(x)− f(x0)

x− x0

)

.

3.38. Tétel

Adott f függvény differenciálható x0-ban akkor és csak akkor, ha

f ′
+(x0) = f ′

−(x0) = f ′(x0).

3.39. Differenciálhatóság intervallumon

Azt mondjuk, hogy f : [a, b] 7→ R differenciálható, hogy ∀x0 ∈ (a, b) differenciálható és

∃ lim
x→a+

f(x)− f(a)

x− a
lim
x→b−

f(x)− f(b)

x− b
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3.40. Tétel

Ha f differenciálható x0-ban, akkor folytonos x0-ban.

Bizonyítás

f differenciálhatósága azt jelenti, hogy

∃ lim
x→x0

f(x)− f(x0)

x− x0

= f ′(x0)

azaz ∀ǫ > 0-hoz ∃δ > 0, melyre |x− x0| < δ esetén

f ′(x0)− ǫ ≤
f(x)− f(x0)

x− x0

≤ f ′(x0) + ǫ.

Ekkor
∣

∣

∣

∣

f(x)− f(x0)

x− x0

∣

∣

∣

∣

≤ K

ahol
K = max

{

|f ′(x0)− ǫ|, |f ′(x0) + ǫ|
}

.

Ekkor nyilván
∣

∣f(x)− f(x0)
∣

∣ ≤ K|x− x0|.

Ez azt jelenti, hogy δ = ǫ
K

esetén

∣

∣f(x)− f(x0)
∣

∣ ≤ K|x− x0| < K ·
ǫ

K
= ǫ

tehát valóban folytonos.

3.41. Differenciálási szabályok

Legyenek f és g differenciálható függvények.

1. Linearitás

(αf + βg)′(x) = αf ′(x) + βg′(x)

2. Szorzat deriváltja

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)

3. Reciprok deriváltja
Legyen g(x) 6= 0.

(

1

g(x)

)′

= −
g′(x)

g2(x)
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4. Hányados deriváltja
Legyen g(x) 6= 0.

(

f(x)

g(x)

)′

=
f ′(x)g(x)− f(x)g′(x)

g2(x)

5. Kompozíció deriváltja
Legyen f differenciálható g(x)-ben.

(f ◦ g)′(x) = f ′
(

g(x)
)

g′(x)

6. Inverz deriváltja
Legyen f szigorúan monoton, és legyen f ′(x) 6= 0.

(

f−1(x)
)′

=
1

f ′
(

f−1(x)
)

3.42. Lokális szélsőérték

Adott f : D 7→ R. Ekkor x0 ∈ int(D) lokális maximum (minimum), ha ∃Ux0
amire

∀x ∈ Ux0
esetén

f(x) ≤ f(x0)
(

f(x) ≥ f(x0)

)

teljesül.

3.43. Globális szélsőérték

Adott f : D 7→ R. Ekkor x0 ∈ D globális maximum (minimum), ha ∀x ∈ D esetén

f(x) ≤ f(x0)

(

f(x) ≥ f(x0)

)

teljesül.

3.44. Tétel

Ha f -nek lokális szélsőértéle van x0 ∈ int(Df )-ben, akkor

f ′(x0) = 0.
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3.45. Középérték tételek

1. Rolle-tétel
Legyen f : [a, b] 7→ R folytonos, (a, b)-n differenciálható függvény, ahol f(a) = f(b).
Ekkor ∃ξ ∈ (a, b) amire

f ′(ξ) = 0.

2. Lagrange-féle középérték-tétel
Legyen f : [a, b] 7→ R folytonos, (a, b)-n differenciálható függvény. Ekkor ∃ξ ∈ (a, b)
amire

f ′(ξ) =
f(b)− f(a)

b− a
.

3. Cauchy-féle középérték-tétel
Legyen f, g : [a, b] 7→ R folytonos, (a, b)-n differenciálható függvények. Tegyük fel,
hogy g(a) 6= g(b) és g′(x) 6= 0. Ekkor ∃ξ ∈ (a, b) amire

f(b)− f(a)

g(b)− g(a)
=

f ′(ξ)

g′(ξ)
.

3.46. Tétel

Legyen f : [a, b] 7→ R olyan differenciálható függvény, melyre f ′(x) = 0 ∀x ∈ (a, b) esetén.
Ekkor f(x) konstans függvény.

3.47. Integrálszámítás első alaptétele

Adottak g, f : [a, b] 7→ R differenciálható függvények, melyekre f ′(x) = g′(x) ∀x ∈ (a, b)
esetén. Ekkor

f(x) = g(x) + c.

3.48. L’Hospital-szabály

Adott g, f : I 7→ R differenciálhatóak az x0 ∈ int(I) pont egy Ux0
környezetében. Tegyük

fel, hogy
lim
x→x0

f(x) = lim
x→x0

g(x) = 0 (vagy ±∞).

Ekkor ha létezik a

lim
x→x0

f ′(x)

g′(x)

határérték, akkor

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.
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3.49. Tétel

Legyen f : D 7→ R differenciálható függvény. Ekkor f monoton növő (csökkenő) I ⊂ D-
ben akkor és csak akkor, ha f ′(x) ≥ 0 (f ′(x) ≤ 0) ∀x ∈ I esetén.

3.50. Tétel

Legyen f : D 7→ R kétszer differenciálható, és legyen f ′(x0) = 0 valamilyen x0-ra. Ekkor
x0 lokális szélsőérték, ha f ′′(x0) 6= 0. Továbbá x0 lokális maximum (minimum), ha
f ′′(x0) < 0 (f ′′(x0) > 0).
Ha f ′(x0) = 0 és f ′(x) előjelet vált x0-ban, akkor x0 lokális szélsőérték.

3.51. Konvexitás

Egy f : D 7→ R függvény (a, b) ⊂ D-ben konvex (konkáv), ha ∀a ≤ x1 < x2 ≤ b és
∀t ∈ [0, 1] esetén

f
(

tx1 + (1− t)x2

)

≤ tf(x1) + (1− t)f(x2)

teljesül. Egy f függvény konkáv, ha −f konvex.

3.52. Tétel

Legyen f : D 7→ R differenciálható fügvény. Ekkor f konvex (konkáv) I ⊂ D-ben akkor
és csak akkor, ha f ′′(x) ≥ 0 (f ′′(x) ≤ 0) ∀x ∈ D esetén.

3.53. Inflexiós pont

Az x0 ∈ Df inflexiós pont, ha itt a függvény konvexből konkávba, vagy konkávból kon-
vexbe vált.

3.54. Tétel

Legyen f : D 7→ R háromszor differenciálható, és legyen f ′′(x0) = 0 valamilyen x0-ra.
Ekkor x0 inflexiós pont, ha f ′′′(x0) 6= 0.
Ha f ′′(x0) = 0 és f ′′(x) előjelet vált x0-ban, akkor x0 inflexiós pont.

3.55. Elsőfokú Taylor-polinom

Legyen az f függvény az x0 ∈ Df -ben differenciálható. Ekkor

T x0

1 (x) := f(x0) + f ′(x0)(x− x0)

az f x0-hoz tartozó elsőfokú Taylor-polinomja.
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3.56. Tétel

lim
x→x0

f(x)− T1(x)

x− x0

= 0

3.57. Tétel

Legyen f kétszer differenciálható függvény egy x0 ∈ Df pont Ux0
környezetében. Ekkor

∀x ∈ Ux0
-hoz ∃ξ x és x0 között, amire

f(x)− T1(x) =
f ′′(ξ)

2
(x− x0)

2.

3.58. Taylor-polinom

Tegyük fel, hogy az f függvény n-szer differenciálható az x0 ∈ Df pontban. Ekkor

Tn(x) :=
n
∑

k=0

f (k)(x0)

k!
(x− x0)

k

az f függvény x0-hoz tartozó n-edik Taylor-polinomja.

3.59. Tétel

Pontosan egy olyan Pn(x) polinom létezik, amire

P (k)
n (x0) = f (k)

n (x0)

ha k ≤ n és
P (n+1)
n (x0) = 0

ez a polinom pedig Tn(x).

3.60. Lagrange-féle maradéktag

Az Ln(x) := f(x)− Tn(x) a Lagrange-féle maradéktag.

3.61. Tétel

Legyen f (n+ 1)-szer differenciálható x0 egy Ux0
környezetében. Ekkor ∀x ∈ Ux0

-hoz ∃ξ
x és x0 között, amire

Ln(x) = f(x)− Tn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

40



4. Integrálszámítás

4.1. Primitív függvény

Adott egy f : I 7→ R függvény, ahol I ⊂ R. Ekkor az F : I 7→ R differenciálható függvény
az f primitív függvénye, ha ∀x ∈ I esetén

F ′(x) = f(x)

teljesül.

4.2. Tétel

Ha F és G az f függvény primitív függvényei, akkor ∃c ∈ R konstans, amire

F (x) = G(x) + c

teljesül.

4.3. Határozatlan integrál

Az f : I 7→ R függvény primitív függvényeinek halmaza az f határozatlan integrálja,
∫

f(x)dx =
{

F : I 7→ R
∣

∣F ′(x) = f(x)
}

.

4.4. Határozatlan integrál tulajdonságai

1.
∫

(

αf(x) + βg(x)
)

dx = α

∫

f(x)dx+ β

∫

g(x)dx

2.
∫

f ′
(

ϕ(x)
)

· ϕ′(x)dx = f
(

ϕ(x)
)

+ c

3.
∫

f(x)α · f ′(x)dx =
f(x)α+1

α + 1
+ c α 6= −1

4.
∫

f ′(x)

f(x)
dx = ln |f(x)|+ c

(

=

{

ln
(

f(x)
)

, ha f(x) > 0

ln
(

− f(x)
)

, ha f(x) < 0

)

5.
∫

ef(x) · f ′(x)dx = ef(x) + c
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4.5. Felosztás

Adott [a, b] intervallum egy felosztása az

F = {a = x0 < x1 < · · · < xn = b}.

Az összes lehetséges felosztás halmaza F.

4.6. Felosztás finomsága

Adott [a, b] intervallum F felosztás finomsága

δ(F) = max{xk − xk−1}.

4.7. Alsó közelítő összeg

Adott f : [a, b] 7→ R korlátos függvény. Legyen F az [a, b] intervallum egy felosztása, és
legyen

mk = inf
{

f(x)
∣

∣x ∈ [xk−1, xk]
}

.

Ekkor a felosztáshoz tartozó alsó közelítő összeg

s(F) =
n
∑

k=1

mk(xk − xk−1) =
n
∑

k=1

mk∆xk.

4.8. Felső közelítő összeg

Adott f : [a, b] 7→ R korlátos függvény. Legyen F az [a, b] intervallum egy felosztása, és
legyen

Mk = sup
{

f(x)
∣

∣x ∈ [xk−1, xk]
}

.

Ekkor a felosztáshoz tartozó felső közelítő összeg

S(F) =
n
∑

k=1

Mk(xk − xk−1) =
n
∑

k=1

Mk∆xk.

4.9. Tétel

1. Tetszőleges F felosztás esetén

s(F) ≤ S(F).

2. Új osztópont felvételekor az alsó közelítő összeg nem csökken, a felső közelítő összeg
pedig nem nő. Legyen tehát az F felosztásból egy osztópont felvételével képzett
felosztás F ′. Ekkor

s(F) ≤ s(F ′) ≤ S(F ′) ≤ S(F).

3. Legyen F és F ′ két felosztás. Ekkor

s(F) ≤ S(F ′).
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4.10. Riemann-integrál

Adott f : [a, b] 7→ R korlátos függvény. Azt mondjuk, hogy f Riemann-integrálható az
[a, b] intervallumon, ha

sup
{

s(F)
∣

∣F ∈ F
}

= inf
{

S(F)
∣

∣F ∈ F
}

.

Ekkor
∫ b

a

f(x)dx = sup
{

s(F)
∣

∣F ∈ F
}

= inf
{

S(F)
∣

∣F ∈ F
}

.

4.11. Oszcillációs összeg

Adott f : [a, b] 7→ R egy F felosztása. Ekkor a felosztáshoz tartozó oszcillációs összeg

o(F) =
n
∑

k=1

(Mk −mk)∆xk.

4.12. Riemann-összeg

Adott f : [a, b] 7→ R egy F felosztása. Ekkor a felosztáshoz tartozó egyik Riemann-összeg

σ(F) =
n
∑

k=1

f(ξk)∆xk

ahol ξk ∈ [xk−1, xk].

4.13. Tétel

Adott f : [a, b] 7→ R integrálható akkor és csak akkor, ha ∀(Fn) felosztás sorozatra

lim
n→∞

δ(Fn) = 0

esetén

lim
n→∞

o(Fn) = 0

(

lim
n→∞

s(Fn) = lim
n→∞

S(Fn)

)

teljesül.

4.14. Tétel

Adott f : [a, b] 7→ R integrálható akkor és csak akkor, ha ∀(Fn) felosztás sorozatra

lim
n→∞

δ(Fn) = 0

esetén

lim
n→∞

σ(Fn) =

∫ b

a

f(x)dx

teljesül.

43



4.15. Tétel

Adott f : [a, b] 7→ R folytonos függvény integrálható.

4.16. Tétel

Adott f : [a, b] 7→ R korlátos, és véges sok szakadási helytől eltekintve folytonos függvény
integrálható.

4.17. Newton-Leibniz-formula

Adott f : [a, b] 7→ R integrálható függvény. Legyen f egy primitív függvénye F . Ekkor

∫ b

a

f(x)dx = F (b)− F (a) =

[

F (x)

]b

a

= F (x)

∣

∣

∣

∣

b

a

.
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